Abstract

Aims

Considering the inconsistencies in the literature on the atorvastatin effect on blood pressure (BP), we performed these meta-analyses.

Methods and results

Through a search of the Excerpta Medica Database (EMBASE), PubMed, and Web of Science databases, 1412 articles were identified, from which 33 randomized clinical trials (RCT) and 44 pre-clinical were selected. Populations from RCT were stratified according to baseline BP and lipid levels. We performed meta-analyses of the effect of atorvastatin on systolic (SBP), diastolic and mean BP; heart rate (HR); HR variability, and baroreflex. Atorvastatin reduced SBP in the overall population (P = 0.05 vs. placebo; P = 0.03 vs. baseline), in normotensive and hyperlipidaemic (P = 0.04 vs. placebo; P = 0.0001 vs. baseline) and in hypertensive and hyperlipidaemic (P = 0.02 vs. placebo; P = 0.008 vs. baseline) individuals in parallel RCT, but it did not affect SBP in normotensive and normolipidaemic individuals (P = 0.51 vs. placebo; P = 0.4 vs. baseline). Although an effect of atorvastatin was detected in hyperlipidaemic individuals, the meta-regression coefficient for the association of low density lipoprotein (LDL)-cholesterol reduction with SBP reduction in the overall population demonstrated that SBP reduction is not dependent on the changes in LDL-cholesterol. A meta-analysis of preclinical reports demonstrated that SBP was reduced in atorvastatin-treated hypertensive and normolipidaemic rats (spontaneously hypertensive rats: P < 0.00001), but not in normotensive and normolipidaemic rats (control rats: P = 0.97). Atorvastatin also reduced the HR in spontaneously hypertensive rat.

Conclusion

Atorvastatin lowers BP independent of LDL-cholesterol levels. Additional studies are needed to estimate the involvement of the autonomic nervous system in the BP-lowering effect of atorvastatin.

Introduction

Hypertension is one of the most common modifiable risk factors for cardiovascular disease, chronic kidney disease, and cognitive impairment, being the leading single contributor to all-cause death and disability worldwide.1 The maintenance of physiological blood pressure (BP) levels involves a complex interplay of various elements of an integrated neurohumoral system that includes the sympathetic nervous system (SNS), the renin-angiotensin-aldosterone system, the natriuretic peptides, the endothelial function, and the immune system.2 In addition, there is growing evidence that the involvement of the renin-angiotensin system can be considered as the common link between hypertension and hypercholesterolaemia.3

Atorvastatin is a drug commonly used to reduce cholesterol in the treatment of hypercholesterolaemia, which acts by inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase.4 Previous studies have shown that statins potentially affect the autonomic nervous system5 and also prevent or improve cardiac dysfunction by inhibiting oxidative stress,6–8 inflammation,9 and endothelial dysfunction.10 These pleiotropic effects suggest a potential hypotensive effect of atorvastatin. However, some studies show that treatment with statins is associated with significant reductions in BP levels,11–13 while others do not confirm this effect.5,14–17 Studies performed on rodents also produced inconsistent results.18–20

The effects of atorvastatin on heart rate (HR) are also controversial. Several studies demonstrate that atorvastatin does not alter HR,5,13,15–17,21 but there is one study showing a slight but significant reduction in the HR of hypertensive patients.11 In hypertensive rats, oral administration of atorvastatin had no effects on HR,22–24 but central administration significantly reduced HR.25

There is evidence that atorvastatin also alters the autonomic nervous system, evaluated by heart rate variability (HRV). It has been demonstrated that patients treated with atorvastatin showed an increase in standard deviation between normal intervals (SDNN) and parasympathetic nervous system activity.15,26,27 In addition, patients treated with atorvastatin showed a reduction in sympathetic activity.14,26 The only rodent study that investigated the effect of central administration of atorvastatin on SBP variability in hypertensive rats also suggests a reduction in SNS activity.25 Studies in humans17,27,28 and rodents22,25 have shown that atorvastatin increases baroreflex sensitivity.

Considering the evidence and inconsistencies in the effects of atorvastatin on BP and HR in humans and rodents, we performed a systematic review with meta-analyses on these issues. The correlation between the changes in BP and cholesterol levels was also investigated, as well as the effect of atorvastatin on HRV and baroreflex.

Materials and methods

This study followed the guidelines described in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).29 Thus, a systematic review was performed by searching the Excerpta Medica Database (EMBASE), PubMed, and Web of Science databases (17, September 2021) using the following search Medical Subject Headings (MeSH) terms: (‘atorvastatin’ OR ‘Lipitor’ OR ‘Liptonorm’ OR ‘CI 981’) AND (‘baroreflex’ OR ‘autonomic nervous system’ OR ‘BP ’ OR ‘pulse pressure’ OR ‘heart rate’ OR ‘heart rate variability’). Details of the search strategy are presented in the Supplementary material (Supplementary material online, Table S1). Two reviewers conducted independent searches and included all relevant articles published in English, Spanish, and Portuguese, with no restriction on the publication date. If there was a lack of consensus between the reviewers, regardless of the stage of the study, a third reviewer was consulted.

For study selection, we used the PICOS acronym (Population, Intervention, Comparison, Outcome, Study design)30 to determine the general eligibility of studies as follows: Population: mammals; Intervention: atorvastatin therapy; Comparison: values after atorvastatin treatment were compared with baseline or placebo/control; Outcomes: BP, HR, baroreflex, HRV; Study design: randomized clinical trials (RCT) or preclinical studies. There were no restrictions regarding the sample size. The titles and abstracts of all articles identified in the searches were initially evaluated, and the full texts of those considered relevant by at least one of the researchers were then analysed thoroughly. Papers that were inaccessible even after attempts to contact the corresponding author or purchase them were excluded (Supplementary material online, Table S2).

Populations from RCT were stratified according to the baseline values of BP and lipid levels.31–33 The population was considered hypertensive if the baseline SBP values were ≥140 mmHg and/or the baseline diastolic BP (DBP) was ≥90 mmHg.32 For classification of hyperlipidaemia, the parameters were low-density lipoprotein (LDL)-cholesterol ≥160 mg/dL and/or triacylglycerol ≥150 mg/dL.31,33 To enable the stratification of populations, the International System Units (mmol/L) were converted to conventional units (milligrams per decilitre) using the conversion factors 38.67 for total, LDL- and high-density lipoprotein (HDL)-cholesterol, and 88.57 for triacylglycerol.34 Populations from preclinical studies were stratified according to the animal model or treatment.

Data related to the number of patients; age; body mass index; dose, time, and route of administration of atorvastatin; SBP, DBP, and mean BP (MBP); HR; spontaneous baroreflex, and HRV in the time and frequency domains were extracted from the included RCT (Table 1). Data related to the lineage; age; body weight; experimental model; dose, time, and route of administration of atorvastatin; SBP, DBP and MBP; HR; spontaneous baroreflex, and HRV were extracted from the preclinical studies included (Table 2). When necessary,35,36 mean and standard deviation were estimated from sample size, median, and interquartile range.37

Table 1

Summary of studies included in the meta-analysis of blood pressure, heart rate, HRV, and baroreflex in randomized clinical trials. Included studies were stratified according to population characteristics.

