-
Views
-
Cite
Cite
Nicole Matzner, Irina M. Zemtsova, Nguyen Thi Xuan, Michael Duszenko, Ekaterina Shumilina, Florian Lang, Ion Channels Modulating Mouse Dendritic Cell Functions, The Journal of Immunology, Volume 181, Issue 10, November 2008, Pages 6803–6809, https://doi.org/10.4049/jimmunol.181.10.6803
- Share Icon Share
Abstract
Ca2+-mediated signal transduction pathways play a central regulatory role in dendritic cell (DC) responses to diverse Ags. However, the mechanisms leading to increased [Ca2+]i upon DC activation remained ill-defined. In the present study, LPS treatment (100 ng/ml) of mouse DCs resulted in a rapid increase in [Ca2+]i, which was due to Ca2+ release from intracellular stores and influx of extracellular Ca2+ across the cell membrane. In whole-cell voltage-clamp experiments, LPS-induced currents exhibited properties similar to the currents through the Ca2+ release-activated Ca2+ channels (CRAC). These currents were highly selective for Ca2+, exhibited a prominent inward rectification of the current-voltage relationship, and showed an anomalous mole fraction and a fast Ca2+-dependent inactivation. In addition, the LPS-induced increase of [Ca2+]i was sensitive to margatoxin and ICAGEN-4, both inhibitors of voltage-gated K+ (Kv) channels Kv1.3 and Kv1.5, respectively. MHC class II expression, CCL21-dependent migration, and TNF-α and IL-6 production decreased, whereas phagocytic capacity increased in LPS-stimulated DCs in the presence of both Kv channel inhibitors as well as the ICRAC inhibitor SKF-96365. Taken together, our results demonstrate that Ca2+ influx in LPS-stimulated DCs occurs via Ca2+ release-activated Ca2+ channels, is sensitive to Kv channel activity, and is in turn critically important for DC maturation and functions.