Abstract

Magnocellular neurons (MCNs) in the hypothalamo-neurohypophysial system synthesize high levels of the peptides oxytocin (OT) and vasopressin (VP) in separate cells. We used RT-PCR amplification of the RNA from single-cells dissected from supraoptic nuclei of lactating rats to produce cDNAs from identified OT or VP MCNs, which were used to construct OT- and VP-MCN-specific cDNA libraries. These cDNA libraries were then screened using labeled probes from the OT- and VP-cells’ amplified cDNAs. Differentially hybridized colonies were isolated and characterized by slot blot hybridization, Southern blot hybridization, DNA sequencing, and in situ hybridization histochemistry. Using this approach, several novel cell-specific mRNAs were identified in the MCNs. One cell-specific clone, phosphofructokinase-C, was isolated from the OT-cell library, and five cell-specific clones were isolated from the VP-cell library. These were identified as paternally expressed gene (Peg)5/neuronatin, metallothionein III, Peg3, synaptotagmin V, and a 3′-phosphoadenosine 5′-phosphosulfate synthase 2-related mRNA. None of these genes would have been predicted to be differentially expressed in OT and VP MCNs, based on our current knowledge; and hence, this single cell differential gene expression approach has begun to further define the MCN phenotypes by identifying selectively expressed molecules in them.

You do not currently have access to this article.