-
PDF
- Split View
-
Views
-
Cite
Cite
Bruce W. Turnbull, The Empirical Distribution Function with Arbitrarily Grouped, Censored and Truncated Data, Journal of the Royal Statistical Society: Series B (Methodological), Volume 38, Issue 3, July 1976, Pages 290–295, https://doi.org/10.1111/j.2517-6161.1976.tb01597.x
- Share Icon Share
Summary
This paper is concerned with the non-parametric estimation of a distribution function F, when the data are incomplete due to grouping, censoring and/or truncation. Using the idea of self-consistency, a simple algorithm is constructed and shown to converge monotonically to yield a maximum likelihood estimate of F. An application to hypothesis testing is indicated.
empirical distribution function, survival curve, censoring, truncation, grouping, maximum likelihood, kaplan–meier product limit estimator, self-consistency, newton–raphson, multinomial distribution, logrank test
Issue Section:
Articles
References
1
Asano
, C.
(1965
). On estimating multinomial probabilities by pooling incomplete samples
. Ann. Inst. Statist. Math.
, 17
, 1
–13
.2
Ayer
, M.
, Brunk
, H. D.
, Ewing
, G. M.
, Reid
, W. T.
and Silverman
, E.
(1955
). An empirical distribution function for sampling with incomplete information
. Ann. Math. Statist.
, 26
, 641
–647
.3
Blight
, B. J. N.
(1970
). Estimation from a censored sample for the exponential family
. Biometrika
, 57
, 389
–395
.4
Dempster
, A. P.
, Laird
, N. M.
and Rubin
, D. B.
(1976
). Maximum likelihood from incomplete data via the EM algorithm
. Research Report
, Harvard University
.5
Efron
, B.
(1967
). The two sample problem with censored data
. In Proc. 5th Berkeley Symp. on Math. Statist. Prob.
, pp. 831
–853
. Berkeley
: University of California Press
.6
Hartley
, H. O.
and Hocking
, R. R.
(1971
). The analysis of incomplete data
. Biometrics
, 27
, 783
–823
.7
Hocking
, R. R.
and Oxspring
, H. H.
(1971
). Maximum likelihood estimation with incomplete multinomial data
. J. Amer. Statist. Ass.
, 66
, 65
–70
.8
Kaplan
, E. L.
and Meier
, P.
(1958
). Nonparametric estimation from incomplete observations
. J. Amer. Statist. Ass.
, 53
, 457
–481
.9
Mantel
, N.
(1966
). Evaluation of survival data and two new rank order statistics arising in its consideration
. Cancer Chemotherapy Reports
, 50
, 163
–170
.10
Miller
, R. G.
(1974
). Least squares regression with censored data
. Technical Report
, Stanford University
.11
Peto
, R.
(1973
). Experimental survival curves for interval-censored data
. Appl. Statist.
, 22
, 86
–91
.12
Peto
, R.
and Peto
, J.
(1972
). Asymptotically efficient rank invariant test procedures
. J. R. Statist. Soc. A
, 135
, 185
–206
.13
Sundberg
, R.
(1974
). Maximum likelihood theory for incomplete data from an exponential family
. Scand. J. Statist.
, 1
, 49
–58
.14
Turnbull
, B. W.
(1974
). Nonparametric estimation of a survivorship function with doubly censored data
. J. Amer. Statist. Ass.
, 69
, 169
–173
.
PDF
This content is only available as a PDF.
© 1976 The Authors
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/journals/pages/open_access/funder_policies/chorus/standard_publication_model)