Article1RCT2 1. Parallel 2. Cross-overAge3; n (men/women)4; BMI5 (atorvastatin and placeboor total population)Use of antihypertensiveDose/weeks6Group 1. Basal 2. PlaceboJadad Scale
NORMOTENSIVE AND NORMOLIPIDAEMIC
BLESKE 200655256.00 ± 11.00; 9/6; 29.39 ± 4.53bYes80/121; 25
JOYEUX-FAURE 201456151.00 ± 12.00; 21/4; 28.58 ± 5.12b;56.00 ± 9.00; 18/8; 28.70 ± 3.94bNo40/121; 25
MUKHERJEE 200857147.92 ± 11.42; 40/31; 22.46 ± 3.76bNo10/2423
ORR 200958153.00 ± 2.00; 6/10; 31.90 ± 0.90a;55.00 ± 3.00; 5/5; 31.10 ± 0.90aNo80/121; 23
PAULSEN 200835233.66 ± 13.56; 13/7; 25.50 ± 3.19bNo80/424
PAULSEN 201036251.00 ± 5.56; 15/6; 28.66 ± 4.77bNo80/2 days24
RAJA-KHAN 201159138.80 ± 4.30; 0/20; 40.10 ± 11.80b;29.40 ± 5.80; 0/11; 36.00 ± 10.40bNo40/61; 23
RIAHI 200660264.30 ± 8.90; 71/18; 28.40 ± 4.40bYes80/625
SZRAMKA 200721263.40 ± 7.17; 8/2; 29.39 ± 4.53bNo80/425
TERAMOTO 201461149.00 ± 8.80; 8/19; 24.00 ± 3.30b;50.00 ± 9.60; 18/10; 25.00 ± 3.70bNo10/121; 25
ZALESKI 201462144.10 ± 0.80; 203/216; 26.40 ± 0.20a;44.60 ± 1.50; 104/113; 26.50 ± 0.45aNo (n:400);Yes (n:19)80/241; 25
ZOU 201863159.30 ± 7.28; 45/30; 23.80 ± 3.15b;61.21 ± 7.59; 37/38; 25.21 ± 4.72bYes20/481; 25
NORMOTENSIVE
RENKE 201064234.20 ± 6.94; 7/7; NDYes40/1223
VRTOVEC 200515167.00 ± 13.00; 41/35; ND67.00 ± 13.00; 41/35, NDYes10/121; 22
NORMOTENSIVE AND HYPERLIPIDAEMIC
HAMAAD 200514167.00 ± 10.00; 19/3; NDb;66.00 ± 10.00; 7/2; NDbYes40/121; 23
HORWICH 20115147.00 ± 14.00; 5/9; 31.00 ± 7.00a;49.00 ± 17.00; 10/2; 31.00 ± 6.00aYes3/121; 25
KADOGLOU1 201065164.76 ± 7.31; 30/35; NDbYes10 or 20/4813
KADOGLOU2 201065163.24 ± 6.76; 30/36; NDbYes80/4813
MELENOVSK 200327247.00 ± 8.00; 29/0; 27.80 ± 2.00bNo10/1013
TOKUHISA 201866264.10 ± 11.60; 8/2; 23.00 ± 4.10bYes10/814
HYPERTENSIVE AND NORMOLIPIDAEMIC
MANISTY 200967179.00; 127/15; 28.50 ± 4.00bYes10/7223
MARTIN-VENTURA 200868170.00 ± 7.00; 21/5; NDaNo20/413
HYPERTENSIVE AND HYPERLIPIDAEMIC
FASSET 201069160.20 ± 15.10; 80/43; 28.50 ± 6.00b;60.30 ± 15.20; 44/21; 28.60 ± 6.10bYes10/1441; 25
FASSET 201070163.55 ± 15.60; 16/16; 28.50 ± 5.55bYes10/901; 25
FOGARI 200471256.30 ± 5.10; 22/23; NDbYes20/1213
KANAKI 201372159.70 ± 8.80; 12/13; 29.40 ± 4.30b;58.80 ± 10.80; 12/13; 29.60 ± 3.80bYes10/261; 23
KANAKI 201273159.70 ± 8.90; 12/13; 29.40 ± 4.30b;58.80 ± 10.80; 12/13; 29.60 ± 3.80bYes10/261; 23
KOH 2011112-No20/813
MAGEN 200474154.10 ± 13.50; 8/7; 27.90 ± 1.80b;51.40 ± 12.80; 7/9; 27.70 ± 2.10bYes20/81; 23
RAISON 200275156.10 ± 9.50; 7/4; 29.30 ± 3.50bYes10/1215
HYPERTENSIVE
FERRIER 200276260.00 ± 14.00; 18/4: NDbNo80/1225
GOMES 201016254.00 ± 16.00; 9/4; 26.70 ± 1.00bYes20/325
Article1RCT2 1. Parallel 2. Cross-overAge3; n (men/women)4; BMI5 (atorvastatin and placeboor total population)Use of antihypertensiveDose/weeks6Group 1. Basal 2. PlaceboJadad Scale
NORMOTENSIVE AND NORMOLIPIDAEMIC
BLESKE 200655256.00 ± 11.00; 9/6; 29.39 ± 4.53bYes80/121; 25
JOYEUX-FAURE 201456151.00 ± 12.00; 21/4; 28.58 ± 5.12b;56.00 ± 9.00; 18/8; 28.70 ± 3.94bNo40/121; 25
MUKHERJEE 200857147.92 ± 11.42; 40/31; 22.46 ± 3.76bNo10/2423
ORR 200958153.00 ± 2.00; 6/10; 31.90 ± 0.90a;55.00 ± 3.00; 5/5; 31.10 ± 0.90aNo80/121; 23
PAULSEN 200835233.66 ± 13.56; 13/7; 25.50 ± 3.19bNo80/424
PAULSEN 201036251.00 ± 5.56; 15/6; 28.66 ± 4.77bNo80/2 days24
RAJA-KHAN 201159138.80 ± 4.30; 0/20; 40.10 ± 11.80b;29.40 ± 5.80; 0/11; 36.00 ± 10.40bNo40/61; 23
RIAHI 200660264.30 ± 8.90; 71/18; 28.40 ± 4.40bYes80/625
SZRAMKA 200721263.40 ± 7.17; 8/2; 29.39 ± 4.53bNo80/425
TERAMOTO 201461149.00 ± 8.80; 8/19; 24.00 ± 3.30b;50.00 ± 9.60; 18/10; 25.00 ± 3.70bNo10/121; 25
ZALESKI 201462144.10 ± 0.80; 203/216; 26.40 ± 0.20a;44.60 ± 1.50; 104/113; 26.50 ± 0.45aNo (n:400);Yes (n:19)80/241; 25
ZOU 201863159.30 ± 7.28; 45/30; 23.80 ± 3.15b;61.21 ± 7.59; 37/38; 25.21 ± 4.72bYes20/481; 25
NORMOTENSIVE
RENKE 201064234.20 ± 6.94; 7/7; NDYes40/1223
VRTOVEC 200515167.00 ± 13.00; 41/35; ND67.00 ± 13.00; 41/35, NDYes10/121; 22
NORMOTENSIVE AND HYPERLIPIDAEMIC
HAMAAD 200514167.00 ± 10.00; 19/3; NDb;66.00 ± 10.00; 7/2; NDbYes40/121; 23
HORWICH 20115147.00 ± 14.00; 5/9; 31.00 ± 7.00a;49.00 ± 17.00; 10/2; 31.00 ± 6.00aYes3/121; 25
KADOGLOU1 201065164.76 ± 7.31; 30/35; NDbYes10 or 20/4813
KADOGLOU2 201065163.24 ± 6.76; 30/36; NDbYes80/4813
MELENOVSK 200327247.00 ± 8.00; 29/0; 27.80 ± 2.00bNo10/1013
TOKUHISA 201866264.10 ± 11.60; 8/2; 23.00 ± 4.10bYes10/814
HYPERTENSIVE AND NORMOLIPIDAEMIC
MANISTY 200967179.00; 127/15; 28.50 ± 4.00bYes10/7223
MARTIN-VENTURA 200868170.00 ± 7.00; 21/5; NDaNo20/413
HYPERTENSIVE AND HYPERLIPIDAEMIC
FASSET 201069160.20 ± 15.10; 80/43; 28.50 ± 6.00b;60.30 ± 15.20; 44/21; 28.60 ± 6.10bYes10/1441; 25
FASSET 201070163.55 ± 15.60; 16/16; 28.50 ± 5.55bYes10/901; 25
FOGARI 200471256.30 ± 5.10; 22/23; NDbYes20/1213
KANAKI 201372159.70 ± 8.80; 12/13; 29.40 ± 4.30b;58.80 ± 10.80; 12/13; 29.60 ± 3.80bYes10/261; 23
KANAKI 201273159.70 ± 8.90; 12/13; 29.40 ± 4.30b;58.80 ± 10.80; 12/13; 29.60 ± 3.80bYes10/261; 23
KOH 2011112-No20/813
MAGEN 200474154.10 ± 13.50; 8/7; 27.90 ± 1.80b;51.40 ± 12.80; 7/9; 27.70 ± 2.10bYes20/81; 23
RAISON 200275156.10 ± 9.50; 7/4; 29.30 ± 3.50bYes10/1215
HYPERTENSIVE
FERRIER 200276260.00 ± 14.00; 18/4: NDbNo80/1225
GOMES 201016254.00 ± 16.00; 9/4; 26.70 ± 1.00bYes20/325
1

