Abstract

The males and females of the brine shrimp Artemia franciscana are highly dimorphic, and this dimorphism is associated with substantial sex-biased gene expression in heads and gonads. How these sex-specific patterns of expression are regulated at the molecular level is unknown. A. franciscana also has differentiated ZW sex chromosomes, with complete dosage compensation, but the molecular mechanism through which compensation is achieved is unknown. Here, we conducted CUT&TAG assays targeting seven post-translational histone modifications (H3K27me3, H3K9me2, H3K9me3, H3K36me3, H3K27ac, H3K4me3 and H4K16ac) in heads and gonads of A. franciscana, allowing us to divide the genome into 12 chromatin states. We further defined functional chromatin signatures for all genes, which were correlated with transcript level abundances. Differences in the occupancy of the profiled epigenetic marks between sexes were associated with differential gene expression between males and females. Finally, we found a significant enrichment of the permissive H4K16ac histone mark in the Z-specific region in both tissues of females but not males, supporting a role of this histone mark in mediating dosage compensation of the Z chromosome.

Information Accepted manuscripts
Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.
This content is only available as a PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Associate Editor: John Parsch
John Parsch
Associate Editor
Search for other works by this author on:

Supplementary data