ABSTRACT

MicroRNAs (miRNA) are ∼21 nucleotide-long non-coding small RNAs, which function as post-transcriptional regulators in eukaryotes. miRNAs play essential roles in regulating plant growth and development. In recent years, research into the mechanism and consequences of miRNA action has made great progress. With whole genome sequence available in such plants as Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Glycine max, etc., it is desirable to develop a plant miRNA database through the integration of large amounts of information about publicly deposited miRNA data. The plant miRNA database (PMRD) integrates available plant miRNA data deposited in public databases, gleaned from the recent literature, and data generated in-house. This database contains sequence information, secondary structure, target genes, expression profiles and a genome browser. In total, there are 8433 miRNAs collected from 121 plant species in PMRD, including model plants and major crops such as Arabidopsis, rice, wheat, soybean, maize, sorghum, barley, etc. For Arabidopsis, rice, poplar, soybean, cotton, medicago and maize, we included the possible target genes for each miRNA with a predicted interaction site in the database. Furthermore, we provided miRNA expression profiles in the PMRD, including our local rice oxidative stress related microarray data (LC Sciences miRPlants_10.1) and the recently published microarray data for poplar, Arabidopsis, tomato, maize and rice. The PMRD database was constructed by open source technology utilizing a user-friendly web interface, and multiple search tools. The PMRD is freely available at http://bioinformatics.cau.edu.cn/PMRD. We expect PMRD to be a useful tool for scientists in the miRNA field in order to study the function of miRNAs and their target genes, especially in model plants and major crops.

INTRODUCTION

MicroRNAs (microRNA) are ∼21 nucleotide-long endogenetic non-coding small RNAs and function as post-transcriptional regulators in eukaryotes. The processing of miRNA is well studied and is comprised of a discrete series of steps (1). miRNA genes are transcribed and excised into miRNAs, then miRNA is recruited by RISC (RNA-induced silencing complex, including Argonaute and other proteins) which combines with mRNA to inhibit or degrade the target mRNA (1) and thus translation is interrupted.

MiRNAs play essential roles in regulating plant growth and development (2). Research into miRNA function on target genes has progressed at a very rapid rate in plants. As examples, Archak et al. (3) discovered that miRNAs may participate in diverse functions including transcription, catalysis, binding and transporter activity. Some miRNAs related to abiotic stress responses such as cold stress and nutrient deprivation were identified in Arabidopsis thaliana using transcriptome analysis (4,5); Lu et al. (6) analyzed miRNA regulatory roles in the response of Populus trichocarpa to the stressful environment incurred over their long-term growth; Morin et al. conducted comparative analyses on the conservation of miRNAs between Pinus contorta and Oryza sativa and discovered that important RNA silencing processes were highly developed in the earliest spermatophytes (7).

Recently, more and more miRNAs have been identified in plant genomes. Jones-Rhoades et al. (8) developed comparative genomic approaches to systematically identify both miRNAs and target genes, which enlarged the miRNAs family and the number of target genes in A. thaliana. Using high-throughput sequencing, Rajagopalan et al. (9) identified 38 new miRNAs in A. thaliana. Using a similar approach, a large number of miRNAs were recently identified in rice (10). Using support vector machine classification based on intra-genomic matching of potential miRNAs and their targets, Lindow et al. (11) predicted ∼1200, ∼2100 and ∼2500 miRNA candidate genes in A. thaliana, O. sativa and P. trichocarpa, respectively. Using EST analysis, Zhang et al. (12,13) identified numerous new miRNAs in many species. Finally, Ramanjulu Sunkar and Guru Jagadeeswaran (14) identified miRNAs in a large number of plant species.

With the discovery of a large number of miRNAs and their target genes, some public resources have been constructed: miRBase (http://microrna.sanger.ac.uk/), provides a set of precursor and mature miRNAs discovered in many plants (15); ASRP (http://asrp.cgrb.oregonstate.edu/) lists miRNAs and their target genes in Arabidopsis (16); CSRDB (http://sundarlab.ucdavis.edu/smrnas/) is a collection of miRNAs identified in maize and rice (17); Rfam (http://rfam.sanger.ac.uk/) provides secondary structures of miRNA precursors in many plant species (18,19). However, there are limitations to the current databases in this field. For example, miRBase only provides miRNA sequence data and annotation in 25 plant species; Rfam only contains miRNA precursor sequences from less than 50 plant species; the ASRP integrates miRNAs, precursor, target genes and genome browser only for Arabidopsis. It is necessary to develop a plant miRNA database through integration of the large amount of information about plant miRNAs available to the public. For this purpose, we developed a plant microRNA database (PMRD) to integrate the available data pertinent to plant miRNAs available from public resources. Uniquely, we provided miRNA expression profiles in the PMRD, including our local generated rice oxidative stress microarray data and the recent published microarray data generated from poplar, Arabidopsis, tomato, maize and rice.

DATABASE CONTENT

miRNA data collection

The majority of our data was gleaned from miRBase, Rfam and literature published in recent years. The number of mature miRNAs that we immediately retrieved from the miRBase was 1931, 73 miRNAs came from Rfam, and other miRNAs were from the literature. As shown in Table 1, we integrated 8433 non-redundant miRNA sequences and their original resources. Annotation of miRNAs was mainly dependent on information present in miRBase, but in some particular instances, the annotation included information about the corresponding author who discovered the miRNA. Detailed information concerning the variety of miRNAs in PMRD is presented in Table 1.

Table 1.