Author, year of publication (reference); 2RCT: Randomized Clinical Trials; 3Age (year, mean ± standard error or deviation); 4n (men/women); 5 BMI: Body Mass Index (kg/m2, mean ± standard error or deviation); 6mg.day−1/weeks. HRV: heart rate variability; ND: not determined. ameans studies that used standard error; bmeans studies that used standard deviation.

Table 1

Summary of studies included in the meta-analysis of blood pressure, heart rate, HRV, and baroreflex in randomized clinical trials. Included studies were stratified according to population characteristics.

Article1RCT2 1. Parallel 2. Cross-overAge3; n (men/women)4; BMI5 (atorvastatin and placeboor total population)Use of antihypertensiveDose/weeks6Group 1. Basal 2. PlaceboJadad Scale
NORMOTENSIVE AND NORMOLIPIDAEMIC
BLESKE 200655256.00 ± 11.00; 9/6; 29.39 ± 4.53bYes80/121; 25
JOYEUX-FAURE 201456151.00 ± 12.00; 21/4; 28.58 ± 5.12b;56.00 ± 9.00; 18/8; 28.70 ± 3.94bNo40/121; 25
MUKHERJEE 200857147.92 ± 11.42; 40/31; 22.46 ± 3.76bNo10/2423
ORR 200958153.00 ± 2.00; 6/10; 31.90 ± 0.90a;55.00 ± 3.00; 5/5; 31.10 ± 0.90aNo80/121; 23
PAULSEN 200835233.66 ± 13.56; 13/7; 25.50 ± 3.19bNo80/424
PAULSEN 201036251.00 ± 5.56; 15/6; 28.66 ± 4.77bNo80/2 days24
RAJA-KHAN 201159138.80 ± 4.30; 0/20; 40.10 ± 11.80b;29.40 ± 5.80; 0/11; 36.00 ± 10.40bNo40/61; 23
RIAHI 200660264.30 ± 8.90; 71/18; 28.40 ± 4.40bYes80/625
SZRAMKA 200721263.40 ± 7.17; 8/2; 29.39 ± 4.53bNo80/425
TERAMOTO 201461149.00 ± 8.80; 8/19; 24.00 ± 3.30b;50.00 ± 9.60; 18/10; 25.00 ± 3.70bNo10/121; 25
ZALESKI 201462144.10 ± 0.80; 203/216; 26.40 ± 0.20a;44.60 ± 1.50; 104/113; 26.50 ± 0.45aNo (n:400);Yes (n:19)80/241; 25
ZOU 201863159.30 ± 7.28; 45/30; 23.80 ± 3.15b;61.21 ± 7.59; 37/38; 25.21 ± 4.72bYes20/481; 25
NORMOTENSIVE
RENKE 201064234.20 ± 6.94; 7/7; NDYes40/1223
VRTOVEC 200515167.00 ± 13.00; 41/35; ND67.00 ± 13.00; 41/35, NDYes10/121; 22
NORMOTENSIVE AND HYPERLIPIDAEMIC
HAMAAD 200514167.00 ± 10.00; 19/3; NDb;66.00 ± 10.00; 7/2; NDbYes40/121; 23
HORWICH 20115147.00 ± 14.00; 5/9; 31.00 ± 7.00a;49.00 ± 17.00; 10/2; 31.00 ± 6.00aYes3/121; 25
KADOGLOU1 201065164.76 ± 7.31; 30/35; NDbYes10 or 20/4813
KADOGLOU2 201065163.24 ± 6.76; 30/36; NDbYes80/4813
MELENOVSK 200327247.00 ± 8.00; 29/0; 27.80 ± 2.00bNo10/1013
TOKUHISA 201866264.10 ± 11.60; 8/2; 23.00 ± 4.10bYes10/814
HYPERTENSIVE AND NORMOLIPIDAEMIC
MANISTY 200967179.00; 127/15; 28.50 ± 4.00bYes10/7223
MARTIN-VENTURA 200868170.00 ± 7.00; 21/5; NDaNo20/413
HYPERTENSIVE AND HYPERLIPIDAEMIC
FASSET 201069160.20 ± 15.10; 80/43; 28.50 ± 6.00b;60.30 ± 15.20; 44/21; 28.60 ± 6.10bYes10/1441; 25
FASSET 201070163.55 ± 15.60; 16/16; 28.50 ± 5.55bYes10/901; 25
FOGARI 200471256.30 ± 5.10; 22/23; NDbYes20/1213
KANAKI 201372159.70 ± 8.80; 12/13; 29.40 ± 4.30b;58.80 ± 10.80; 12/13; 29.60 ± 3.80bYes10/261; 23
KANAKI 201273159.70 ± 8.90; 12/13; 29.40 ± 4.30b;58.80 ± 10.80; 12/13; 29.60 ± 3.80bYes10/261; 23
KOH 2011112-No20/813
MAGEN 200474154.10 ± 13.50; 8/7; 27.90 ± 1.80b;51.40 ± 12.80; 7/9; 27.70 ± 2.10bYes20/81; 23
RAISON 200275156.10 ± 9.50; 7/4; 29.30 ± 3.50bYes10/1215
HYPERTENSIVE
FERRIER 200276260.00 ± 14.00; 18/4: NDbNo80/1225
GOMES 201016254.00 ± 16.00; 9/4; 26.70 ± 1.00bYes20/325
Article1RCT2 1. Parallel 2. Cross-overAge3; n (men/women)4; BMI5 (atorvastatin and placeboor total population)Use of antihypertensiveDose/weeks6Group 1. Basal 2. PlaceboJadad Scale
NORMOTENSIVE AND NORMOLIPIDAEMIC
BLESKE 200655256.00 ± 11.00; 9/6; 29.39 ± 4.53bYes80/121; 25
JOYEUX-FAURE 201456151.00 ± 12.00; 21/4; 28.58 ± 5.12b;56.00 ± 9.00; 18/8; 28.70 ± 3.94bNo40/121; 25
MUKHERJEE 200857147.92 ± 11.42; 40/31; 22.46 ± 3.76bNo10/2423
ORR 200958153.00 ± 2.00; 6/10; 31.90 ± 0.90a;55.00 ± 3.00; 5/5; 31.10 ± 0.90aNo80/121; 23
PAULSEN 200835233.66 ± 13.56; 13/7; 25.50 ± 3.19bNo80/424
PAULSEN 201036251.00 ± 5.56; 15/6; 28.66 ± 4.77bNo80/2 days24
RAJA-KHAN 201159138.80 ± 4.30; 0/20; 40.10 ± 11.80b;29.40 ± 5.80; 0/11; 36.00 ± 10.40bNo40/61; 23
RIAHI 200660264.30 ± 8.90; 71/18; 28.40 ± 4.40bYes80/625
SZRAMKA 200721263.40 ± 7.17; 8/2; 29.39 ± 4.53bNo80/425
TERAMOTO 201461149.00 ± 8.80; 8/19; 24.00 ± 3.30b;50.00 ± 9.60; 18/10; 25.00 ± 3.70bNo10/121; 25
ZALESKI 201462144.10 ± 0.80; 203/216; 26.40 ± 0.20a;44.60 ± 1.50; 104/113; 26.50 ± 0.45aNo (n:400);Yes (n:19)80/241; 25
ZOU 201863159.30 ± 7.28; 45/30; 23.80 ± 3.15b;61.21 ± 7.59; 37/38; 25.21 ± 4.72bYes20/481; 25
NORMOTENSIVE
RENKE 201064234.20 ± 6.94; 7/7; NDYes40/1223
VRTOVEC 200515167.00 ± 13.00; 41/35; ND67.00 ± 13.00; 41/35, NDYes10/121; 22
NORMOTENSIVE AND HYPERLIPIDAEMIC
HAMAAD 200514167.00 ± 10.00; 19/3; NDb;66.00 ± 10.00; 7/2; NDbYes40/121; 23
HORWICH 20115147.00 ± 14.00; 5/9; 31.00 ± 7.00a;49.00 ± 17.00; 10/2; 31.00 ± 6.00aYes3/121; 25
KADOGLOU1 201065164.76 ± 7.31; 30/35; NDbYes10 or 20/4813
KADOGLOU2 201065163.24 ± 6.76; 30/36; NDbYes80/4813
MELENOVSK 200327247.00 ± 8.00; 29/0; 27.80 ± 2.00bNo10/1013
TOKUHISA 201866264.10 ± 11.60; 8/2; 23.00 ± 4.10bYes10/814
HYPERTENSIVE AND NORMOLIPIDAEMIC
MANISTY 200967179.00; 127/15; 28.50 ± 4.00bYes10/7223
MARTIN-VENTURA 200868170.00 ± 7.00; 21/5; NDaNo20/413
HYPERTENSIVE AND HYPERLIPIDAEMIC
FASSET 201069160.20 ± 15.10; 80/43; 28.50 ± 6.00b;60.30 ± 15.20; 44/21; 28.60 ± 6.10bYes10/1441; 25
FASSET 201070163.55 ± 15.60; 16/16; 28.50 ± 5.55bYes10/901; 25
FOGARI 200471256.30 ± 5.10; 22/23; NDbYes20/1213
KANAKI 201372159.70 ± 8.80; 12/13; 29.40 ± 4.30b;58.80 ± 10.80; 12/13; 29.60 ± 3.80bYes10/261; 23
KANAKI 201273159.70 ± 8.90; 12/13; 29.40 ± 4.30b;58.80 ± 10.80; 12/13; 29.60 ± 3.80bYes10/261; 23
KOH 2011112-No20/813
MAGEN 200474154.10 ± 13.50; 8/7; 27.90 ± 1.80b;51.40 ± 12.80; 7/9; 27.70 ± 2.10bYes20/81; 23
RAISON 200275156.10 ± 9.50; 7/4; 29.30 ± 3.50bYes10/1215
HYPERTENSIVE
FERRIER 200276260.00 ± 14.00; 18/4: NDbNo80/1225
GOMES 201016254.00 ± 16.00; 9/4; 26.70 ± 1.00bYes20/325
1

