-
Views
-
Cite
Cite
C. Crescioli, P. Ferruzzi, A. Caporali, R. Mancina, A. Comerci, M. Muratori, M. Scaltriti, G. B. Vannelli, S. Smiroldo, R. Mariani, D. Villari, S. Bettuzzi, M. Serio, L. Adorini, M. Maggi, Inhibition of Spontaneous and Androgen-Induced Prostate Growth by a Nonhypercalcemic Calcitriol Analog, Endocrinology, Volume 144, Issue 7, 1 July 2003, Pages 3046–3057, https://doi.org/10.1210/en.2002-0210
- Share Icon Share
Abstract
We have recently found that analog V (BXL-353, a calcitriol analog) inhibits growth factor (GF)-stimulated human benign prostate hyperplasia (BPH) cell proliferation by disrupting signal transduction, reducing Bcl-2 expression, and inducing apoptosis. We now report that BXL-353 blocks in vitro and in vivo testosterone (T) activity. BPH cells responded to T and dihydrotestosterone (DHT) with dose-dependent growth and reduced apoptosis. Exposure of BPH cells to BXL-353 significantly antagonized both T- and DHT-induced proliferation and induced apoptosis, even in the presence of T. To verify whether BXL-353 reduced prostate growth in vivo, we administered it orally to either intact or castrated rats, supplemented with T enanthate. Nonhypercalcemic doses of BXL-353 time- and dose-dependently reduced the androgen effect on ventral prostate weight, similarly to finasteride. Comparable results were obtained after chronic administration of BXL-353 to intact rats. Clusterin (an atrophy marker) gene and protein were up-regulated by BXL-353 in rat prostate, and nuclear fragmentation was widely present. The antiandrogenic properties of BXL-353 did not interfere with pituitary and testis function, as assessed by serum determination of rat LH and T. BXL-353 did not compete for androgen binding to BPH homogenates and failed to inhibit 5α-reductase type 1 and type 2 activities. In conclusion, BXL-353 blocks in vitro and in vivo androgen-stimulated prostate cell growth, probably acting downstream from the androgen receptor, without affecting calcemia or sex hormone secretion. BXL-353 and other vitamin D3 analogs might thus represent an interesting class of compounds for treating patients with BPH.