Species and sources for raw miRNA data

SpeciesNumber of miRNAsReferences
TotalExperimentalComputational
Aegilops speltoides11(12,13)
Aegilops tauschii22(19)
Alliaria petiolata11(19)
Allium cepa77(12,13)
Annona cherimola11(19)
Antirrhinum majus11(19)
Arabidopsis arenosa11(19)
Arabidopsis cebennensis11(19)
Arabidopsis halleri11(19)
Arabidopsis thaliana14272071220(2,4,8,9,1113,16,4158)
Arabis hirsuta11(19)
Arachis hypogaea11(59)
Australopyrum velutinum11(19)
Avena sativa11(19)
Barbarea vulgaris11(19)
Boechera stricta11(14)
Brachypodium distachyon1212(25)
Brachypodium sylvaticum11(19)
Brassica napus4545(50,60,61)
Brassica oleracea918(14,50,62)
Brassica rapa2020(14,50,62)
Camelina microcarpa11(19)
Capsella rubella11(19)
Capsicum annuum33(12,13)
Carica papaya211(14,63)
Chlamydomonas reinhardtii8484(64,65)
Citrus clementina11(14)
Citrus sinensis55(12,13)
Citrus × paradisi × Poncirus trifoliata44(14)
Conringia orientalis11(19)
Corylus avellana11(19)
Cycas rumphii11(12,13)
Descurainia sophia11(19)
Dictyostelium discoideum22(66)
Erysimum cheiri11(19)
Eschscholzia californica11(12,13)
Festuca arundinacea11(14)
Festuca glaucescens × Lolium multiflorum11(19)
Fourraea alpina11(19)
Glycine clandestina33(12,13,22,23)
Glycine max1668086(12,13,2023,59)
Glycine soja33(22,23)
Gossypium arboreum22(12,13)
Gossypium herbaceum44(32)
Gossypium hirsutum5353(3032)
Gossypium raimondii1111(12,13,30,32)
Hedyotis centranthoides33(12,13)
Hedyotis terminalis11(12,13)
Helianthus annuus33(12,13)
Henrardia persica11(19)
Heteranthelium piliferum11(19)
Hordeum vulgare11(14)
Hordeum vulgare subsp. Spontaneum11(12,13)
Hordeum vulgare subsp. Vulgare1616(12,13)
Ipomoea batatas11(12,13)
Ipomoea nil55(12,13)
Lactuca sativa33(12,13)
Liriodendron tulipifera22(12,13)
Lotus japonicus88(12,13,22,59)
Lupinus luteus11(12,13)
Malcolmia maritima11(19)
Malus x domestica33(12,13)
Manihot esculenta11(14)
Medicago truncatula763640(13,20,22,59,6769)
Nasturtium officinale11(19)
Nicotiana benthamiana44(12,13)
Nicotiana sylvestris11(19)
Nicotiana tabacum11(12,13)
Nuphar advena33(12,13)
Oenocarpus bataua11(19)
Oryza barthii11(19)
Oryza brachyantha11(19)
Oryza nivara11(19)
Oryza rufipogon66(19)
Oryza sativa25402692271(2,3,68,1013,28,5255,6978)
Panicum virgatum11(14)
Pennisetum ciliare11(14)
Pennisetum glaucum11(12,13)
Peridictyon sanctum11(19)
Persea americana11(12,13)
Petunia x hybrida11(19)
Phaseolus coccineus22(12,13)
Phaseolus vulgaris22(14,59)
Phleum pratense11(19)
Physcomitrella patens2822811(2,12,13,70,7982)
Picea glauca55(12,13)
Picea sitchensis33(12,13)
Pinus taeda402416(6,7,12,13,77)
Populus tremula44(12,13)
Populus tremula × Populus tremuloides66(14)
Populus tremuloides77(12,13)
Populus trichocarpa2780772703(2,6,11,13,83,84)
Populus trichocarpa × Populus deltoides55(1214)
Prunus armeniaca22(12,13)
Prunus persica33(14)
Prunus salicina11(19)
Ricinus communis2424(19)
Rorippa indica11(19)
Saccharum officinarum3232(14,20)
Saccharum sp22(12,13)
Schedonorus arundinaceus11(12,13)
Secale cereale11(12,13)
Selaginella moellendorffii6464(79)
Sesamum indicum22(12,13)
Sibara virginica11(19)
Solanum demissum11(19)
Solanum lycopersicum372116(1214,34,85)
Solanum tuberosum1414(1214)
Sorghum bicolor7676(12–14,20,27,86)
Sorghum propinquum22(12,13)
Theobroma cacao11(12,13)
Thlaspi arvense11(19)
Trifolium repens11(19)
Triticum aestivum857114(12,13,24,25)
Triticum monococcum22(19)
Triticum turgidum22(12,13)
Triticum urartu22(19)
Vigna unguiculata22(22,59)
Vitis vinifera142142(13,22,87)
Zea mays2072205(12,13,20,2629)
Zinnia elegans33(12,13)
SpeciesNumber of miRNAsReferences
TotalExperimentalComputational
Aegilops speltoides11(12,13)
Aegilops tauschii22(19)
Alliaria petiolata11(19)
Allium cepa77(12,13)
Annona cherimola11(19)
Antirrhinum majus11(19)
Arabidopsis arenosa11(19)
Arabidopsis cebennensis11(19)
Arabidopsis halleri11(19)
Arabidopsis thaliana14272071220(2,4,8,9,1113,16,4158)
Arabis hirsuta11(19)
Arachis hypogaea11(59)
Australopyrum velutinum11(19)
Avena sativa11(19)
Barbarea vulgaris11(19)
Boechera stricta11(14)
Brachypodium distachyon1212(25)
Brachypodium sylvaticum11(19)
Brassica napus4545(50,60,61)
Brassica oleracea918(14,50,62)
Brassica rapa2020(14,50,62)
Camelina microcarpa11(19)
Capsella rubella11(19)
Capsicum annuum33(12,13)
Carica papaya211(14,63)
Chlamydomonas reinhardtii8484(64,65)
Citrus clementina11(14)
Citrus sinensis55(12,13)
Citrus × paradisi × Poncirus trifoliata44(14)
Conringia orientalis11(19)
Corylus avellana11(19)
Cycas rumphii11(12,13)
Descurainia sophia11(19)
Dictyostelium discoideum22(66)
Erysimum cheiri11(19)
Eschscholzia californica11(12,13)
Festuca arundinacea11(14)
Festuca glaucescens × Lolium multiflorum11(19)
Fourraea alpina11(19)
Glycine clandestina33(12,13,22,23)
Glycine max1668086(12,13,2023,59)
Glycine soja33(22,23)
Gossypium arboreum22(12,13)
Gossypium herbaceum44(32)
Gossypium hirsutum5353(3032)
Gossypium raimondii1111(12,13,30,32)
Hedyotis centranthoides33(12,13)
Hedyotis terminalis11(12,13)
Helianthus annuus33(12,13)
Henrardia persica11(19)
Heteranthelium piliferum11(19)
Hordeum vulgare11(14)
Hordeum vulgare subsp. Spontaneum11(12,13)
Hordeum vulgare subsp. Vulgare1616(12,13)
Ipomoea batatas11(12,13)
Ipomoea nil55(12,13)
Lactuca sativa33(12,13)
Liriodendron tulipifera22(12,13)
Lotus japonicus88(12,13,22,59)
Lupinus luteus11(12,13)
Malcolmia maritima11(19)
Malus x domestica33(12,13)
Manihot esculenta11(14)
Medicago truncatula763640(13,20,22,59,6769)
Nasturtium officinale11(19)
Nicotiana benthamiana44(12,13)
Nicotiana sylvestris11(19)
Nicotiana tabacum11(12,13)
Nuphar advena33(12,13)
Oenocarpus bataua11(19)
Oryza barthii11(19)
Oryza brachyantha11(19)
Oryza nivara11(19)
Oryza rufipogon66(19)
Oryza sativa25402692271(2,3,68,1013,28,5255,6978)
Panicum virgatum11(14)
Pennisetum ciliare11(14)
Pennisetum glaucum11(12,13)
Peridictyon sanctum11(19)
Persea americana11(12,13)
Petunia x hybrida11(19)
Phaseolus coccineus22(12,13)
Phaseolus vulgaris22(14,59)
Phleum pratense11(19)
Physcomitrella patens2822811(2,12,13,70,7982)
Picea glauca55(12,13)
Picea sitchensis33(12,13)
Pinus taeda402416(6,7,12,13,77)
Populus tremula44(12,13)
Populus tremula × Populus tremuloides66(14)
Populus tremuloides77(12,13)
Populus trichocarpa2780772703(2,6,11,13,83,84)
Populus trichocarpa × Populus deltoides55(1214)
Prunus armeniaca22(12,13)
Prunus persica33(14)
Prunus salicina11(19)
Ricinus communis2424(19)
Rorippa indica11(19)
Saccharum officinarum3232(14,20)
Saccharum sp22(12,13)
Schedonorus arundinaceus11(12,13)
Secale cereale11(12,13)
Selaginella moellendorffii6464(79)
Sesamum indicum22(12,13)
Sibara virginica11(19)
Solanum demissum11(19)
Solanum lycopersicum372116(1214,34,85)
Solanum tuberosum1414(1214)
Sorghum bicolor7676(12–14,20,27,86)
Sorghum propinquum22(12,13)
Theobroma cacao11(12,13)
Thlaspi arvense11(19)
Trifolium repens11(19)
Triticum aestivum857114(12,13,24,25)
Triticum monococcum22(19)
Triticum turgidum22(12,13)
Triticum urartu22(19)
Vigna unguiculata22(22,59)
Vitis vinifera142142(13,22,87)
Zea mays2072205(12,13,20,2629)
Zinnia elegans33(12,13)

The curation of miRNAs that are not included in miRBase or that have not yet been named was performed using a special format that includes information about the corresponding author. An example is osa-miRf10000-akr, a rice miRNA discovered by Anders Krogh's group (11).

Table 1.

