Extract

Throughout the human genome there are trinucleotide repeat sequences susceptible to either expansion or contraction during replication, giving rise to length polymorphisms in the general population. The polymorphic CAG repeat, which encodes an uninterrupted polyglutamine (polyQ) tract in the N-terminal transactivation domain of the androgen receptor (AR), is the most extensively studied genetic variant in individuals with disorders of the male reproductive system.

Despite an impressive number of studies, the pathogenic role of this polymorphism and its clinical relevance are still a matter of debate. Although a recent meta-analysis of 33 publications (1) supports a pathogenetic role for longer polyQ length in male infertility, the authors conclude their work stating that there is a need for new, well-designed studies (1). In fact, available data do not allow us to establish what range of AR-CAG repeat lengths predisposes impaired sperm production or to estimate the entity of the associated risk (1). Similar to other genetic variants, the literature related to CAG repeats suffers from an abundance in conflicting case-control association studies and a paucity of functional data (2). There are several plausible explanations for these apparent controversies, mostly related to: 1) poor study design (inappropriate selection of patients and controls, particularly with respect to their phenotype and their ethnic/geographic origin, and underpowered size of the study population); and 2) intrinsic complexity of the interaction between the AR and its endogenous/environmental ligands. An additional intricacy derives from the presence of another polymorphic trinucleotide repeat, (GGN)n, in the first exon of the AR gene, which may modulate the functional effect of the CAG repeat length, stressing the need for a combined analysis of the two AR polymorphisms (3, 4).

You do not currently have access to this article.