Sir,

Copper (Cu) is essential for eukaryotic and prokaryotic cellular functions.1 Toxic concentrations for microbes can occur during cellular immunological or predation strategies (e.g. macrophages, amoebas) and anthropogenic activities (e.g. animal feed additives, agriculture microbicides) in diverse environments (e.g. manure, soil).1,2 Cu tolerance (CuT) among bacteria is associated with its efflux from the cell, detoxification or sequestration.1 Among Enterococcus, the acquired tcrYAZB operon is the most frequently described CuT mechanism.3–5 It encodes TcrB, an efflux pump of the P1B-3-ATPase subgroup, which is activated by Cu2+ and, to a lesser extent, Cu+.6tcrYAZB is often adjacent to a gene cluster including a gene encoding a multicopper oxidase, cueO, presumptively involved in the detoxification of Cu+ to Cu2+ under aerobic conditions (e.g. GenBank number AHWI01000020.1).1 The tcrB and cueO genes are frequently co-dispersed among unrelated MDR Enterococcus from diverse sources and species (mainly Enterococcus faecium).3

The impact of non-antibiotic compounds in selection of MDR bacteria has been widely discussed. On this topic, the SCENHIR group published a report (http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_021.pdf) stressing the need to develop standard methodologies important for application in biocide tolerance surveillance programmes (Cu included), for providing informative data in biocidal product development or usage, and for helping to establish regulatory policies. To date, few studies have provided data on CuSO4 tolerance among Enterococcus,3–5,7–9 which are sometimes difficult to interpret and/or compare due to: (i) the methodology used, which varies among studies or is not described in adequate detail (e.g. agar dilution/microdilution, pH and media storage period, which could affect free Cu availability, inoculum amount or incubation time);2–5,7 or (ii) an unclear correlation between MICCuSO4, tcrYAZB occurrence and/or Enterococcus species (especially non-E. faecium).3,5,7–9

The method proposed by Aarestrup and Hasman9 is the most used to determine the MICCuSO4 among Enterococcus.3,4,7 Considering that TcrB can be partially activated by Cu+ and that TcrZ is a Cu+ transporter, we hypothesize that MICCuSO4 evaluation using the Aarestrup and Hasman9 method under a reduced environment (modifying the atmosphere from the classical aerobiosis to anaerobiosis) could identify more accurately a changing phenotype associated with tcrYAZB acquisition by different Enterococcus species. A first proposal for a CuSO4 tolerance cut-off to differentiate Enterococcus with the tcrYAZB operon is also given.

We studied 225 Enterococcus (1997–2012, mostly MDR; diverse clonal lineages) and considered as WT isolates those lacking the acquired CuT genes tcrB (part of the tcrYAZB operon) and cueO.3 They included 79 tcrB ± cueO+ isolates, 16 cueO+ isolates and 130 isolates without these CuT genes (Table 1) of diverse species [E. faecium (n = 139), Enterococcus faecalis (n = 47), Enterococcus hirae (n = 20), Enterococcus gallinarum (n = 10), Enterococcus casseliflavus (n = 5) and Enterococcus durans (n = 4)] and sources [animal production setting (n = 150), humans (n = 39), food (n = 26) and hospital sewage/river (n = 10)] (Table 1).3

Table 1.