Species and sources for raw miRNA data

SpeciesNumber of miRNAsReferences
TotalExperimentalComputational
Aegilops speltoides11(12,13)
Aegilops tauschii22(19)
Alliaria petiolata11(19)
Allium cepa77(12,13)
Annona cherimola11(19)
Antirrhinum majus11(19)
Arabidopsis arenosa11(19)
Arabidopsis cebennensis11(19)
Arabidopsis halleri11(19)
Arabidopsis thaliana14272071220(2,4,8,9,1113,16,4158)
Arabis hirsuta11(19)
Arachis hypogaea11(59)
Australopyrum velutinum11(19)
Avena sativa11(19)
Barbarea vulgaris11(19)
Boechera stricta11(14)
Brachypodium distachyon1212(25)
Brachypodium sylvaticum11(19)
Brassica napus4545(50,60,61)
Brassica oleracea918(14,50,62)
Brassica rapa2020(14,50,62)
Camelina microcarpa11(19)
Capsella rubella11(19)
Capsicum annuum33(12,13)
Carica papaya211(14,63)
Chlamydomonas reinhardtii8484(64,65)
Citrus clementina11(14)
Citrus sinensis55(12,13)
Citrus × paradisi × Poncirus trifoliata44(14)
Conringia orientalis11(19)
Corylus avellana11(19)
Cycas rumphii11(12,13)
Descurainia sophia11(19)
Dictyostelium discoideum22(66)
Erysimum cheiri11(19)
Eschscholzia californica11(12,13)
Festuca arundinacea11(14)
Festuca glaucescens × Lolium multiflorum11(19)
Fourraea alpina11(19)
Glycine clandestina33(12,13,22,23)
Glycine max1668086(12,13,2023,59)
Glycine soja33(22,23)
Gossypium arboreum22(12,13)
Gossypium herbaceum44(32)
Gossypium hirsutum5353(3032)
Gossypium raimondii1111(12,13,30,32)
Hedyotis centranthoides33(12,13)
Hedyotis terminalis11(12,13)
Helianthus annuus33(12,13)
Henrardia persica11(19)
Heteranthelium piliferum11(19)
Hordeum vulgare11(14)
Hordeum vulgare subsp. Spontaneum11(12,13)
Hordeum vulgare subsp. Vulgare1616(12,13)
Ipomoea batatas11(12,13)
Ipomoea nil55(12,13)
Lactuca sativa33(12,13)
Liriodendron tulipifera22(12,13)
Lotus japonicus88(12,13,22,59)
Lupinus luteus11(12,13)
Malcolmia maritima11(19)
Malus x domestica33(12,13)
Manihot esculenta11(14)
Medicago truncatula763640(13,20,22,59,6769)
Nasturtium officinale11(19)
Nicotiana benthamiana44(12,13)
Nicotiana sylvestris11(19)
Nicotiana tabacum11(12,13)
Nuphar advena33(12,13)
Oenocarpus bataua11(19)
Oryza barthii11(19)
Oryza brachyantha11(19)
Oryza nivara11(19)
Oryza rufipogon66(19)
Oryza sativa25402692271(2,3,68,1013,28,5255,6978)
Panicum virgatum11(14)
Pennisetum ciliare11(14)
Pennisetum glaucum11(12,13)
Peridictyon sanctum11(19)
Persea americana11(12,13)
Petunia x hybrida11(19)
Phaseolus coccineus22(12,13)
Phaseolus vulgaris22(14,59)
Phleum pratense11(19)
Physcomitrella patens2822811(2,12,13,70,7982)
Picea glauca55(12,13)
Picea sitchensis33(12,13)
Pinus taeda402416(6,7,12,13,77)
Populus tremula44(12,13)
Populus tremula × Populus tremuloides66(14)
Populus tremuloides77(12,13)
Populus trichocarpa2780772703(2,6,11,13,83,84)
Populus trichocarpa × Populus deltoides55(1214)
Prunus armeniaca22(12,13)
Prunus persica33(14)
Prunus salicina11(19)
Ricinus communis2424(19)
Rorippa indica11(19)
Saccharum officinarum3232(14,20)
Saccharum sp22(12,13)
Schedonorus arundinaceus11(12,13)
Secale cereale11(12,13)
Selaginella moellendorffii6464(79)
Sesamum indicum22(12,13)
Sibara virginica11(19)
Solanum demissum11(19)
Solanum lycopersicum372116(1214,34,85)
Solanum tuberosum1414(1214)
Sorghum bicolor7676(12–14,20,27,86)
Sorghum propinquum22(12,13)
Theobroma cacao11(12,13)
Thlaspi arvense11(19)
Trifolium repens11(19)
Triticum aestivum857114(12,13,24,25)
Triticum monococcum22(19)
Triticum turgidum22(12,13)
Triticum urartu22(19)
Vigna unguiculata22(22,59)
Vitis vinifera142142(13,22,87)
Zea mays2072205(12,13,20,2629)
Zinnia elegans33(12,13)
SpeciesNumber of miRNAsReferences
TotalExperimentalComputational
Aegilops speltoides11(12,13)
Aegilops tauschii22(19)
Alliaria petiolata11(19)
Allium cepa77(12,13)
Annona cherimola11(19)
Antirrhinum majus11(19)
Arabidopsis arenosa11(19)
Arabidopsis cebennensis11(19)
Arabidopsis halleri11(19)
Arabidopsis thaliana14272071220(2,4,8,9,1113,16,4158)
Arabis hirsuta11(19)
Arachis hypogaea11(59)
Australopyrum velutinum11(19)
Avena sativa11(19)
Barbarea vulgaris11(19)
Boechera stricta11(14)
Brachypodium distachyon1212(25)
Brachypodium sylvaticum11(19)
Brassica napus4545(50,60,61)
Brassica oleracea918(14,50,62)
Brassica rapa2020(14,50,62)
Camelina microcarpa11(19)
Capsella rubella11(19)
Capsicum annuum33(12,13)
Carica papaya211(14,63)
Chlamydomonas reinhardtii8484(64,65)
Citrus clementina11(14)
Citrus sinensis55(12,13)
Citrus × paradisi × Poncirus trifoliata44(14)
Conringia orientalis11(19)
Corylus avellana11(19)
Cycas rumphii11(12,13)
Descurainia sophia11(19)
Dictyostelium discoideum22(66)
Erysimum cheiri11(19)
Eschscholzia californica11(12,13)
Festuca arundinacea11(14)
Festuca glaucescens × Lolium multiflorum11(19)
Fourraea alpina11(19)
Glycine clandestina33(12,13,22,23)
Glycine max1668086(12,13,2023,59)
Glycine soja33(22,23)
Gossypium arboreum22(12,13)
Gossypium herbaceum44(32)
Gossypium hirsutum5353(3032)
Gossypium raimondii1111(12,13,30,32)
Hedyotis centranthoides33(12,13)
Hedyotis terminalis11(12,13)
Helianthus annuus33(12,13)
Henrardia persica11(19)
Heteranthelium piliferum11(19)
Hordeum vulgare11(14)
Hordeum vulgare subsp. Spontaneum11(12,13)
Hordeum vulgare subsp. Vulgare1616(12,13)
Ipomoea batatas11(12,13)
Ipomoea nil55(12,13)
Lactuca sativa33(12,13)
Liriodendron tulipifera22(12,13)
Lotus japonicus88(12,13,22,59)
Lupinus luteus11(12,13)
Malcolmia maritima11(19)
Malus x domestica33(12,13)
Manihot esculenta11(14)
Medicago truncatula763640(13,20,22,59,6769)
Nasturtium officinale11(19)
Nicotiana benthamiana44(12,13)
Nicotiana sylvestris11(19)
Nicotiana tabacum11(12,13)
Nuphar advena33(12,13)
Oenocarpus bataua11(19)
Oryza barthii11(19)
Oryza brachyantha11(19)
Oryza nivara11(19)
Oryza rufipogon66(19)
Oryza sativa25402692271(2,3,68,1013,28,5255,6978)
Panicum virgatum11(14)
Pennisetum ciliare11(14)
Pennisetum glaucum11(12,13)
Peridictyon sanctum11(19)
Persea americana11(12,13)
Petunia x hybrida11(19)
Phaseolus coccineus22(12,13)
Phaseolus vulgaris22(14,59)
Phleum pratense11(19)
Physcomitrella patens2822811(2,12,13,70,7982)
Picea glauca55(12,13)
Picea sitchensis33(12,13)
Pinus taeda402416(6,7,12,13,77)
Populus tremula44(12,13)
Populus tremula × Populus tremuloides66(14)
Populus tremuloides77(12,13)
Populus trichocarpa2780772703(2,6,11,13,83,84)
Populus trichocarpa × Populus deltoides55(1214)
Prunus armeniaca22(12,13)
Prunus persica33(14)
Prunus salicina11(19)
Ricinus communis2424(19)
Rorippa indica11(19)
Saccharum officinarum3232(14,20)
Saccharum sp22(12,13)
Schedonorus arundinaceus11(12,13)
Secale cereale11(12,13)
Selaginella moellendorffii6464(79)
Sesamum indicum22(12,13)
Sibara virginica11(19)
Solanum demissum11(19)
Solanum lycopersicum372116(1214,34,85)
Solanum tuberosum1414(1214)
Sorghum bicolor7676(12–14,20,27,86)
Sorghum propinquum22(12,13)
Theobroma cacao11(12,13)
Thlaspi arvense11(19)
Trifolium repens11(19)
Triticum aestivum857114(12,13,24,25)
Triticum monococcum22(19)
Triticum turgidum22(12,13)
Triticum urartu22(19)
Vigna unguiculata22(22,59)
Vitis vinifera142142(13,22,87)
Zea mays2072205(12,13,20,2629)
Zinnia elegans33(12,13)

