-
Views
-
Cite
Cite
Christian J. Band, Catherine Mounier, Barry I. Posner, Epidermal Growth Factor and Insulin-Induced Deoxyribonucleic Acid Synthesis in Primary Rat Hepatocytes Is Phosphatidylinositol 3-Kinase Dependent and Dissociated from Protooncogene Induction, Endocrinology, Volume 140, Issue 12, 1 December 1999, Pages 5626–5634, https://doi.org/10.1210/endo.140.12.7188
- Share Icon Share
Abstract
The mitogenic response to insulin and epidermal growth factor (EGF) was studied in subconfluent and confluent cultures of primary rat hepatocytes. In subconfluent cultures, wortmannin, LY294002, and rapamycin reversed insulin- and EGF-induced [3H]thymidine incorporation into DNA. The mitogen-activated protein kinase (MAPK) kinase 1 (MEK1) inhibitor PD98059 was without significant effect on either insulin- or EGF-induced [3H]thymidine incorporation. Insulin treatment did not alter levels of messenger RNAs (mRNAs) for c-fos, c-jun, and c-myc. EGF induced an increase in c-myc, but not c-fos or c-jun, mRNA levels in subconfluent hepatocyte cultures. This increase in c-myc mRNA was abolished by PD98059. In confluent cells that could not be induced to synthesize DNA, EGF treatment also promoted an increase in c-myc mRNA to levels seen in subconfluent cultures. This increase was also abrogated by PD98059. These data indicate that in primary rat hepatocyte cultures, 1) the phosphoinositol 3-kinase pathway, perhaps through p70s6k activation, regulates DNA synthesis in response to insulin and EGF; 2) the MAPK pathway is not involved in insulin- and EGF-induced DNA synthesis; and 3) p44/42 MAPKs are involved the induction of c-myc mRNA levels, although this induction is not required for DNA synthesis. These studies define two distinct signal transduction pathways that independently mediate growth-related responses in a physiologically relevant, normal cell system.