Abstract

CD8 T cells are a key component of immunity to many viral infections. They achieve this through using an array of effector mechanisms, but precisely which component/s are required for protection against a respiratory orthopox virus infection remains unclear. Using a model of respiratory vaccinia virus infection in mice, we could specifically determine the relative contribution of perforin, TRAIL, and IFN-γ–mediated pathways in protection against virus induced morbidity and mortality. Unexpectedly, we observed that protection against death was mediated by IFN-γ without any involvement of the perforin or TRAIL-dependent pathways. IFN-γ mRNA and protein levels in the lung peaked between days 3 and 6 postinfection. This enhanced response coincided with the emergence of virus-specific CD8 T cells in the lung and the cessation of weight loss. Transfer experiments indicated that CD8 T cell–autonomous expression of IFN-γ restricts virus-induced lung pathology and dissemination to visceral tissues and is necessary for clearance of virus. Most significantly, we show that CD8 T cell–derived IFN-γ is sufficient to protect mice in the absence of CD4 and B-lymphocytes. Thus, our findings reveal a previously unappreciated mechanism by which effector CD8 T cells afford protection against a highly virulent respiratory orthopox virus infection.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/pages/standard-publication-reuse-rights)
You do not currently have access to this article.