The curation of miRNAs that are not included in miRBase or that have not yet been named was performed using a special format that includes information about the corresponding author. An example is osa-miRf10000-akr, a rice miRNA discovered by Anders Krogh's group (11).

Recently in PMRD, there are 1427, 2540 and 2780 mature miRNA entries for Arabidopsis, rice and poplar, respectively, while in miRBase the entries for these three species are 207, 415 and 237, respectively. The other miRNAs we curated from these three species mainly come from Lindow et al. (11). There are 166 soybean entries in PMRD, of which 79 sequences came from miRBase (15,2022), and the others were from Zhang et al. (13,23). For wheat we deposited 85 miRNAs in PMRD, of which 32 came from miRBase (15,24) and the others were from Yao et al. (24), Zhang et al. (13) and Wei et al. (25). As for maize, 207 entries were created in PMRD, including 98 from miRBase (13,15,20,2628) and 109 from Zhang et al. (13,29). For cotton we deposited 53 mature sequences in PRMD, in which 13 items were from miRBase (15,30), and the others were from Qiu et al. (31) and Zhang et al. (32). In total, there were 8433 miRNAs taken from 121 plant species integrated into PMRD.

miRNA expression profiling

In our PMRD database, we had already added data concerning miRNA expression profiling for several public miRNA expression data sets including maize miRNA-seq results (33), poplar cold stress-responsive miRNAs (6) (sample data shown in Supplementary Data), tomato miRNA expression in leaf tissue (34), Arabidopsis stress (cold, salt and osmotic stresses) regulated miRNAs (35), maize miRNAs responding to salt stress in roots (36), miRNA expression profiles generated from Arabidopsis grown at different temperatures (GEO: GSE11535), and rice miRNAs responding to drought stress (GEO: GSE5986), etc.

For example, in the data set for poplar cold stress, there were 75 probes for 168 miRNAs, and a total of 21 samples including seven time points collected in triplicate. As shown in Supplementary Data, the ratio represented the fold-change of poplar ptc-miR474b expression between cold treatment and control. We highlighted time points demonstrating a significant change in miRNA expression using P ≤ 0.01 as the cut-off.

In addition, we added our local rice oxidative stress related microarray data into PMRD. In order to investigate differences in expression levels of miRNAs in response to oxidative stress in rice, we conducted a series of experiments using the miRPlants_10.1 small RNA chip (LC Sciences, Houston, TX). One-week-old 9311 (rice Indica variety) seedling plants were incubated in a solution containing 10 μM methyl viologen (MV) (paraquat, an herbicide that induces oxidative stresses in plants) using water as a mock-treatment control, for 24 h. A total of four samples were examined in these experiments: 9311-CK01 and 9311-CK02 were controls and 9311-MV01 and 9311-MV02 were two samples treated with MV. Quantile normalization (37) was used to analyze the miRNA expression data. Within the total of 653 probes related to 1773 miRNAs representing 14 species in the chip, 18 probes showed significant differential expression (P ≤ 0.05, listed in Table 2) between MV treatment and mock, including 12 probes that were up-regulated and 6 probes that were down-regulated after MV treatment. Detailed relative expression levels of each probe are presented in the Expression page in the PMRD database. In this article, we present the example of osa-miR159a as Supplementary Data.

Table 2.

Differentially expressed rice miRNAs after methyl viologen (MV) treatment

Probe IDLog2 ratio (MV/mock)P-valueTarget_Seq
ptc-miR474c2.173.67E−06CAAAAGCUGUUGGGUUUGGCUGGG
ptc-miR474b2.114.13E−05CAAAAGUUGUUGGGUUUGGCUGGG
ptc-miR474a2.081.49E−05CAAAAGUUGCUGGGUUUGGCUGGG
tae-miR11251.661.12E−02AACCAACGAGACCAACUGCGGCGG
ath-miR4041.372.51E−05AUUAACGCUGGCGGUUGCGGCAGC
ath-miR854a0.807.00E−04GAUGAGGAUAGGGAGGAGGAG
osa-miR169b0.774.30E−02CAGCCAAGGAUGACUUGCCGG
ppt-miR9030.764.31E−02GCUACUUCGGCGGGACAAGAGC
osa-miR529b0.682.29E−03GAGAAGAGAGAGAGUACAGC
osa-miR820a0.667.61E−03CGGCCUCGUGGAUGGACCAGG
ppt-miR900-5p0.654.60E−02UCCCAGGUACAAGAACACAGC
ppt-miR3950.605.00E−03CUGAAGCGUUUGGGGGAAGG
osa-miR159f−0.765.86E−04CUUGGAUUGAAGGGAGCUCUA
osa-miR396a−0.812.72E−02UUCCACAGCUUUCUUGAACUG
osa-miR159a−0.831.19E−04UUUGGAUUGAAGGGAGCUCUG
osa-miR397b−0.996.99E−03UUAUUGAGUGCAGCGUUGAUG
tae-miR1120−1.082.36E−02ACAUUCUUAUAUUAUGAGACGGAG
osa-miR396c−1.221.36E−03UUCCACAGCUUUCUUGAACUU
Probe IDLog2 ratio (MV/mock)P-valueTarget_Seq
ptc-miR474c2.173.67E−06CAAAAGCUGUUGGGUUUGGCUGGG
ptc-miR474b2.114.13E−05CAAAAGUUGUUGGGUUUGGCUGGG
ptc-miR474a2.081.49E−05CAAAAGUUGCUGGGUUUGGCUGGG
tae-miR11251.661.12E−02AACCAACGAGACCAACUGCGGCGG
ath-miR4041.372.51E−05AUUAACGCUGGCGGUUGCGGCAGC
ath-miR854a0.807.00E−04GAUGAGGAUAGGGAGGAGGAG
osa-miR169b0.774.30E−02CAGCCAAGGAUGACUUGCCGG
ppt-miR9030.764.31E−02GCUACUUCGGCGGGACAAGAGC
osa-miR529b0.682.29E−03GAGAAGAGAGAGAGUACAGC
osa-miR820a0.667.61E−03CGGCCUCGUGGAUGGACCAGG
ppt-miR900-5p0.654.60E−02UCCCAGGUACAAGAACACAGC
ppt-miR3950.605.00E−03CUGAAGCGUUUGGGGGAAGG
osa-miR159f−0.765.86E−04CUUGGAUUGAAGGGAGCUCUA
osa-miR396a−0.812.72E−02UUCCACAGCUUUCUUGAACUG
osa-miR159a−0.831.19E−04UUUGGAUUGAAGGGAGCUCUG
osa-miR397b−0.996.99E−03UUAUUGAGUGCAGCGUUGAUG
tae-miR1120−1.082.36E−02ACAUUCUUAUAUUAUGAGACGGAG
osa-miR396c−1.221.36E−03UUCCACAGCUUUCUUGAACUU
Table 2.

