Abstract

Meiotic recombination is an integral cellular process, required for the production of viable gametes. Recombination rate is a fundamental genomic parameter, modulating genomic responses to selection. Our increasingly detailed understanding of its molecular underpinnings raises the prospect that we can gain insight into trait divergence by examining the molecular evolution of recombination genes from a pathway perspective, as in mammals, where protein-coding changes in later stages of the recombination pathway are connected to divergence in intra-clade recombination rate. Here, we leverage increased availability of avian and teleost genomes to reconstruct the evolution of the recombination pathway across two additional vertebrate clades: birds, which have higher and more variable rates of recombination and similar divergence times to mammals, and teleost fish, which have much deeper divergence times. Rates of molecular evolution of recombination genes are highly correlated between vertebrate clades and significantly elevated compared to control panels, suggesting that they experience similar selective pressures. Avian recombination genes are significantly more likely to exhibit signatures of positive selection than other clades, unrestricted to later stages of the pathway. Signatures of positive selection in genes linked to recombination rate variation in mammalian populations and those with signatures of positive selection across the avian phylogeny are highly correlated. In contrast, teleost fish recombination genes have significantly less evidence of positive selection despite high intra-clade recombination rate variability. Gaining clade-specific understanding of patterns of variation in recombination genes can elucidate drivers of recombination rate and thus, factors influencing genetic diversity, selection efficacy, and species divergence.

Information Accepted manuscripts
Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.
This content is only available as a PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].
Associate Editor: Emily Josephs
Emily Josephs
Associate Editor
Search for other works by this author on:

Supplementary data