Author, year of publication (reference); 2RCT: Randomized Clinical Trials; 3Age (year, mean ± standard error or deviation); 4n (men/women); 5 BMI: Body Mass Index (kg/m2, mean ± standard error or deviation); 6mg.day−1/weeks. HRV: heart rate variability; ND: not determined. ameans studies that used standard error; bmeans studies that used standard deviation.

Table 2

Baseline characteristics of the preclinical study population.

Article1LineageAge2 and/or body weight3Dose/weeks4n5
STANDARD DIET-FED RATS
CRESPO 201577Male Sprague—Dawley rats4/120–12510/410
FIORE 201178Male Wistar ratsND/18530/610
KISHI 200824Male SHR-SP rats15/ND50/45
KISHI 200320Male Wistar Kyoto rats15/ND50/45
MARUMO 200179Male Sprague—Dawley rats8/ND2/4 days8
MOHAMMADI 201380Male Wistar ratsND/280–30020/45
MANICKAVASAGAM 200781Male Sprague—Dawley ratsND/2502/3 days8
MONDO1 200682Male Sprague—Dawley ratsND/180–24030/210
MONDO2 200683Male Sprague—Dawley ratsND/180–24030/210
MONDO3 200684Male Sprague—Dawley ratsND/180–26030/210
OKAMURA 201485Male Sprague—Dawley rats5/ND10/88
QUIDGLEY 201486Male Sprague—Dawley rats4/ND10/410
SARATH 201487Male Wistar ratsND/100–12010/415
SUBRAMANI 200988Male Wistar ratsND/ND10/48, 24, and 2 hours5
TOTOSON 201389Male Wistar ratsND/275–29910/28
SPONTANEOUSLY HYPERTENSIVE RATS (SHR)
CHANG-JIANG 200390Male SHR118 ± 3-6
CHEN 201891Male SHR11/254 ± 510/68
DOYON1 201192Male SHR11/ND50/38
DOYON2 201192Male SHR11/ND50/612
FANG1 201993Male SHR16/ND10/68
FANG2 201993Male SHR16/ND25/68
FANG3 201993Male SHR16/ND50/68
GENG1 201094Male SHR16/ND10/86
GENG2 201094Male SHR16/ND25/86
GENG3 201094Male SHR16/ND50/86
HUANG 202095Male SHRND/210–26510/88
ITO 201096Male SHR5/ND20/86
KANG1 200797Male SHR18/115–13050/106
KANG2 200798Male SHR8/108–13250/106
LU1 201699Male SHR36/ND10/1210
LU2 2016100Male SHR36/ND10/128
WASSMANN 2001101Male SHR18/ND50/410
YUAN 2020102Male SHR16/ND50/810
ZHAO 2010103Male SHR8/ND50/128
SPONTANEOUSLY HYPERTENSIVE RATS STROKE-PRONE (SHR-SP)
HAYASHI1 2004104Male SHR-SP9/120–1253/333
HAYASHI2 2004104Male SHR-SP9/120–12530/333
KISHI 200320Male SHR-SP15/ND50/45
KISHI 200824Male SHR-SP15/ND50/45
KISHI 200922Male SHR-SPND/280–34020/45
KISHI 2012105Male SHR-SP12–14/350–42520/45
MASON 2015106Male SHR-SP7–9/250–27020/529–64
HIGH-SALT DIET-FED RATS (8% NaCl)
AKAHORI 2014107Salt-sensitive male Dahl rats7/ND20/1610
ZHAO 2019108Male SHR12/ND10/1012
HIGH-SALT DIET-FED RATS (4% NaCl)
FIORE 201178Male Wistar—Hokkaido ratsND/18530/610
ZHOU1 2008109Male Sprague—Dawley ratsND/ND30/108
ZHOU2 2008109Male Sprague—Dawley ratsND/ND30/66
ZHOU1 2004110Male Sprague—Dawley rats6/ND30/108
ZHOU2 2004110Male Sprague—Dawley rats6/ND30/68
ZHOU 2014111Male Sprague—Dawley rats6/ND15/65
SURGICALLY HYPERTENSIVE RATS
GUIMARAES 2015112Male Wistar RatsND/250–30050/88
GUIMARÃES 2013113Male Wistar RatsND/180–20050/87
DIABETIC RATS
CRESPO 201577Male Sprague—Dawley rats4/120–12510/410
QUIDGLEY 201486Male Sprague—Dawley rats4/ND10/410
PATEL1 2010114Male Sprague—Dawley ratsND/22920/86
PATEL2 2010114Male Sprague—Dawley ratsND/23040/86
HYPERLIPIDAEMIC RATS
BEZEK 2017115Male hereditary hypertriglyceridemic rats12–16/240–26050/48
PARVIN 2019116Male Wistar RatsND/18040/48
SOTNIKOVA1 2012117Male Prague hereditary hypertriglyceridemic ratsND/443/88
SOTNIKOVA2 2012117Female Prague hereditary hypertriglyceridemic ratsND/443/88
KNEZL 2017118Male hereditary hypertriglyceridemic rats12–16/373 ± 1850/48
DEXAMETHASONE-INDUCED HYPERTENSIVE RATS