Differentially expressed rice miRNAs after methyl viologen (MV) treatment

Probe IDLog2 ratio (MV/mock)P-valueTarget_Seq
ptc-miR474c2.173.67E−06CAAAAGCUGUUGGGUUUGGCUGGG
ptc-miR474b2.114.13E−05CAAAAGUUGUUGGGUUUGGCUGGG
ptc-miR474a2.081.49E−05CAAAAGUUGCUGGGUUUGGCUGGG
tae-miR11251.661.12E−02AACCAACGAGACCAACUGCGGCGG
ath-miR4041.372.51E−05AUUAACGCUGGCGGUUGCGGCAGC
ath-miR854a0.807.00E−04GAUGAGGAUAGGGAGGAGGAG
osa-miR169b0.774.30E−02CAGCCAAGGAUGACUUGCCGG
ppt-miR9030.764.31E−02GCUACUUCGGCGGGACAAGAGC
osa-miR529b0.682.29E−03GAGAAGAGAGAGAGUACAGC
osa-miR820a0.667.61E−03CGGCCUCGUGGAUGGACCAGG
ppt-miR900-5p0.654.60E−02UCCCAGGUACAAGAACACAGC
ppt-miR3950.605.00E−03CUGAAGCGUUUGGGGGAAGG
osa-miR159f−0.765.86E−04CUUGGAUUGAAGGGAGCUCUA
osa-miR396a−0.812.72E−02UUCCACAGCUUUCUUGAACUG
osa-miR159a−0.831.19E−04UUUGGAUUGAAGGGAGCUCUG
osa-miR397b−0.996.99E−03UUAUUGAGUGCAGCGUUGAUG
tae-miR1120−1.082.36E−02ACAUUCUUAUAUUAUGAGACGGAG
osa-miR396c−1.221.36E−03UUCCACAGCUUUCUUGAACUU
Probe IDLog2 ratio (MV/mock)P-valueTarget_Seq
ptc-miR474c2.173.67E−06CAAAAGCUGUUGGGUUUGGCUGGG
ptc-miR474b2.114.13E−05CAAAAGUUGUUGGGUUUGGCUGGG
ptc-miR474a2.081.49E−05CAAAAGUUGCUGGGUUUGGCUGGG
tae-miR11251.661.12E−02AACCAACGAGACCAACUGCGGCGG
ath-miR4041.372.51E−05AUUAACGCUGGCGGUUGCGGCAGC
ath-miR854a0.807.00E−04GAUGAGGAUAGGGAGGAGGAG
osa-miR169b0.774.30E−02CAGCCAAGGAUGACUUGCCGG
ppt-miR9030.764.31E−02GCUACUUCGGCGGGACAAGAGC
osa-miR529b0.682.29E−03GAGAAGAGAGAGAGUACAGC
osa-miR820a0.667.61E−03CGGCCUCGUGGAUGGACCAGG
ppt-miR900-5p0.654.60E−02UCCCAGGUACAAGAACACAGC
ppt-miR3950.605.00E−03CUGAAGCGUUUGGGGGAAGG
osa-miR159f−0.765.86E−04CUUGGAUUGAAGGGAGCUCUA
osa-miR396a−0.812.72E−02UUCCACAGCUUUCUUGAACUG
osa-miR159a−0.831.19E−04UUUGGAUUGAAGGGAGCUCUG
osa-miR397b−0.996.99E−03UUAUUGAGUGCAGCGUUGAUG
tae-miR1120−1.082.36E−02ACAUUCUUAUAUUAUGAGACGGAG
osa-miR396c−1.221.36E−03UUCCACAGCUUUCUUGAACUU

miRNA target gene, genome browser and stem-loop information

In order to construct a collection of miRNA target genes, we mainly focused on Arabidopsis, rice, poplar, soybean, cotton, Medicago and maize. The target genes collection was curated from literature published in recent years. We also listed the location of interaction sites between miRNAs and target genes in Arabidopsis and rice [predicted by psRNATarget server (38,39)] in our database. Furthermore, we added information concerning miRNA action on target genes in Arabidopsis, rice and soybean into our local genome browser. We also provided the chromosomal location, secondary structure and dot matrix [generated by RNAfold (40)] of miRNA precursor sequences.

ACCESS TO THE DATABASE

The PMRD website was constructed using Hypertext Markup Language (HTML), perl CGI (http://www.perl.com), and the MySQL 4.0 (http://www.mysql.com) database engine. The detailed architecture of the database tables is presented in Supplementary Data. These tables are divided into three sections: the first section concerns miRNAs, the second section is about target genes, and the last is a presentation of miRNA expression profiles. The whole database is run on a server managed by the LINUX operating system.

The PMRD database web interface enables users to view and analyze each miRNA through either the Browse page or Search page. Detail information page (shown as Figure 1) displays basic information for each unique miRNA. The evidence for each entry is either experimental or computational. We listed the methods used for experimentally demonstrated miRNAs and the programs applied for computational prediction. Within the total 8433 miRNAs in PMRD, 1297 of them were experimentally demonstrated and 7136 of them were from computational predictions (the detailed number shown in Table 1). Users can view a miRNA display in the local Genome Browser (shown as Supplementary Data) in which users can extract information about Arabidopsis, rice and soybean. Through PMRD, users can also inspect miRNA expression profiles, target gene list and predicted interaction sites between miRNA and cDNA. In additional, the secondary structure of miRNA precursor could be predicted by using the prediction tool in our PMRD database. All miRNA sequences are available for downloading.

Sample page for detailed information regarding each unique miRNA. Contents of this page are divided into four parts (miRNA ath-MIR168a was used as an example): the first section concerns miRNA precursor, including sequence, stem-loop information, miRNA family and location in the whole genome; the second section is about the mature miRNA, including sequence, evidence and expression patterns; the third section concerns target genes: for Arabidopsis and rice, the target genes and sites were predicted by psRNATarget server (38) in default parameters; for poplar, soybean, cotton, medicago and maize, the listed genes were collected from the references. The last section includes the related references. The miRNA family and the evidence were based on the definition from miRBase, Rfam and the references.
Figure 1.

Sample page for detailed information regarding each unique miRNA. Contents of this page are divided into four parts (miRNA ath-MIR168a was used as an example): the first section concerns miRNA precursor, including sequence, stem-loop information, miRNA family and location in the whole genome; the second section is about the mature miRNA, including sequence, evidence and expression patterns; the third section concerns target genes: for Arabidopsis and rice, the target genes and sites were predicted by psRNATarget server (38) in default parameters; for poplar, soybean, cotton, medicago and maize, the listed genes were collected from the references. The last section includes the related references. The miRNA family and the evidence were based on the definition from miRBase, Rfam and the references.

