-
Views
-
Cite
Cite
Shanthi Vadali, Steven R Post, Lipid rafts couple class A scavenger receptors to phospholipase A2 activation during macrophage adhesion, Journal of Leukocyte Biology, Volume 96, Issue 5, Nov 2014, Pages 873–881, https://doi.org/10.1189/jlb.2A0414-214R
- Share Icon Share
ABSTRACT
SR-A mediated macrophage adhesion to modified ECM proteins in a process that involves physical attachment of SR-A to modified ECM and activation of Lyn-PI3K and PLA2-12/15-lipoxygenase signaling pathways. Structurally, SR-A-mediated cell adhesion requires a 6-aa membrane-proximal cytoplasmic motif. However, the mechanism that couples SR-A-mediated adhesion to activation of these distinct signaling pathways is not known. For other adhesion receptors, including integrins, localization in cholesterol-rich LRs is an important mechanism for coupling the receptor with the activation of specific signaling pathways. We hypothesized that SR-A-mediated macrophage adhesion might also involve LRs. Our results demonstrate that SR-A is enriched in LRs in HEK cells that heterologously express SR-A and in macrophages that endogenously expressed the receptor. We further show that a truncated SR-A construct (SR-AΔ1–49), which mediates cell adhesion but not ligand internalization, is also enriched in LRs, suggesting an association between LRs and SR-A-dependent cell adhesion. To examine this association more directly, we used the cholesterol chelator MβCD to deplete cholesterol and disrupt LR function. We found that cholesterol depletion significantly decreased SR-A-mediated macrophage adhesion. We further show that decreased SR-A-dependent macrophage adhesion following cholesterol depletion results from the inhibition of PLA2 but not PI3K activation. Overall, our results demonstrate an important role for LRs in selectively coupling SR-A with PLA2 activation during macrophage adhesion.