Summary

In this paper we show how the efficiency and optimality of two-replicate resolvable designs can be tested using a known relationship with symmetrical designs.

References

1

Bose
,
R. C.
and
Nair
,
K. R.
(
1962
).
Resolvable incomplete block designs with two replications
.
Sankhyā, A
,
24
,
9
24
.

2

David
,
H. A.
(
1967
).
Resolvable cyclic designs
.
Sankhyā, A
,
29
,
191
198
.

3

Harshbarger
,
B.
(
1947
).
Rectangular lattices
.
Virginia Agric. Exp. Sta. Res. Bull.
, No.
347
.

4

John
,
J. A.
,
Wolock
,
F. W.
and
David
,
H. A.
(
1972
).
Cyclic designs
.
Nat. Bur. Stand. (U.S.), Appl. Math. Ser.
, No.
62
.

5

Patterson
,
H. D.
and
Williams
,
E. R.
(
1976a
).
A new class of resolvable incomplete block designs
.
Biometrika
,
63
,
83
92
.

6

Patterson
,
H. D.
and
Williams
,
E. R.
(
1976b
).
Some theoretical results on general block designs
. In
Proc. 5th Brit. Combinat. Conf. Congressus Numerantium XV
, pp.
489
496
,
Utilitas Mathematica
,
Winnipeg
.

7

Williams
,
E. R.
(
1976
).
Resolvable paired-comparison designs
.
J. R. Statist. Soc. B
,
38
,
171
174
.

8

Yates
,
F.
(
1936
).
A new method for arranging variety trials involving a large number of varieties
.
J. Agric. Sci.
,
26
,
424
455
.

This content is only available as a PDF.

Author notes

On leave from C.S.I.R.O. Division of Mathematics and Statistics.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/journals/pages/open_access/funder_policies/chorus/standard_publication_model)