Currently, we have collected thousands of miRNA sequences from Arabidopsis, rice and poplar in our database, but for other species such as soybean, maize, wheat, cotton and sorghum, etc., the identified miRNAs are limited. Since this field is progressing rapidly due to new deep sequencing technologies, many more plant miRNAs will be discovered, as well as their target genes and expression profiles. The PMRD will be updated and maintained in order to integrate the newest plant miRNA data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors thank Ms Wenying Xu for critical suggestions. They also thank Dongxia Yao and Qiang Wei for their help on taxonomic browse.

FUNDING

Ministry of Science and Technology of China grants (2008AA02Z312 and 2006CB100105). Funding for open access charge: Ministry of Science and Technology of China (2008AA02Z312 and 2006CB100105).

Conflict of interest statement. None declared.

REFERENCES

1.

Bartel
DP
.
MicroRNAs: genomics, biogenesis, mechanism, and function
.
Cell
(
2004
)
116
:
281
297
.

2.

Jones-Rhoades
MW
,
Bartel
DP
,
Bartel
B
.
MicroRNAS and their regulatory roles in plants
.
Annu. Rev. Plant Biol.
(
2006
)
57
:
19
53
.

3.

Archak
S
,
Nagaraju
J
.
Computational prediction of rice (Oryza sativa) miRNA targets
.
Genomics Proteomics Bioinformatics
(
2007
)
5
:
196
206
.

4.

Sunkar
R
,
Chinnusamy
V
,
Zhu
J
,
Zhu
JK
.
Small RNAs as big players in plant abiotic stress responses and nutrient deprivation
.
Trends Plant Sci.
(
2007
)
12
:
301
309
.

5.

Zhou
X
,
Wang
G
,
Sutoh
K
,
Zhu
JK
,
Zhang
W
.
Identification of cold-inducible microRNAs in plants by transcriptome analysis
.
Biochim. Biophys. Acta.
(
2008
).

6.

Lu
S
,
Sun
YH
,
Chiang
VL
.
Stress-responsive microRNAs in Populus
.
Plant J.
, (
2008
)
55
:
131
151
.

7.

Morin
RD
,
Aksay
G
,
Dolgosheina
E
,
Ebhardt
HA
,
Magrini
V
,
Mardis
ER
,
Sahinalp
SC
,
Unrau
PJ
.
Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa
.
Genome Res.
(
2008
)
18
:
571
584
.

8.

Jones-Rhoades
MW
,
Bartel
DP
.
Computational identification of plant microRNAs and their targets, including a stress-induced miRNA
.
Mol. Cell
(
2004
)
14
:
787
799
.

9.

Rajagopalan
R
,
Vaucheret
H
,
Trejo
J
,
Bartel
DP
.
A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana
.
Genes Dev.
(
2006
)
20
:
3407
3425
.

10.

Sunkar
R
,
Zhou
X
,
Zheng
Y
,
Zhang
W
,
Zhu
JK
.
Identification of novel and candidate miRNAs in rice by high throughput sequencing
.
BMC Plant Biol.
(
2008
)
8
:
25
.

11.

Lindow
M
,
Jacobsen
A
,
Nygaard
S
,
Mang
Y
,
Krogh
A
.
Intragenomic matching reveals a huge potential for miRNA-mediated regulation in plants
.
PLoS Comput. Biol.
(
2007
)
3
:
e238
.

12.

Zhang
B
,
Pan
X
,
Cannon
CH
,
Cobb
GP
,
Anderson
TA
.
Conservation and divergence of plant microRNA genes
.
Plant J.
, (
2006
)
46
:
243
259
.

13.

Zhang
BH
,
Pan
XP
,
Wang
QL
,
Cobb
GP
,
Anderson
TA
.
Identification and characterization of new plant microRNAs using EST analysis
.
Cell Res.
(
2005
)
15
:
336
360
.

14.

Sunkar
R
,
Jagadeeswaran
G
.
In silico identification of conserved microRNAs in large number of diverse plant species
.
BMC Plant Biol.
(
2008
)
8
:
37
.

15.

Griffiths-Jones
S
,
Grocock
RJ
,
van Dongen
S
,
Bateman
A
,
Enright
AJ
.
miRBase: microRNA sequences, targets and gene nomenclature
.
Nucleic Acids Res.
(
2006
)
34
:
D140
144
.

16.

Gustafson
AM
,
Allen
E
,
Givan
S
,
Smith
D
,
Carrington
JC
,
Kasschau
KD
.
ASRP: the Arabidopsis Small RNA Project Database
.
Nucleic Acids Res.
(
2005
)
33
:
D637
640
.

17.

Johnson
C
,
Bowman
L
,
Adai
AT
,
Vance
V
,
Sundaresan
V
.
CSRDB: a small RNA integrated database and browser resource for cereals
.
Nucleic Acids Res.
(
2007
)
35
:
D829
833
.

18.

Gardner
PP
,
Daub
J
,
Tate
JG
,
Nawrocki
EP
,
Kolbe
DL
,
Lindgreen
S
,
Wilkinson
AC
,
Finn
RD
,
Griffiths-Jones
S
,
Eddy
SR
, et al.
Rfam: updates to the RNA families database
.
Nucleic Acids Res.
(
2009
)
37
:
D136
140
.

19.

Griffiths-Jones
S
,
Bateman
A
,
Marshall
M
,
Khanna
A
,
Eddy
SR
.
Rfam: an RNA family database
.
Nucleic Acids Res.
(
2003
)
31
:
439
441
.

20.

Dezulian
T
,
Palatnik
J
,
Huson
D
,
Weigel
D
.
Conservation and divergence of microRNA families in plants
.
Genome Biol.
(
2005
)
6
:
P13
.

21.

Subramanian
S
,
Fu
Y
,
Sunkar
R
,
Barbazuk
WB
,
Zhu
JK
,
Yu
O
.
Novel and nodulation-regulated microRNAs in soybean roots
.
BMC Genomics
(
2008
)
9
:
160
.

22.

Wang
Y
,
Li
P
,
Cao
X
,
Wang
X
,
Zhang
A
,
Li
X
.
Identification and expression analysis of miRNAs from nitrogen-fixing soybean nodules
.
Biochem. Biophys. Res. Commun.
(
2009
)
378
:
799
803
.

23.

Zhang
B
,
Pan
X
,
Stellwag
EJ
.
Identification of soybean microRNAs and their targets
.
Planta
(
2008
)
229
:
161
182
.

24.

Yao
Y
,
Guo
G
,
Ni
Z
,
Sunkar
R
,
Du
J
,
Zhu
JK
,
Sun
Q
.
Cloning and characterization of microRNAs from wheat (Triticum, aestivum L.,)
.
Genome Biol.
(
2007
)
8
:
R96
.

25.

Wei
B
,
Cai
T
,
Zhang
R
,
Li
A
,
Huo
N
,
Li
S
,
Gu
YQ
,
Vogel
J
,
Jia
J
,
Qi
Y
, et al.
Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum, aestivum L.,) and Brachypodium distachyon (L.) Beauv
.
Funct. Integr. Genomics.
(
2009
)
9
:
532
541
.

26.

Juarez
MT
,
Kui
JS
,
Thomas
J
,
Heller
BA
,
Timmermans
MC
.
microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity
.
Nature
(
2004
)
428
:
84
88
.

27.

Maher
C
,
Timmermans
M
,
Stein
L
,
Ware
D
.
Identifying microRNAs in plant genomes
.
Proc. IEEE CSB
(
2004
)
6
:
718
723
.

28.

Xue
LJ
,
Zhang
JJ
,
Xue
HW
.
Characterization and expression profiles of miRNAs in rice seeds
.
Nucleic Acids Res.
(
2009
)
37
:
916
930
.

29.

Zhang
B
,
Pan
X
,
Anderson
TA
.
Identification of 188 conserved maize microRNAs and their targets
.
FEBS Lett.
(
2006
)
580
:
3753
3762
.

30.