CuSO4 MICs for Enterococcus spp. with different CuT genotypes

Species (no. of isolates)/ atmosphereaCuT genes (no. of isolates)Sources (no. of isolates)bCuSO4 MICs (mM)c,d
124812162024283236>36
E. faecium (139)
 aerobiosistcrB + cueO (50)PG (27), PC (2), AQ (2), T (2), HV (11), C (4), HS (2)261510143
tcrB (8)PG (6), HV (1), HS (1)13112
cueO (13)PG (9), PC (1), T (1), HV (1), C (1)23611
none (68)PG (44), PC (1), AQ (6), T (1) HV (7), C (4), HS (4), R (1)11102522
 anaerobiosistcrB + cueO (50)PG (27), PC (2), AQ (2), T (2), HV (11), C (4), HS (2)3e330851
tcrB (8)PG (6), HV (1), HS (1)1e13111
cueO (13)PG (9), PC (1), T (1), HV (1), C (1)346
none (68)PG (44), PC (1), AQ (6), T (1) HV (7), C (4), HS (4), R (1)2820335
E. faecalis (47)
 aerobiosistcrB + cueO (7)PG (4), AQ (1), HV (2)16
tcrB (2)PC (2)2
cueO (3)PG (2), HV (1)111
none (35)PG (14), PC (2), AQ (10), T (1), HV (4), C (2), HS (2)1222820
 anaerobiosistcrB + cueO (7)PG (4), AQ (1), HV (2)1e132
tcrB (2)PC (2)11
cueO (3)PG (2), HV (1)21
none (35)PG (14), PC (2), AQ (10), T (1), HV (4), C (2), HS (2)27188
E. casseliflavus (5)
 aerobiosistcrB + cueO (2)PG (1), AQ (1)11
tcrB (2)PG (1), RTS (1)2
none (1)AQ (1)1
 anaerobiosistcrB + cueO (2)PG (1), AQ (1)11
tcrB (2)PG (1), RTS (1)11
none (1)AQ (1)1
E. gallinarum (10)
 aerobiosistcrB (1)PG (1)1
none (9)PG (2), PC (6), HV (1)3231
 anaerobiosistcrB (1)PG (1)1
none (9)PG (2), PC (6), HV (1)2421
E. hirae (20)
 aerobiosistcrB + cueO (6)PG (2), AQ (4)132
tcrB (1)PG (1)1
none (13)PG (9), AQ (2), T (2)841
 anaerobiosistcrB + cueO (6)PG (2), AQ (4)15
tcrB (1)PG (1)1
none (13)PG (9), AQ (2), T (2)1255
E. durans (4)
 aerobiosisnone (4)T (4)31
 anaerobiosisnone (4)T (4)4
Species (no. of isolates)/ atmosphereaCuT genes (no. of isolates)Sources (no. of isolates)bCuSO4 MICs (mM)c,d
124812162024283236>36
E. faecium (139)
 aerobiosistcrB + cueO (50)PG (27), PC (2), AQ (2), T (2), HV (11), C (4), HS (2)261510143
tcrB (8)PG (6), HV (1), HS (1)13112
cueO (13)PG (9), PC (1), T (1), HV (1), C (1)23611
none (68)PG (44), PC (1), AQ (6), T (1) HV (7), C (4), HS (4), R (1)11102522
 anaerobiosistcrB + cueO (50)PG (27), PC (2), AQ (2), T (2), HV (11), C (4), HS (2)3e330851
tcrB (8)PG (6), HV (1), HS (1)1e13111
cueO (13)PG (9), PC (1), T (1), HV (1), C (1)346
none (68)PG (44), PC (1), AQ (6), T (1) HV (7), C (4), HS (4), R (1)2820335
E. faecalis (47)
 aerobiosistcrB + cueO (7)PG (4), AQ (1), HV (2)16
tcrB (2)PC (2)2
cueO (3)PG (2), HV (1)111
none (35)PG (14), PC (2), AQ (10), T (1), HV (4), C (2), HS (2)1222820
 anaerobiosistcrB + cueO (7)PG (4), AQ (1), HV (2)1e132
tcrB (2)PC (2)11
cueO (3)PG (2), HV (1)21
none (35)PG (14), PC (2), AQ (10), T (1), HV (4), C (2), HS (2)27188
E. casseliflavus (5)
 aerobiosistcrB + cueO (2)PG (1), AQ (1)11
tcrB (2)PG (1), RTS (1)2
none (1)AQ (1)1
 anaerobiosistcrB + cueO (2)PG (1), AQ (1)11
tcrB (2)PG (1), RTS (1)11
none (1)AQ (1)1
E. gallinarum (10)
 aerobiosistcrB (1)PG (1)1
none (9)PG (2), PC (6), HV (1)3231
 anaerobiosistcrB (1)PG (1)1
none (9)PG (2), PC (6), HV (1)2421
E. hirae (20)
 aerobiosistcrB + cueO (6)PG (2), AQ (4)132
tcrB (1)PG (1)1
none (13)PG (9), AQ (2), T (2)841
 anaerobiosistcrB + cueO (6)PG (2), AQ (4)15
tcrB (1)PG (1)1
none (13)PG (9), AQ (2), T (2)1255
E. durans (4)
 aerobiosisnone (4)T (4)31
 anaerobiosisnone (4)T (4)4

aClonality obtained by MLST and antibiotic resistance profiles are described in Silveira et al.3E. faecium STs included 5, 17, 18, 19, 30, 94, 101, 108, 123, 132, 133, 150, 184, 185, 393, 421, 428, 430, 432, 434, 670, 798, 845, 846, 847, 848, 859, 891 and 892, and E. faecalis STs included 9, 49, 53, 159, 224 and 330. MDR (resistant to at least three antibiotics of different families) isolates represent 64% of the isolates included (n = 143/225).3

bPG, pig + piggeries environment; AQ, aquaculture trout and environment; PC, poultry carcass; T, trout from supermarket; RTS, ready to eat salad; C, clinical isolates; HV, healthy human faeces; HS, hospital sewage water; R, river water.

