Abstract

By using adoptive transfer of Ag-loaded bone marrow-derived dendritic cells (BMDC), we have established an in vivo model of CTL priming. Activation of CTL in these experiments required both CD4+ T cells and CD154, demonstrating that this model reflects CD4+ T cell-dependent dendritic cell (DC) licensing. Because IL-12 has been suggested to play an important role in CTL activation by DC, we examined the ability of BMDC to prime CTL in the complete absence of IL-12 using p40-deficient mice. We observed that the absence of IL-12 does not affect the phenotype or allostimulatory function of BMDC after in vitro maturation. Moreover, there was no difference in the ability of Ag-loaded DC to elicit CTL cytotoxicity, whether the Ag was delivered by virus infection or peptide pulsing. Equal frequencies of Ag-specific, IFN-γ-secreting CD8+ T cells developed in both wild-type and IL-12-deficient backgrounds. Finally, CTL generated in the IL-12-deficient environment were capable of protecting immunized mice against tumor challenge, demonstrating that these CTL were fully functional, despite the absence of IL-12 during the maturation process in vivo. These results indicate that IL-12 is not critical for the development of IFN-γ secreting, CD8+ T cells and that another mechanism must be used by licensed DC to prime and activate CTL.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/pages/standard-publication-reuse-rights)
You do not currently have access to this article.