MONDO1 200682Male Sprague—Dawley ratsND/180–24030/210
MONDO2 200683Male Sprague—Dawley ratsND/180–24030/210
MONDO3 200684Male Sprague—Dawley ratsND/180–26030/210
Article1LineageAge2 and/or body weight3Dose/weeks4n5
STANDARD DIET-FED RATS
CRESPO 201577Male Sprague—Dawley rats4/120–12510/410
FIORE 201178Male Wistar ratsND/18530/610
KISHI 200824Male SHR-SP rats15/ND50/45
KISHI 200320Male Wistar Kyoto rats15/ND50/45
MARUMO 200179Male Sprague—Dawley rats8/ND2/4 days8
MOHAMMADI 201380Male Wistar ratsND/280–30020/45
MANICKAVASAGAM 200781Male Sprague—Dawley ratsND/2502/3 days8
MONDO1 200682Male Sprague—Dawley ratsND/180–24030/210
MONDO2 200683Male Sprague—Dawley ratsND/180–24030/210
MONDO3 200684Male Sprague—Dawley ratsND/180–26030/210
OKAMURA 201485Male Sprague—Dawley rats5/ND10/88
QUIDGLEY 201486Male Sprague—Dawley rats4/ND10/410
SARATH 201487Male Wistar ratsND/100–12010/415
SUBRAMANI 200988Male Wistar ratsND/ND10/48, 24, and 2 hours5
TOTOSON 201389Male Wistar ratsND/275–29910/28
SPONTANEOUSLY HYPERTENSIVE RATS (SHR)
CHANG-JIANG 200390Male SHR118 ± 3-6
CHEN 201891Male SHR11/254 ± 510/68
DOYON1 201192Male SHR11/ND50/38
DOYON2 201192Male SHR11/ND50/612
FANG1 201993Male SHR16/ND10/68
FANG2 201993Male SHR16/ND25/68
FANG3 201993Male SHR16/ND50/68
GENG1 201094Male SHR16/ND10/86
GENG2 201094Male SHR16/ND25/86
GENG3 201094Male SHR16/ND50/86
HUANG 202095Male SHRND/210–26510/88
ITO 201096Male SHR5/ND20/86
KANG1 200797Male SHR18/115–13050/106
KANG2 200798Male SHR8/108–13250/106
LU1 201699Male SHR36/ND10/1210
LU2 2016100Male SHR36/ND10/128
WASSMANN 2001101Male SHR18/ND50/410
YUAN 2020102Male SHR16/ND50/810
ZHAO 2010103Male SHR8/ND50/128
SPONTANEOUSLY HYPERTENSIVE RATS STROKE-PRONE (SHR-SP)
HAYASHI1 2004104Male SHR-SP9/120–1253/333
HAYASHI2 2004104Male SHR-SP9/120–12530/333
KISHI 200320Male SHR-SP15/ND50/45
KISHI 200824Male SHR-SP15/ND50/45
KISHI 200922Male SHR-SPND/280–34020/45
KISHI 2012105Male SHR-SP12–14/350–42520/45
MASON 2015106Male SHR-SP7–9/250–27020/529–64
HIGH-SALT DIET-FED RATS (8% NaCl)
AKAHORI 2014107Salt-sensitive male Dahl rats7/ND20/1610
ZHAO 2019108Male SHR12/ND10/1012
HIGH-SALT DIET-FED RATS (4% NaCl)
FIORE 201178Male Wistar—Hokkaido ratsND/18530/610
ZHOU1 2008109Male Sprague—Dawley ratsND/ND30/108
ZHOU2 2008109Male Sprague—Dawley ratsND/ND30/66
ZHOU1 2004110Male Sprague—Dawley rats6/ND30/108
ZHOU2 2004110Male Sprague—Dawley rats6/ND30/68
ZHOU 2014111Male Sprague—Dawley rats6/ND15/65
SURGICALLY HYPERTENSIVE RATS
GUIMARAES 2015112Male Wistar RatsND/250–30050/88
GUIMARÃES 2013113Male Wistar RatsND/180–20050/87
DIABETIC RATS
CRESPO 201577Male Sprague—Dawley rats4/120–12510/410
QUIDGLEY 201486Male Sprague—Dawley rats4/ND10/410
PATEL1 2010114Male Sprague—Dawley ratsND/22920/86
PATEL2 2010114Male Sprague—Dawley ratsND/23040/86
HYPERLIPIDAEMIC RATS
BEZEK 2017115Male hereditary hypertriglyceridemic rats12–16/240–26050/48
PARVIN 2019116Male Wistar RatsND/18040/48
SOTNIKOVA1 2012117Male Prague hereditary hypertriglyceridemic ratsND/443/88
SOTNIKOVA2 2012117Female Prague hereditary hypertriglyceridemic ratsND/443/88
KNEZL 2017118Male hereditary hypertriglyceridemic rats12–16/373 ± 1850/48
DEXAMETHASONE-INDUCED HYPERTENSIVE RATS
MONDO1 200682Male Sprague—Dawley ratsND/180–24030/210
MONDO2 200683Male Sprague—Dawley ratsND/180–24030/210
MONDO3 200684Male Sprague—Dawley ratsND/180–26030/210
1

Author, year of publication (Reference); 2age (weeks); 3body weight (g); 4mg.day−1/weeks orally; 5sample number per group. ND, not determined.