cControl isolates: positive control, E. coli ED8739 (plasmid pRJ1004 with pco gene; MICCuSO4 = 28–36 mM in aerobiosis; MICCuSO4 = 16–20 mM in anaerobiosis);10 and negative control, E. faecium BM4105RF (negative for tcrB/cueO genes; MICCuSO4 = 8–12 mM in aerobiosis;3 MICCuSO4 = 2–4 mM in anaerobiosis).

dA black vertical line is positioned at the proposed tolerance cut-off of ≥16 mM under anaerobiosis.

eIsolates with no tcrYAZB amplicon by long PCR (Supplementary Data).

Table 1.

CuSO4 MICs for Enterococcus spp. with different CuT genotypes

Species (no. of isolates)/ atmosphereaCuT genes (no. of isolates)Sources (no. of isolates)bCuSO4 MICs (mM)c,d
124812162024283236>36
E. faecium (139)
 aerobiosistcrB + cueO (50)PG (27), PC (2), AQ (2), T (2), HV (11), C (4), HS (2)261510143
tcrB (8)PG (6), HV (1), HS (1)13112
cueO (13)PG (9), PC (1), T (1), HV (1), C (1)23611
none (68)PG (44), PC (1), AQ (6), T (1) HV (7), C (4), HS (4), R (1)11102522
 anaerobiosistcrB + cueO (50)PG (27), PC (2), AQ (2), T (2), HV (11), C (4), HS (2)3e330851
tcrB (8)PG (6), HV (1), HS (1)1e13111
cueO (13)PG (9), PC (1), T (1), HV (1), C (1)346
none (68)PG (44), PC (1), AQ (6), T (1) HV (7), C (4), HS (4), R (1)2820335
E. faecalis (47)
 aerobiosistcrB + cueO (7)PG (4), AQ (1), HV (2)16
tcrB (2)PC (2)2
cueO (3)PG (2), HV (1)111
none (35)PG (14), PC (2), AQ (10), T (1), HV (4), C (2), HS (2)1222820
 anaerobiosistcrB + cueO (7)PG (4), AQ (1), HV (2)1e132
tcrB (2)PC (2)11
cueO (3)PG (2), HV (1)21
none (35)PG (14), PC (2), AQ (10), T (1), HV (4), C (2), HS (2)27188
E. casseliflavus (5)
 aerobiosistcrB + cueO (2)PG (1), AQ (1)11
tcrB (2)PG (1), RTS (1)2
none (1)AQ (1)1
 anaerobiosistcrB + cueO (2)PG (1), AQ (1)11
tcrB (2)PG (1), RTS (1)11
none (1)AQ (1)1
E. gallinarum (10)
 aerobiosistcrB (1)PG (1)1
none (9)PG (2), PC (6), HV (1)3231
 anaerobiosistcrB (1)PG (1)1
none (9)PG (2), PC (6), HV (1)2421
E. hirae (20)
 aerobiosistcrB + cueO (6)PG (2), AQ (4)132
tcrB (1)PG (1)1
none (13)PG (9), AQ (2), T (2)841
 anaerobiosistcrB + cueO (6)PG (2), AQ (4)15
tcrB (1)PG (1)1
none (13)PG (9), AQ (2), T (2)1255
E. durans (4)
 aerobiosisnone (4)T (4)31
 anaerobiosisnone (4)T (4)4
Species (no. of isolates)/ atmosphereaCuT genes (no. of isolates)Sources (no. of isolates)bCuSO4 MICs (mM)c,d
124812162024283236>36
E. faecium (139)
 aerobiosistcrB + cueO (50)PG (27), PC (2), AQ (2), T (2), HV (11), C (4), HS (2)261510143
tcrB (8)PG (6), HV (1), HS (1)13112
cueO (13)PG (9), PC (1), T (1), HV (1), C (1)23611
none (68)PG (44), PC (1), AQ (6), T (1) HV (7), C (4), HS (4), R (1)11102522
 anaerobiosistcrB + cueO (50)PG (27), PC (2), AQ (2), T (2), HV (11), C (4), HS (2)3e330851
tcrB (8)PG (6), HV (1), HS (1)1e13111
cueO (13)PG (9), PC (1), T (1), HV (1), C (1)346
none (68)PG (44), PC (1), AQ (6), T (1) HV (7), C (4), HS (4), R (1)2820335
E. faecalis (47)
 aerobiosistcrB + cueO (7)PG (4), AQ (1), HV (2)16
tcrB (2)PC (2)2
cueO (3)PG (2), HV (1)111
none (35)PG (14), PC (2), AQ (10), T (1), HV (4), C (2), HS (2)1222820
 anaerobiosistcrB + cueO (7)PG (4), AQ (1), HV (2)1e132
tcrB (2)PC (2)11
cueO (3)PG (2), HV (1)21
none (35)PG (14), PC (2), AQ (10), T (1), HV (4), C (2), HS (2)27188
E. casseliflavus (5)
 aerobiosistcrB + cueO (2)PG (1), AQ (1)11
tcrB (2)PG (1), RTS (1)2
none (1)AQ (1)1
 anaerobiosistcrB + cueO (2)PG (1), AQ (1)11
tcrB (2)PG (1), RTS (1)11
none (1)AQ (1)1
E. gallinarum (10)
 aerobiosistcrB (1)PG (1)1
none (9)PG (2), PC (6), HV (1)3231
 anaerobiosistcrB (1)PG (1)1
none (9)PG (2), PC (6), HV (1)2421
E. hirae (20)
 aerobiosistcrB + cueO (6)PG (2), AQ (4)132
tcrB (1)PG (1)1
none (13)PG (9), AQ (2), T (2)841
 anaerobiosistcrB + cueO (6)PG (2), AQ (4)15
tcrB (1)PG (1)1
none (13)PG (9), AQ (2), T (2)1255
E. durans (4)
 aerobiosisnone (4)T (4)31
 anaerobiosisnone (4)T (4)4

