-
Views
-
Cite
Cite
E. Büssemaker, R. Popp, B. Fisslthaler, C.M. Larson, I. Fleming, R. Busse, R.P. Brandes, Hyperthyroidism enhances endothelium-dependent relaxation in the rat renal artery, Cardiovascular Research, Volume 59, Issue 1, July 2003, Pages 181–188, https://doi.org/10.1016/S0008-6363(03)00326-2
- Share Icon Share
Abstract
Objective: Hyperthyroidism has pronounced effects on vascular function and endothelium-dependent relaxation. The aim of the present study was to identify mechanisms underlying hyperthyroidism-induced alterations in endothelial function in rats. Methods: Animals were subjected to either a single injection (36 h) or 8 weeks treatment with the thyroid hormone triiodothyronine (T3, i.p.). Vascular reactivity and agonist-induced hyperpolarization were studied in isolated renal arteries. Endothelial nitric oxide (NO) synthase expression and cyclic AMP accumulation were determined in aortic segments. Results: Endothelium-dependent relaxations to acetylcholine (ACh) were enhanced by T3 36 h after injection and after treatment for 8 weeks. Thirty-six hours after T3 application, relaxation mediated by the endothelium-derived hyperpolarizing factor (EDHF) and by endothelium-derived NO were significantly enhanced. After 8 weeks treatment with T3, however, EDHF-mediated relaxation was impaired, whereas NO-mediated relaxation remained enhanced. KCl- and ACh-induced hyperpolarizations were more pronounced in arteries from rats treated with T3 for 36 h compared to control, whereas in arteries from rats treated with T3 for 8 weeks both responses were attenuated. In rats treated for 36 h, vascular cyclic AMP levels were enhanced in the aorta and inhibition of protein kinase A attenuated EDHF-mediated relaxations of the renal artery without affecting responses in arteries from the control group. In the aorta from rats treated with T3 for 8 weeks, the expression of the endothelial NO synthase was markedly up-regulated (463±68%). Conclusions: These data indicate that short-term treatment with T3 increases endothelium-dependent relaxation, most probably by increasing vascular cyclic AMP content. Following treatment with T3 for 8 weeks, expression of the endothelial NO synthase was enhanced. During this phase, NO appears to be the predominant endothelium-derived vasodilator.