-
Views
-
Cite
Cite
Karnail Singh, Jennifer Laughlin, Penelope A Kosinski, Lori R Covey, Nucleolin Is a Second Component of the CD154 mRNA Stability Complex That Regulates mRNA Turnover in Activated T Cells, The Journal of Immunology, Volume 173, Issue 2, July 2004, Pages 976–985, https://doi.org/10.4049/jimmunol.173.2.976
- Share Icon Share
Abstract
CD154 (CD40L) mRNA turnover is regulated in part at the posttranscriptional level by a protein complex (termed Complex I) that binds to a highly CU-rich region of the 3′UTR. Polypyrimidine tract-binding protein (PTB) has previously been identified as a major RNA-binding protein in Complex I. Nondenaturing gel filtration of total extract from Jurkat T cells demonstrated that the CD154 mRNA-binding activity migrates as a ∼200-kDa complex, indicating the presence of multiple complex-associated proteins. We have currently undertaken a biochemical approach to further characterize Complex I and observed that it segregates over DEAE-Sepharose into two subcomplexes (termed I-L and I-U). Furthermore, nucleolin was identified as a component of both subcomplexes and was shown that it is the major RNA-binding protein in I-U. To directly demonstrate the biological significance of Complex I binding to the CD154 transcript, cytoplasm from human Jurkat cells was fractionated over a sucrose gradient and the different cellular fractions subjected to immunoprecipitation with anti-PTB and anti-nucleolin Abs. RT-PCR of the immunoprecipitated products using CD154-specific primers clearly demonstrated that nucleolin and PTB are associated with CD154 mRNA in both the ribonucleoprotein and polysome fractions. These data strongly support a model whereby nucleolin and PTB are integral to the stability of CD154 mRNA and are components of the CD154 ribonucleoprotein particle associated with actively translating ribosomes.