Table 2

Baseline characteristics of the preclinical study population.

Article1LineageAge2 and/or body weight3Dose/weeks4n5
STANDARD DIET-FED RATS
CRESPO 201577Male Sprague—Dawley rats4/120–12510/410
FIORE 201178Male Wistar ratsND/18530/610
KISHI 200824Male SHR-SP rats15/ND50/45
KISHI 200320Male Wistar Kyoto rats15/ND50/45
MARUMO 200179Male Sprague—Dawley rats8/ND2/4 days8
MOHAMMADI 201380Male Wistar ratsND/280–30020/45
MANICKAVASAGAM 200781Male Sprague—Dawley ratsND/2502/3 days8
MONDO1 200682Male Sprague—Dawley ratsND/180–24030/210
MONDO2 200683Male Sprague—Dawley ratsND/180–24030/210
MONDO3 200684Male Sprague—Dawley ratsND/180–26030/210
OKAMURA 201485Male Sprague—Dawley rats5/ND10/88
QUIDGLEY 201486Male Sprague—Dawley rats4/ND10/410
SARATH 201487Male Wistar ratsND/100–12010/415
SUBRAMANI 200988Male Wistar ratsND/ND10/48, 24, and 2 hours5
TOTOSON 201389Male Wistar ratsND/275–29910/28
SPONTANEOUSLY HYPERTENSIVE RATS (SHR)
CHANG-JIANG 200390Male SHR118 ± 3-6
CHEN 201891Male SHR11/254 ± 510/68
DOYON1 201192Male SHR11/ND50/38
DOYON2 201192Male SHR11/ND50/612
FANG1 201993Male SHR16/ND10/68
FANG2 201993Male SHR16/ND25/68
FANG3 201993Male SHR16/ND50/68
GENG1 201094Male SHR16/ND10/86
GENG2 201094Male SHR16/ND25/86
GENG3 201094Male SHR16/ND50/86
HUANG 202095Male SHRND/210–26510/88
ITO 201096Male SHR5/ND20/86
KANG1 200797Male SHR18/115–13050/106
KANG2 200798Male SHR8/108–13250/106
LU1 201699Male SHR36/ND10/1210
LU2 2016100Male SHR36/ND10/128
WASSMANN 2001101Male SHR18/ND50/410
YUAN 2020102Male SHR16/ND50/810
ZHAO 2010103Male SHR8/ND50/128
SPONTANEOUSLY HYPERTENSIVE RATS STROKE-PRONE (SHR-SP)
HAYASHI1 2004104Male SHR-SP9/120–1253/333
HAYASHI2 2004104Male SHR-SP9/120–12530/333
KISHI 200320Male SHR-SP15/ND50/45
KISHI 200824Male SHR-SP15/ND50/45
KISHI 200922Male SHR-SPND/280–34020/45
KISHI 2012105Male SHR-SP12–14/350–42520/45
MASON 2015106Male SHR-SP7–9/250–27020/529–64
HIGH-SALT DIET-FED RATS (8% NaCl)
AKAHORI 2014107Salt-sensitive male Dahl rats7/ND20/1610
ZHAO 2019108Male SHR12/ND10/1012
HIGH-SALT DIET-FED RATS (4% NaCl)
FIORE 201178Male Wistar—Hokkaido ratsND/18530/610
ZHOU1 2008109Male Sprague—Dawley ratsND/ND30/108
ZHOU2 2008109Male Sprague—Dawley ratsND/ND30/66
ZHOU1 2004110Male Sprague—Dawley rats6/ND30/108
ZHOU2 2004110Male Sprague—Dawley rats6/ND30/68
ZHOU 2014111Male Sprague—Dawley rats6/ND15/65
SURGICALLY HYPERTENSIVE RATS
GUIMARAES 2015112Male Wistar RatsND/250–30050/88
GUIMARÃES 2013113Male Wistar RatsND/180–20050/87
DIABETIC RATS
CRESPO 201577Male Sprague—Dawley rats4/120–12510/410
QUIDGLEY 201486Male Sprague—Dawley rats4/ND10/410
PATEL1 2010114Male Sprague—Dawley ratsND/22920/86
PATEL2 2010114Male Sprague—Dawley ratsND/23040/86
HYPERLIPIDAEMIC RATS
BEZEK 2017115Male hereditary hypertriglyceridemic rats12–16/240–26050/48
PARVIN 2019116Male Wistar RatsND/18040/48
SOTNIKOVA1 2012117Male Prague hereditary hypertriglyceridemic ratsND/443/88
SOTNIKOVA2 2012117Female Prague hereditary hypertriglyceridemic ratsND/443/88
KNEZL 2017118Male hereditary hypertriglyceridemic rats12–16/373 ± 1850/48
DEXAMETHASONE-INDUCED HYPERTENSIVE RATS
MONDO1 200682Male Sprague—Dawley ratsND/180–24030/210
MONDO2 200683Male Sprague—Dawley ratsND/180–24030/210
MONDO3 200684Male Sprague—Dawley ratsND/180–26030/210
Article1LineageAge2 and/or body weight3Dose/weeks4n5
STANDARD DIET-FED RATS
CRESPO 201577Male Sprague—Dawley rats4/120–12510/410
FIORE 201178Male Wistar ratsND/18530/610
KISHI 200824Male SHR-SP rats15/ND50/45
KISHI 200320Male Wistar Kyoto rats15/ND50/45
MARUMO 200179Male Sprague—Dawley rats8/ND2/4 days8
MOHAMMADI 201380Male Wistar ratsND/280–30020/45
MANICKAVASAGAM 200781Male Sprague—Dawley ratsND/2502/3 days8
MONDO1 200682Male Sprague—Dawley ratsND/180–24030/210
MONDO2 200683Male Sprague—Dawley ratsND/180–24030/210
MONDO3 200684Male Sprague—Dawley ratsND/180–26030/210
OKAMURA 201485Male Sprague—Dawley rats5/ND10/88
QUIDGLEY 201486Male Sprague—Dawley rats4/ND10/410
SARATH 201487Male Wistar ratsND/100–12010/415
SUBRAMANI 200988Male Wistar ratsND/ND10/48, 24, and 2 hours5
TOTOSON 201389Male Wistar ratsND/275–29910/28
SPONTANEOUSLY HYPERTENSIVE RATS (SHR)
CHANG-JIANG 200390Male SHR118 ± 3-6
CHEN 201891Male SHR11/254 ± 510/68
DOYON1 201192Male SHR11/ND50/38
DOYON2 201192Male SHR11/ND50/612
FANG1 201993Male SHR16/ND10/68
FANG2 201993Male SHR16/ND25/68
FANG3 201993Male SHR16/ND50/68
GENG1 201094Male SHR16/ND10/86
GENG2 201094Male SHR16/ND25/86
GENG3 201094Male SHR16/ND50/86
HUANG 202095Male SHRND/210–26510/88
ITO 201096Male SHR5/ND20/86
KANG1 200797Male SHR18/115–13050/106
KANG2 200798Male SHR8/108–13250/106
LU1 201699Male SHR36/ND10/1210
LU2 2016100Male SHR36/ND10/128
WASSMANN 2001101Male SHR18/ND50/410
YUAN 2020102Male SHR16/ND50/810
ZHAO 2010103Male SHR8/ND50/128
SPONTANEOUSLY HYPERTENSIVE RATS STROKE-PRONE (SHR-SP)
HAYASHI1 2004104Male SHR-SP9/120–1253/333
HAYASHI2 2004104Male SHR-SP9/120–12530/333
KISHI 200320Male SHR-SP15/ND50/45
KISHI 200824Male SHR-SP15/ND50/45
KISHI 200922Male SHR-SPND/280–34020/45
KISHI 2012105Male SHR-SP12–14/350–42520/45
MASON 2015106Male SHR-SP7–9/250–27020/529–64
HIGH-SALT DIET-FED RATS (8% NaCl)
AKAHORI 2014107Salt-sensitive male Dahl rats7/ND20/1610
ZHAO 2019108Male SHR12/ND10/1012
HIGH-SALT DIET-FED RATS (4% NaCl)
FIORE 201178Male Wistar—Hokkaido ratsND/18530/610
ZHOU1 2008109Male Sprague—Dawley ratsND/ND30/108
ZHOU2 2008109Male Sprague—Dawley ratsND/ND30/66
ZHOU1 2004110Male Sprague—Dawley rats6/ND30/108
ZHOU2 2004110Male Sprague—Dawley rats6/ND30/68
ZHOU 2014111Male Sprague—Dawley rats6/ND15/65
SURGICALLY HYPERTENSIVE RATS
GUIMARAES 2015112Male Wistar RatsND/250–30050/88
GUIMARÃES 2013113Male Wistar RatsND/180–20050/87
DIABETIC RATS
CRESPO 201577Male Sprague—Dawley rats4/120–12510/410
QUIDGLEY 201486Male Sprague—Dawley rats4/ND10/410
PATEL1 2010114Male Sprague—Dawley ratsND/22920/86
PATEL2 2010114Male Sprague—Dawley ratsND/23040/86
HYPERLIPIDAEMIC RATS
BEZEK 2017115Male hereditary hypertriglyceridemic rats12–16/240–26050/48
PARVIN 2019116Male Wistar RatsND/18040/48
SOTNIKOVA1 2012117Male Prague hereditary hypertriglyceridemic ratsND/443/88
SOTNIKOVA2 2012117Female Prague hereditary hypertriglyceridemic ratsND/443/88
KNEZL 2017118Male hereditary hypertriglyceridemic rats12–16/373 ± 1850/48
DEXAMETHASONE-INDUCED HYPERTENSIVE RATS
MONDO1 200682Male Sprague—Dawley ratsND/180–24030/210
MONDO2 200683Male Sprague—Dawley ratsND/180–24030/210
MONDO3 200684Male Sprague—Dawley ratsND/180–26030/210
1

