Abstract

Protein domains of transposable elements (TEs) and viruses increase the protein diversity of host genomes by recombining with other protein domains. By screening 10 million eukaryotic proteins, we identified several domains that define multi-copy gene families and frequently co-occur with TE/viral domains. Among these, a Tc1/Mariner transposase helix-turn-helix (HTH) domain was captured by F-box genes in the Caenorhabditis genus, creating a new class of F-box genes. For specific members of this class, like fbxa-215, we found that the HTH domain is required for diverse processes including germ granule localisation, fertility, and thermotolerance. Furthermore, we provide evidence that Heat Shock Factor 1 (HSF-1) mediates the transcriptional integration of fbxa-215 into the heat-shock response by binding to Helitron TEs directly upstream of the fbxa-215 locus. The interactome of HTH-bearing F-box factors suggests roles in post-translational regulation and proteostasis, consistent with established functions of F-box proteins. Based on AlphaFold2 multimer proteome-wide screens, we propose that the HTH domain may diversify the repertoire of protein substrates that F-box factors regulate post-translationally. We also describe an independent capture of a TE domain by F-box genes in zebrafish. In conclusion, we identify two independent TE domain captures by F-box genes in eukaryotes and provide insights into how these novel proteins are integrated within host gene regulatory networks.

Information Accepted manuscripts
Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.
This content is only available as a PDF.

Author notes

Current address: Department of Fish Ecology and Evolution, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, 6047, Switzerland

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Editor: Grace Yuh Chwen Lee
Grace Yuh Chwen Lee
Editor
Search for other works by this author on:

Supplementary data