aClonality obtained by MLST and antibiotic resistance profiles are described in Silveira et al.3E. faecium STs included 5, 17, 18, 19, 30, 94, 101, 108, 123, 132, 133, 150, 184, 185, 393, 421, 428, 430, 432, 434, 670, 798, 845, 846, 847, 848, 859, 891 and 892, and E. faecalis STs included 9, 49, 53, 159, 224 and 330. MDR (resistant to at least three antibiotics of different families) isolates represent 64% of the isolates included (n = 143/225).3

bPG, pig + piggeries environment; AQ, aquaculture trout and environment; PC, poultry carcass; T, trout from supermarket; RTS, ready to eat salad; C, clinical isolates; HV, healthy human faeces; HS, hospital sewage water; R, river water.

cControl isolates: positive control, E. coli ED8739 (plasmid pRJ1004 with pco gene; MICCuSO4 = 28–36 mM in aerobiosis; MICCuSO4 = 16–20 mM in anaerobiosis);10 and negative control, E. faecium BM4105RF (negative for tcrB/cueO genes; MICCuSO4 = 8–12 mM in aerobiosis;3 MICCuSO4 = 2–4 mM in anaerobiosis).

dA black vertical line is positioned at the proposed tolerance cut-off of ≥16 mM under anaerobiosis.

eIsolates with no tcrYAZB amplicon by long PCR (Supplementary Data).

MICCuSO4 (Sigma-Aldrich-C1297) values were determined using in all assays two sets of freshly prepared Mueller–Hinton II agar (bioMérieux) supplemented with 0.25, 0.5, 1, 2, 4, 8, 12, 16, 20, 24, 28, 32 and 36 mM CuSO4 (pH = 7.2) with incubation (18–20 h) under anaerobiosis (GENbox jar + GENbox anaerobiosis + anaerobic indicator; bioMérieux) and aerobiosis for comparison. A 0.001 mL suspension of 107 cfu/mL bacteria was applied to each plate. The MIC was considered the first concentration without visible growth (negative + positive controls shown in Table 1). In order to understand whether the presence of tcrB in previous screening assays3 corresponded to the full tcrYAZB operon and how this could have an impact on the CuSO4 tolerance cut-off proposed, we amplified the region between tcrY and tcrB by long PCR in 39 isolates representative of all MICCuSO4 values (four isolates with MIC = 20–28 mM were also sequenced for PCR validation) (Table S1, available as Supplementary data at JAC Online).

Under aerobiosis it was more difficult to clearly differentiate between tcrB+ and tcrB isolates (Table 1). E. faecium showed larger differences between tcrB+ and tcrB isolates (MIC50/MIC90 = 32/36 and 16/20 mM, respectively) and E. faecalis the smallest differences (MIC50/MIC90 >36 mM for both genotypes). Although small in number, tcrB+ isolates from other species seem to have higher MICs than tcrB isolates in most cases. Of note is the growth of several E. faecium, E. faecalis or E. hirae in the same CuSO4 concentrations (mostly in 20 mM; 32 to >36 mM for E. faecalis), independent of tcrB carriage. However, under anaerobiosis an association between tcrB occurrence and highest CuSO4 tolerance levels was more evident, with most tcrB+ isolates showing MIC ≥16 mM and tcrB/cueO+ or without genes an MIC ≤12 mM, independent of species, source, MDR profile or clonal lineage.3 The few MIC ≤12 mM–tcrB+ isolates did not amplify tcrYAZB, contrasting with MIC ≥16 mM–tcrB+ isolates, suggesting a non-functional gene cluster (Table 1 and Supplementary Data).

