Abstract

Venom-secreting glands are highly specialised organs evolved throughout the animal kingdom to synthetise and secrete toxins for predation and defence. Venom is extensively studied for its toxin components and application potential; yet, how animals become venomous remains poorly understood. Venom systems therefore offer a unique opportunity to understand the molecular mechanisms underlying functional innovation. Here, we conducted a multi-species multi-tissue comparative transcriptomics analysis of 12 marine predatory gastropod species, including species with venom glands and species with homologous non-venom producing glands, to examine how specialised functions evolve through gene expression changes. We found that while the venom gland specialised for the mass production of toxins, its homologous glands retained the ancestral digestive functions. The functional divergence and specialisation of the venom gland was achieved through a redistribution of its ancestral digestive functions to other organs, specifically the oesophagus. This entailed concerted expression changes and accelerated transcriptome evolution across the entire digestive system. The increase in venom gland secretory capacity was achieved through the modulation of an ancient secretory machinery, particularly genes involved in endoplasmic reticulum stress and unfolded protein response. This study shifts the focus from the well-explored evolution of toxins to the lesser-known evolution of the organ and mechanisms responsible for venom production. As such, it contributes to elucidating the molecular mechanisms underlying organ evolution at a fine evolutionary scale, highlighting the specific events that lead to functional divergence.

Information Accepted manuscripts
Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.
This content is only available as a PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Associate Editor: Ilya Ruvinsky
Ilya Ruvinsky
Associate Editor
Search for other works by this author on:

Supplementary data