Author, year of publication (Reference); 2age (weeks); 3body weight (g); 4mg.day−1/weeks orally; 5sample number per group. ND, not determined.

Quality analysis

The methodological quality of the studies included in this review was evaluated by two authors independently, and divergent opinions were resolved by consensus. The quality of the RCT was evaluated using the Jadad scale.38 The Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) tool, which assesses the risk of bias for animal studies, was also used.39 This tool contains the following evaluation items: selection bias, performance bias, detection bias, friction bias, reporting bias, and other sources of bias. Ten questions were applied to the articles included in the systematic review, with the possible answers ‘YES’, indicating a low risk of bias; ‘NO’, indicating a high risk of bias, and ‘UNCERTAIN’, indicating an uncertain risk of bias. Calculating the sum score of each individual study using this tool is not recommended.

Meta-analyses

For the meta-analyses, we considered the population characteristics and the study design (parallel RCT or cross-over RCT and preclinical studies). For RCT, we performed a meta-analysis considering all individuals (overall effect) and then stratified the studies according to the population features (normotensive and normolipidaemic; normotensive and hyperlipidaemic; hypertensive and hyperlipidaemic; hypertensive). Independent meta-analyses were performed for SBP, DBP and MBP; HR; spontaneous baroreflex, and HRV. For pre-clinical studies, we performed a meta-analysis of SBP considering the stratified studies [standard diet-fed rats; spontaneously hypertensive rats (SHR); spontaneously hypertensive rats stroke-prone (SHR-SP); high-salt diet-fed rats (8 and 4% NaCl); surgically hypertensive rats; diabetic rats; hyperlipidaemic rats; dexamethasone-induced hypertensive rats]. The results of each primary study were described by subtracting the mean after treatment from the mean before treatment or the mean from the placebo/control group. Estimates of individual studies and their variances were combined using random effects models to estimate the pooled mean difference and its confidence intervals. Heterogeneity in primary results was analysed using Cochran's Q statistical test and the I2 statistic. In all procedures, the significance level was 5%. All analyses were performed using the software Review Manager 5.4. The effect of atorvastatin on the outcome (plotted as a mean difference for the change in SBP [mmHg] upon the y-axis) as a function of a given factor (plotted as a difference in the change in LDL-cholesterol [mg/dl] upon the x-axis) was estimated using meta-regression. Meta-regression coefficients (slopes of the meta-regression line) show the estimated change in the SBP mean difference per unit of the covariate change. This statistical analysis was performed with the Comprehensive Meta-Analysis 3.3.070 (Biostat, Englewood, NJ, USA).

Results

A total of 1412 relevant papers were identified on Embase, PubMed, and Web of Science, of which 1335 were excluded for the reasons described in Figure 1, and 33 RCT and 44 preclinical studies were included in the final analyses.

Flow diagram of the study selection process.
Figure 1

Flow diagram of the study selection process.

The baseline characteristics of the populations from studies included in the meta-analyses are shown in Table 1 and Table 2.

The quality analysis of the RCT showed that most articles were considered of high quality, and only one was of low quality (Table 1). Considering baseline characteristics and other sources of bias from preclinical studies, the quality analysis indicated that this systematic review had a low risk of bias. However, for most of the questions evaluated, the risk of bias in preclinical studies was uncertain, which suggested that it should not be overlooked (Supplementary material online, Table S3).

In general, the heterogeneity analysis of the RCT showed greater homogeneity in the results after stratification of the primary studies, as there was a decrease in I2 and an increase in the P value for Cochran's Q statistical test (Figure 2). In preclinical studies, despite considerable heterogeneity (>75%) in the meta-analysis, most primary studies demonstrated a decrease in SBP (Figure 3).

Meta-analysis of the effect of atorvastatin on systolic blood pressure in parallel and randomized clinical trials compared with placebo: overall effect (A); normotensive and normolipidaemic (B); hypertensive and hyperlipidaemic (C) and normotensive and hyperlipidaemic (D).
Figure 2

Meta-analysis of the effect of atorvastatin on systolic blood pressure in parallel and randomized clinical trials compared with placebo: overall effect (A); normotensive and normolipidaemic (B); hypertensive and hyperlipidaemic (C) and normotensive and hyperlipidaemic (D).