In summary, it was demonstrated that under anaerobiosis the acquisition of tcrYAZB is a clear advantage for Enterococcus survival at high Cu concentrations. Moreover, tcrYAZB+ Enterococcus could be identified using the Aarestrup and Hasman9 agar dilution method under anaerobiosis and a CuSO4 tolerance cut-off ≥16 mM (based on phenotypic/genotypic assays). This approach was also critical in our previous study to differentiate Salmonella with/without the CuT-silECFBAP cluster, which is impossible under aerobiosis.10 Better awareness of the role of reducing environments (e.g. gut, piggery-waste lagoons) under multiple stressors (e.g. the more toxic Cu+, antibiotics) for enhanced survival and selection/persistence of particular CuT MDR strains is needed.

Funding

This work was supported by national funds [Fundação para a Ciência e a Tecnologia (FCT)] through project UID/MULTI/04378/2013. J. M., E. S. and A. R. F. were supported by fellowships of the FTC (grant no. SFRH/BD/77518/2011, SFRH/BD/63955/2009 and SFRH/BPD/96148/2013, respectively). ESCMID Research Grant 2013 supports the work of A. R. F. The Erasmus+ programme supported the stay of J. R. (Strathclyde University, Glasgow, UK) in Portugal. Work in the lab of T. M. C. is funded by the Ministry of Economy and Competitiveness (PI10-02588).

Transparency declarations

None to declare.

Acknowledgements

We wish to thank Dr Lina Cavaco (Division of Microbiology and Risk Assessment, DTU Food, Technical University of Denmark, National Food Institute, Denmark) for the discussion of agar dilution protocols for CuSO4. We would also like to thank Dr Jill Williams (Department of Genetics of the University of Melbourne, Melbourne, Victoria, Australia) who kindly provided Escherichia coli ED8739 (pRJ1004).

References

1

Ladomersky
E
,
Petris
MJ
.
Copper tolerance and virulence in bacteria
.
Metallomics
2015
;
7
:
957
64
.

2

Hasman
H
,
Bjerrum
MJ
,
Christiansen
LE
et al. .
The effect of pH and storage on copper speciation and bacterial growth in complex growth media
.
J Microbiol Methods
2009
;
78
:
20
4
.

3

Silveira
E
,
Freitas
AR
,
Antunes
P
et al. .
Co-transfer of resistance to high concentrations of copper and first-line antibiotics among Enterococcus from different origins (humans, animals, the environment and foods) and clonal lineages
.
J Antimicrob Chemother
2014
;
69
:
899
906
.

4

Hasman
H
,
Kempf
I
,
Chidaine
B
et al. .
Copper resistance in Enterococcus faecium, mediated by the tcrB gene, is selected by supplementation of pig feed with copper sulfate
.
Appl Environ Microbiol
2006
;
72
:
5784
9
.

5

Kim
J
,
Lee
S
,
Choi
S
.
Copper resistance and its relationship to erythromycin resistance in Enterococcus isolates from bovine milk samples in Korea
.
J Microbiol,
2012
;
50
:
540
3
.

6

Arguello
JM
.
Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases
.
J Membr Biol
2003
;
195
:
93
108
.

7

Fard
RM
,
Heuzenroeder
MW
,
Barton
MD
.
Antimicrobial and heavy metal resistance in commensal enterococci isolated from pigs
.
Vet Microbiol
2011
;
148
:
276
82
.

8

Valenzuela
AS
,
Benomar
N
,
Abriouel
H
et al. .
Biocide and copper tolerance in enterococci from different sources
.
J Food Prot
2013
;
76
:
1806
9
.

9

Aarestrup
FM
,
Hasman
H
.
Susceptibility of different bacterial species isolated from food animals to copper sulphate, zinc chloride and antimicrobial substances used for disinfection
.
Vet Microbiol
2004
;
100
:
83
9
.

10

Mourão
J
,
Novais
C
,
Machado
J
et al. .
Metal tolerance in emerging clinically relevant multidrug-resistant Salmonella enterica serotype 4,[5],12:i:- clones circulating in Europe
.
Int J Antimicrob Agents
2015
;
45
:
610
6
.

Supplementary data