-
Views
-
Cite
Cite
J. M. Hayden, D. D. Strong, D. J. Baylink, D. R. Powell, T. K. Sampath, S. Mohan, Osteogenic Protein-1 Stimulates Production of Insulin-Like Growth Factor Binding Protein-3 Nuclear Transcripts in Human Osteosarcoma Cells, Endocrinology, Volume 138, Issue 10, October 1997, Pages 4240–4247, https://doi.org/10.1210/endo.138.10.5457
- Share Icon Share
Abstract
To begin delineating molecular mechanisms by which osteogenic protein-1 (OP-1) modulates its effect on the insulin-like growth factor (IGF) system in human skeletal cells, we evaluated time-course effects of OP-1 on the expression of IGFBP-3 messenger RNA (mRNA) in human SaOS-2 osteosarcoma cells and found that 100 ng/ml of OP-1 increased (maximum 10.7-fold at 24 h; P < 0.01) the level of IGFBP-3 mRNA in a time-dependent manner (from 3–36 h; treatment× time interaction, P < 0.001). The stimulatory effect of OP-1 on IGFBP-3 mRNA was not promoted by transcript stabilization; actually, OP-1 treatment selectively increased the decay of mRNA for IGFBP-3 (T1/2 = 5 h vs. 24 h for OP-1 and controls), but not for IGFBP-4 or β-actin. Conversely, OP-1 acutely increased IGFBP-3 nuclear transcript abundance in total RNA samples ranging between 1–24 h of treatment. After 6 h of treatment, OP-1 produced an average 4-fold increase (P < 0.02; n = 4 experiments) in the level of IGFBP-3 nuclear transcripts vs. a 3-fold increase (P < 0.01; n = 2 experiments) in mRNA abundance. The OP-1 stimulated induction of IGFBP-3 nuclear transcript and mRNA expression was dependent on de novo protein synthesis. Transient transfection experiments were undertaken to isolate putative OP-1 stimulatory cis-elements within 1.8-kb of the IGFBP-3 5′-flanking region in SaOS-2 and TE-85 osteosarcoma cells. In these experiments, OP-1 did not stimulate IGFBP-3 proximal promoter activity in either cell line, thus suggesting that OP-1 reactive domains may be located either beyond the currently established 5′-flanking region, or within internal exon/intron regions of the IGFBP-3 gene. In conclusion, OP-1 treatment stimulates IGFBP-3 expression in human osteoblastic cells by a mechanism that largely promotes the production of IGFBP-3 nuclear transcripts, a process that requires de novo protein synthesis, and overrides an OP-1-induced targeted degradation of IGFBP-3 steady-state mRNA.