-
Views
-
Cite
Cite
Jae-Sook Roh, Jonas Bondestam, Sabine Mazerbourg, Noora Kaivo-Oja, Nigel Groome, Olli Ritvos, Aaron J. W. Hsueh, Growth Differentiation Factor-9 Stimulates Inhibin Production and Activates Smad2 in Cultured Rat Granulosa Cells, Endocrinology, Volume 144, Issue 1, 1 January 2003, Pages 172–178, https://doi.org/10.1210/en.2002-220618
- Share Icon Share
Abstract
Ovarian inhibin production is stimulated by FSH and several TGFβ family ligands including activins and bone morphogenetic proteins. Growth differentiation factor-9 (GDF-9) derived by the oocyte is a member of the TGFβ/activin family, and we have previously shown that GDF-9 treatment stimulates ovarian inhibin-α content in explants of neonatal ovaries. However, little is known about GDF-9 regulation of inhibin production in granulosa cells and downstream signaling proteins activated by GDF-9. Here, we used cultured rat granulosa cells to examine the influence of GDF-9 on basal and FSH-stimulated inhibin production, expression of inhibin subunit transcripts, and the GDF-9 activation of Smad phosphorylation. Granulosa cells from small antral follicles of diethylstilbestrol-primed immature rats were cultured with FSH in the presence or absence of increasing concentrations of GDF-9. Secreted dimeric inhibin A and inhibin B were quantified using specific ELISAs, whereas inhibin subunit RNAs were analyzed by Northern blotting using 32P-labeled inhibin subunit cDNA probes. Similar to FSH, treatment with GDF-9 stimulated dose- and time-dependent increases of both inhibin A and inhibin B production. Furthermore, coincubation of cells with GDF-9 and FSH led to a synergistic stimulation of both inhibin A and inhibin B production. GDF-9 treatment also increased mRNA expression for inhibin-α and inhibin-β subunits. To investigate Smad activation, granulosa cell lysates were analyzed in immunoblots using antiphosphoSmad1 and antiphosphoSmad2 antibodies. GDF-9 treatment increased Smad2, but not Smad1, phosphorylation with increasing doses of GDF-9 leading to a dose-dependent increase in phosphoSmad2 levels. To further investigate inhibin-α gene promoter activation by GDF-9, granulosa cells were transiently transfected with an inhibin-α promoter-luciferase reporter construct and cultured with different hormones before assaying for luciferase activity. Treatment with FSH or GDF-9 resulted in increased inhibin-α gene promoter activity, and combined treatment with both led to synergistic increases. The present data demonstrate that oocyte-derived GDF-9, alone or together with pituitary-derived FSH, stimulates inhibin production, inhibin subunit mRNA expression, and inhibin-α promoter activity by rat granulosa cells. The synergistic stimulation of inhibin secretion by the paracrine hormone GDF-9 and the endocrine hormone FSH could play an important role in the feedback regulation of FSH release, thus leading to the modulation of follicle maturation and ovulation.