Khan Barozai
MY
,
Irfan
M
,
Yousaf
R
,
Ali
I
,
Qaisar
U
,
Maqbool
A
,
Zahoor
M
,
Rashid
B
,
Hussnain
T
,
Riazuddin
S
.
Identification of micro-RNAs in cotton
.
Plant Physiol. Biochem.
(
2008
)
46
:
739
751
.

31.

Qiu
CX
,
Xie
FL
,
Zhu
YY
,
Guo
K
,
Huang
SQ
,
Nie
L
,
Yang
ZM
.
Computational identification of microRNAs and their targets in Gossypium hirsutum expressed sequence tags
.
Gene
(
2007
)
395
:
49
61
.

32.

Zhang
B
,
Wang
Q
,
Wang
K
,
Pan
X
,
Liu
F
,
Guo
T
,
Cobb
GP
,
Anderson
TA
.
Identification of cotton microRNAs and their targets
.
Gene
(
2007
)
397
:
26
37
.

33.

Wang
X
,
Elling
AA
,
Li
X
,
Li
N
,
Peng
Z
,
He
G
,
Sun
H
,
Qi
Y
,
Liu
XS
,
Deng
XW
.
Genome-Wide and Organ-Specific Landscapes of Epigenetic Modifications and Their Relationships to mRNA and Small RNA Transcriptomes in Maize
.
Plant Cell.
(
2009
)
21
:
1053
1069
.

34.

Zhang
J
,
Zeng
R
,
Chen
J
,
Liu
X
,
Liao
Q
.
Identification of conserved microRNAs and their targets from Solanum lycopersicum Mill
.
Gene
(
2008
)
423
:
1
7
.

35.

Liu
HH
,
Tian
X
,
Li
YJ
,
Wu
CA
,
Zheng
CC
.
Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana
.
RNA
(
2008
)
14
:
836
843
.

36.

Ding
D
,
Zhang
L
,
Wang
H
,
Liu
Z
,
Zhang
Z
,
Zheng
Y
.
Differential expression of miRNAs in response to salt stress in maize roots
.
Ann. Botany
(
2008
)
103
:
29
38
.

37.

Hu
J
,
He
X
.
Enhanced quantile normalization of microarray data to reduce loss of information in gene expression profiles
.
Biometrics
(
2007
)
63
:
50
59
.

38.

Zhang
Y
.
miRU: an automated plant miRNA target prediction server
.
Nucleic Acids Res.
(
2005
)
33
:
W701
W704
.

39.

Enright
AJ
,
John
B
,
Gaul
U
,
Tuschl
T
,
Sander
C
,
Marks
DS
.
MicroRNA targets in Drosophila
.
Genome Biol.
(
2003
)
5
:
R1
.

40.

Schuster
P
,
Fontana
W
,
Stadler
PF
,
Hofacker
IL
.
From sequences to shapes and back: a case study in RNA secondary structures
.
Proceedings
(
1994
)
255
:
279
284
.

41.

Park
W
,
Li
J
,
Song
R
,
Messing
J
,
Chen
X
.
CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana
.
Curr. Biol.
(
2002
)
12
:
1484
1495
.

42.

Adai
A
,
Johnson
C
,
Mlotshwa
S
,
Archer-Evans
S
,
Manocha
V
,
Vance
V
,
Sundaresan
V
.
Computational prediction of miRNAs in Arabidopsis thaliana
.
Genome Res.
(
2005
)
15
:
78
91
.

43.

Palatnik
JF
,
Allen
E
,
Wu
X
,
Schommer
C
,
Schwab
R
,
Carrington
JC
,
Weigel
D
.
Control of leaf morphogenesis by microRNAs
.
Nature
(
2003
)
425
:
257
263
.

44.

Xie
Z
,
Allen
E
,
Fahlgren
N
,
Calamar
A
,
Givan
SA
,
Carrington
JC
.
Expression of Arabidopsis MIRNA genes
.
Plant Physiol.
(
2005
)
138
:
2145
2154
.

45.

Arteaga-Vazquez
M
,
Caballero-Perez
J
,
Vielle-Calzada
JP
.
A family of microRNAs present in plants and animals
.
Plant Cell
(
2006
)
18
:
3355
3369
.

46.

Franco-Zorrilla
JM
,
Del Toro
FJ
,
Godoy
M
,
Perez-Perez
J
,
Lopez-Vidriero
I
,
Oliveros
JC
,
Garcia-Casado
G
,
Llave
C
,
Solano
R
.
Genome-wide identification of small RNA targets based on target enrichment and microarray hybridizations
.
Plant J.
, (
2009
)
59
:
840
850
.

47.

German
MA
,
Pillay
M
,
Jeong
DH
,
Hetawal
A
,
Luo
S
,
Janardhanan
P
,
Kannan
V
,
Rymarquis
LA
,
Nobuta
K
,
German
R
, et al.
Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends
.
Nat. Biotechnol.
(
2008
)
26
:
941
946
.

48.

Fahlgren
N
,
Howell
MD
,
Kasschau
KD
,
Chapman
EJ
,
Sullivan
CM
,
Cumbie
JS
,
Givan
SA
,
Law
TF
,
Grant
SR
,
Dangl
JL
, et al.
High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes
.
PLoS ONE
(
2007
)
2
:
e219
.

49.

Allen
E
,
Xie
Z
,
Gustafson
AM
,
Carrington
JC
.
microRNA-directed phasing during trans-acting siRNA biogenesis in plants
.
Cell
(
2005
)
121
:
207
221
.

50.

Kutter
C
,
Schob
H
,
Stadler
M
,
Meins
F
Jr
,
Si-Ammour
A
.
MicroRNA-mediated regulation of stomatal development in Arabidopsis
.
Plant Cell
(
2007
)
19
:
2417
2429
.

51.

Lu
C
,
Kulkarni
K
,
Souret
FF
,
MuthuValliappan
R
,
Tej
SS
,
Poethig
RS
,
Henderson
IR
,
Jacobsen
SE
,
Wang
W
,
Green
PJ
, et al.
MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant
.
Genome Res.
(
2006
)
16
:
1276
1288
.

52.

Reinhart
BJ
,
Weinstein
EG
,
Rhoades
MW
,
Bartel
B
,
Bartel
DP
.
MicroRNAs in plants
.
Genes Dev.
(
2002
)
16
:
1616
1626
.

53.

Sunkar
R
,
Zhu
JK
.
Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis
.
Plant Cell
(
2004
)
16
:
2001
2019
.

54.

Wang
XJ
,
Reyes
JL
,
Chua
NH
,
Gaasterland
T
.
Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets
.
Genome Biol.
(
2004
)
5
:
R65
.

55.

Rhoades
MW
,
Reinhart
BJ
,
Lim
LP
,
Burge
CB
,
Bartel
B
,
Bartel
DP
.
Prediction of plant microRNA targets
.
Cell
(
2002
)
110
:
513
520
.

56.

Baulcombe
D
.
RNA silencing in plants
.
Nature
(
2004
)
431
:
356
363
.

57.

Mette
MF
,
van der Winden
J
,
Matzke
M
,
Matzke
AJ
.
Short RNAs can identify new candidate transposable element families in Arabidopsis
.
Plant Physiol.
(
2002
)
130
:
6
9
.

58.

Zhou
X
,
Wang
G
,
Zhang
W
.
UV-B responsive microRNA genes in Arabidopsis thaliana
.
Mol. Syst. Biol.
(
2007
)
3
:
103
.

59.

Jagadeeswaran
G
,
Zheng
Y
,
Li
YF
,
Shukla
LI
,
Matts
J
,
Hoyt
P
,
Macmil
SL
,
Wiley
GB
,
Roe
BA
,
Zhang
W
, et al.
Cloning and characterization of small RNAs from Medicago truncatula reveals four novel legume-specific microRNA families
.
New Phytol.
(
2009
)
184
:
85
98
.

60.

