Abstract

The growth hormone secretagogue receptor (GHSR), primarily known as the receptor for the hunger hormone ghrelin, potently controls food intake, yet the specific Ghsr-expressing cells mediating the orexigenic effects of this receptor remain incompletely characterized. Since Ghsr is expressed in gamma-aminobutyric acid (GABA)–producing neurons, we sought to investigate whether the selective expression of Ghsr in a subset of GABA neurons is sufficient to mediate GHSR's effects on feeding. First, we crossed mice that express a tamoxifen-dependent Cre recombinase in the subset of GABA neurons that express glutamic acid decarboxylase 2 (Gad2) enzyme (Gad2-CreER mice) with reporter mice, and found that ghrelin mainly targets a subset of Gad2-expressing neurons located in the hypothalamic arcuate nucleus (ARH) and that is predominantly segregated from Agouti-related protein (AgRP)–expressing neurons. Analysis of various single-cell RNA-sequencing datasets further corroborated that the primary subset of cells coexpressing Gad2 and Ghsr in the mouse brain are non-AgRP ARH neurons. Next, we crossed Gad2-CreER mice with reactivable GHSR-deficient mice to generate mice expressing Ghsr only in Gad2-expressing neurons (Gad2-GHSR mice). We found that ghrelin treatment induced the expression of the marker of transcriptional activation c-Fos in the ARH of Gad2-GHSR mice, yet failed to induce food intake. In contrast, food deprivation–induced refeeding was higher in Gad2-GHSR mice than in GHSR-deficient mice and similar to wild-type mice, suggesting that ghrelin-independent roles of GHSR in a subset of GABA neurons is sufficient for eliciting full compensatory hyperphagia in mice.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/pages/standard-publication-reuse-rights)
You do not currently have access to this article.