-
Views
-
Cite
Cite
Winifred Huang, Hans D Ochs, Bo Dupont, Yatin M Vyas, The Wiskott-Aldrich Syndrome Protein Regulates Nuclear Translocation of NFAT2 and NF-κB (RelA) Independently of Its Role in Filamentous Actin Polymerization and Actin Cytoskeletal Rearrangement, The Journal of Immunology, Volume 174, Issue 5, March 2005, Pages 2602–2611, https://doi.org/10.4049/jimmunol.174.5.2602
- Share Icon Share
Abstract
Effector functions mediated by NK cells involve cytotoxicity and transcription-dependent production and release of cytokines and chemokines. Although the JAK/STAT pathway mediates lymphokine-induced transcriptional regulation in NK cells, very little is known about transcriptional regulation induced during cell-cell contact. We demonstrate that the Wiskott-Aldrich syndrome protein (WASp) is an important component for integration of signals leading to nuclear translocation of NFAT2 and NF-κB (RelA) during cell-cell contact and NKp46-dependent signaling. This WASp function is independent of its known role in F-actin polymerization and cytoskeletal rearrangement. Absence of WASp results in decreased accumulation of calcineurin, WASp-interacting protein, and molecules upstream of calcium mobilization, i.e., activated ZAP70 and phospholipase C-γ1, in the disorganized NK cell immune synapse. Production of GM-CSF, but not IFN-γ, is decreased, while natural cytotoxicity of Wiskott-Aldrich syndrome-NK cells is maintained. Our results indicate that WASp independently regulates its dual functions, i.e., actin cytoskeletal remodeling and transcription in NK cells.