Wang
L
,
Wang
MB
,
Tu
JX
,
Helliwell
CA
,
Waterhouse
PM
,
Dennis
ES
,
Fu
TD
,
Fan
YL
.
Cloning and characterization of microRNAs from Brassica napus
.
FEBS Lett.
(
2007
)
581
:
3848
3856
.

61.

Xie
FL
,
Huang
SQ
,
Guo
K
,
Xiang
AL
,
Zhu
YY
,
Nie
L
,
Yang
ZM
.
Computational identification of novel microRNAs and targets in Brassica napus
.
FEBS Lett.
(
2007
)
581
:
1464
1474
.

62.

He
XF
,
Fang
YY
,
Feng
L
,
Guo
HS
.
Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica
.
FEBS Lett.
(
2008
)
582
:
2445
2452
.

63.

Porter
BW
,
Aizawa
KS
,
Zhu
YJ
,
Christopher
DA
.
Differentially expressed and new non-protein-coding genes from a Carica papaya root transcriptome survey
.
Plant Sci.
(
2008
)
174
:
38
50
.

64.

Zhao
T
,
Li
G
,
Mi
S
,
Li
S
,
Hannon
GJ
,
Wang
XJ
,
Qi
Y
.
A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii
.
Genes Dev.
(
2007
)
21
:
1190
1203
.

65.

Molnar
A
,
Schwach
F
,
Studholme
DJ
,
Thuenemann
EC
,
Baulcombe
DC
.
miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii
.
Nature
(
2007
)
447
:
1126
1129
.

66.

Hinas
A
,
Reimegard
J
,
Wagner
EG
,
Nellen
W
,
Ambros
VR
,
Soderbom
F
.
The small RNA repertoire of Dictyostelium discoideum and its regulation by components of the RNAi pathway
.
Nucleic Acids Res.
(
2007
)
35
:
6714
6726
.

67.

Zhou
ZS
,
Huang
SQ
,
Yang
ZM
.
Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula
.
Biochem. Biophys. Res. Commun.
(
2008
)
374
:
538
542
.

68.

Szittya
G
,
Moxon
S
,
Santos
DM
,
Jing
R
,
Fevereiro
MP
,
Moulton
V
,
Dalmay
T
.
High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families
.
BMC Genomics
(
2008
)
9
:
593
.

69.

Guddeti
S
,
Zhang
DC
,
Li
AL
,
Leseberg
CH
,
Kang
H
,
Li
XG
,
Zhai
WX
,
Johns
MA
,
Mao
L
.
Molecular evolution of the rice miR395 gene family
.
Cell Res.
(
2005
)
15
:
631
638
.

70.

Arazi
T
,
Talmor-Neiman
M
,
Stav
R
,
Riese
M
,
Huijser
P
,
Baulcombe
DC
.
Cloning and characterization of micro-RNAs from moss
.
Plant J.
, (
2005
)
43
:
837
848
.

71.

Sunkar
R
,
Girke
T
,
Jain
PK
,
Zhu
JK
.
Cloning and characterization of microRNAs from rice
.
Plant Cell
(
2005
)
17
:
1397
1411
.

72.

Li
Y
,
Li
W
,
Jin
YX
.
Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa
.
Acta Biochim Biophys. Sin.
(
2005
)
37
:
75
87
.

73.

Zhu
QH
,
Spriggs
A
,
Matthew
L
,
Fan
L
,
Kennedy
G
,
Gubler
F
,
Helliwell
C
.
A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains
.
Genome Res.
(
2008
)
18
:
1456
1465
.

74.

Lu
C
,
Jeong
DH
,
Kulkarni
K
,
Pillay
M
,
Nobuta
K
,
German
R
,
Thatcher
SR
,
Maher
C
,
Zhang
L
,
Ware
D
, et al.
Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs)
.
Proc. Natl Acad. Sci. USA
(
2008
)
105
:
4951
4956
.

75.

Lacombe
S
,
Nagasaki
H
,
Santi
C
,
Duval
D
,
Piegu
B
,
Bangratz
M
,
Breitler
JC
,
Guiderdoni
E
,
Brugidou
C
,
Hirsch
J
, et al.
Identification of precursor transcripts for 6 novel miRNAs expands the diversity on the genomic organisation and expression of miRNA genes in rice
.
BMC Plant Biol.
(
2008
)
8
:
123
.

76.

Liu
B
,
Li
P
,
Li
X
,
Liu
C
,
Cao
S
,
Chu
C
,
Cao
X
.
Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice
.
Plant Physiol.
(
2005
)
139
:
296
305
.

77.

Lu
S
,
Sun
YH
,
Amerson
H
,
Chiang
VL
.
MicroRNAs in loblolly pine (Pinus, taeda L.,) and their association with fusiform rust gall development
.
Plant J.
, (
2007
)
51
:
1077
1098
.

78.

Luo
YC
,
Zhou
H
,
Li
Y
,
Chen
JY
,
Yang
JH
,
Chen
YQ
,
Qu
LH
.
Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development
.
FEBS Lett.
(
2006
)
580
:
5111
5116
.

79.

Axtell
MJ
,
Snyder
JA
,
Bartel
DP
.
Common functions for diverse small RNAs of land plants
.
Plant Cell
(
2007
)
19
:
1750
1769
.

80.

Fattash
I
,
Voss
B
,
Reski
R
,
Hess
WR
,
Frank
W
.
Evidence for the rapid expansion of microRNA-mediated regulation in early land plant evolution
.
BMC Plant Biol.
(
2007
)
7
:
13
.

81.

Talmor-Neiman
M
,
Stav
R
,
Frank
W
,
Voss
B
,
Arazi
T
.
Novel micro-RNAs and intermediates of micro-RNA biogenesis from moss
.
Plant J.
, (
2006
)
47
:
25
37
.

82.

Cho
SH
,
Addo-Quaye
C
,
Coruh
C
,
Arif
MA
,
Ma
Z
,
Frank
W
,
Axtell
MJ
.
Physcomitrella patens DCL3 is required for 22-24 nt siRNA accumulation, suppression of retrotransposon-derived transcripts, and normal development
.
PLoS Genet.
(
2008
)
4
:
e1000314
.

83.

Tuskan
GA
,
Difazio
S
,
Jansson
S
,
Bohlmann
J
,
Grigoriev
I
,
Hellsten
U
,
Putnam
N
,
Ralph
S
,
Rombauts
S
,
Salamov
A
, et al.
The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)
.
Science (New York, NY)
(
2006
)
313
:
1596
1604
.

84.

Lu
S
,
Sun
YH
,
Shi
R
,
Clark
C
,
Li
L
,
Chiang
VL
.
Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis
.
Plant Cell
(
2005
)
17
:
2186
2203
.

85.

Moxon
S
,
Jing
R
,
Szittya
G
,
Schwach
F
,
Rusholme Pilcher
RL
,
Moulton
V
,
Dalmay
T
.
Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening
.
Genome Res.
(
2008
)
18
:
1602
1609
.

86.

Bedell
JA
,
Budiman
MA
,
Nunberg
A
,
Citek
RW
,
Robbins
D
,
Jones
J
,
Flick
E
,
Rholfing
T
,
Fries
J
,
Bradford
K
, et al.
Sorghum genome sequencing by methylation filtration
.
PLoS Biol.
(
2005
)
3
:
e13
.

87.

Jaillon
O
,
Aury
JM
,
Noel
B
,
Policriti
A
,
Clepet
C
,
Casagrande
A
,
Choisne
N
,
Aubourg
S
,
Vitulo
N
,
Jubin
C
, et al.
The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla
.
Nature
(
2007
)
449
:
463
467
.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Supplementary data

Comments

0 Comments
Submit a comment
You have entered an invalid code
Thank you for submitting a comment on this article. Your comment will be reviewed and published at the journal's discretion. Please check for further notifications by email.