Meta-analysis of the effect of atorvastatin on systolic blood pressure in preclinical studies: high-salt (4% NaCl) diet-fed rats (A); surgically hypertensive rats (B); diabetic rats (C); dexamethasone-induced hypertensive rats (D); hyperlipidaemic rats (E); spontaneously hypertensive rats stroke-prone (SHR-SP) (F); spontaneously hypertensive rats (SHR) (G) and standard diet-fed rats (H).
Figure 3

Meta-analysis of the effect of atorvastatin on systolic blood pressure in preclinical studies: high-salt (4% NaCl) diet-fed rats (A); surgically hypertensive rats (B); diabetic rats (C); dexamethasone-induced hypertensive rats (D); hyperlipidaemic rats (E); spontaneously hypertensive rats stroke-prone (SHR-SP) (F); spontaneously hypertensive rats (SHR) (G) and standard diet-fed rats (H).

Considering the whole set of studies (overall effect of atorvastatin), the meta-analysis of parallel RCT showed that atorvastatin induces significant reduction of BP. In fact, atorvastatin reduced the SBP with mean difference (MD) of −1.62 mmHg [95% confidence interval (CI) −3.26 to 0.02] compared with placebo (Figure 2) and with MD of −3.00 mmHg [95% CI −5.71 to −0.29] compared with baseline (Table 3). The atorvastatin effect on SBP compared with placebo was small and on the threshold of statistical significance (P = 0.05). Atorvastatin also reduced the DBP, without changes in the MBP and HR, compared with placebo and baseline (Table 3). The absence of statistical significance in MBP may be related to the small number of trials (n = 4) and, therefore, to the sample size (Table 3). The meta-regression coefficient showed that the correlation between LDL-cholesterol changes vs. SBP changes induced by atorvastatin was not statistically significant compared with baseline and to placebo (Table 4). Similar meta-regression results were found for DBP vs. baseline and vs. placebo (Table 4).

Table 3

Effect sizes of the overall and subgroup analysis from parallel or cross-over randomized clinical trials and preclinical studies.

TitleNumber of trialsNumber of participants: ATV/CTRLEffect size MD [95% CI]Overall effect, p valueHeterogeneity I2 value
Parallel and randomized clinical trials
Overall effect
Placebo control
DBP17680/666−1.39 [−2.14, −0.64]P = 0.0003I2 = 0%
MBP4268/286−1.44 [−4.33, 1.46]P = 0.33I2 = 37%
HR4132/1280.99 [−1.67, 3.65]P = 0.47I2 = 25%
Basal control
SBP18749/761−3.00 [−5.71, −0.29]P = 0.03I2 = 84%
DBP18747/761−1.82 [−3.08, −0.57]P = 0.004I2 = 52%
MBP4264/264−0.35 [−2.50, 1.80]P = 0.75I2 = 14%
HR3116/116−0.68 [−2.39, 1.04]P = 0.44I2 = 0%
Normotensive and Normolipidaemic
Placebo control
DBP8422/412−1.36 [−2.44, −0.28]P = 0.01I2 = 22%
MBP2227/243−1.22 [−6.82, 4.38]P = 0.67I2 = 70%
Basal control
SBP8432/432−1.38 [−5.02, 2.27]P = 0.46I2 = 86%
DBP8432/432−1.70 [−3.56, 0.17]P = 0.08I2 = 69%
MBP2227/2270.58 [−1.85, 3.01]P = 0.64I2 = 11%
Normotensive and Hyperlipidaemic
Placebo control
DBP221/21−2.37 [−7.80, 3.05]P = 0.39I2 = 0%
Basal control
SBP3143/143−7.41 [−11.18, −3.65]P = 0.0001I2 = 0%
DBP3143/143−1.10 [−5,9, 3.76]P = 0.66I2 = 76%
Baroreflex220/200.02 [−3.16, 3.19]P = 0.99I2 = 39%
Hypertensive and Hyperlipidaemic
 Placebo control
DBP5127/137−2.56 [−4.48, −0.63]P = 0.009I2 = 0%
MBP241/43−2.62 [−6.20, 0.96]P = 0.15I2 = 0%
Basal control
SBP5123/135−2.99 [−5.20, −0.79]P = 0.008I2 = 0%
DBP5123/135−2.19 [−4.20, −0.19]P = 0.03I2 = 0%
MBP237/37−2.78 [−6.54, 0.98]P = 0.15I2 = 0%
Cross-over and randomized clinical trials
Overall effect
Placebo control
SBP590/90−0.91 [−4.64, 2.82]P = 0.63I2 = 0%
LF/HF223/23−1.03 [−2.67, 0.61]P = 0.22I2 = 0%
HF223/236.13 [−71.41, 83.67]P = 0.88I2 = 0%
Basal control
SBP397/97−4.31 [−6.68, −1.95]P = 0.0003I2 = 0%
DBP397/97−3.79 [−5.31, −2.27]P < 0.00001I2 = 0%
HR256/52−3.46 [−7.33, 0.42]P = 0.08I2 = 0%
Normotensive and Normolipidaemic
Placebo control
SDNN475/754.39 [−1.20, 9.98]P = 0.12I2 = 0%
RMSSD475/754.47 [−0.01, 8.96]P = 0.05I2 = 0%
Basal control
SDNN255/552.66 [−9.68, 15.01]P = 0.67I2 = 0%
RMSSD255/55−0.80 [−7.49, 5.88]P = 0.81I2 = 0%
Hypertensive and Hyperlipidaemic
Basal control
SBP287/87−4.42 [−6.79, −2.04]P = 0.0003I2 = 0%
DBP287/87−3.86 [−5.39, −2.33]P < 0.00 001I2 = 0%
Hypertensive
Placebo control
SBP235/35−3.29 [−14.37, 7.79]P = 0.56I2 = 0%
Preclinical Studies
Standard diet-fed rats
MBP646/461.72 [−4.61, 8.04]P = 0.60I2 = 38%
HR534/348.15 [−19.47, 35.77]P = 0.56I2 = 68%
Hyperlipidaemic rats
DBP216/16−7.04 [−18.20, 4.13]P = 0.24I2 = 0%
SHR-SP rats
DBP474/74−14.69 [−26.92, −2.46]P = 0.02I2 = 0%
MBP684/84−25.92 [−40.96, −10.88]P = 0.0007I2 = 82%
HR636/36−11.79 [−31.50, 7.93]P = 0.24I2 = 15%
SHR rats
MBP432/32−7.22 [−22.68, 8.23]P = 0.36I2 = 86%
HR984/84−13.36 [−23.96, −2.76]P = 0.01I2 = 62%
Rats fed high salt 8%
MBP222/22−21.32 [−79.03, 36.39]P = 0.47I2 = 85%
TitleNumber of trialsNumber of participants: ATV/CTRLEffect size MD [95% CI]Overall effect, p valueHeterogeneity I2 value
Parallel and randomized clinical trials
Overall effect
Placebo control
DBP17680/666−1.39 [−2.14, −0.64]P = 0.0003I2 = 0%
MBP4268/286−1.44 [−4.33, 1.46]P = 0.33I2 = 37%
HR4132/1280.99 [−1.67, 3.65]P = 0.47I2 = 25%
Basal control
SBP18749/761−3.00 [−5.71, −0.29]P = 0.03I2 = 84%
DBP18747/761−1.82 [−3.08, −0.57]P = 0.004I2 = 52%
MBP4264/264−0.35 [−2.50, 1.80]P = 0.75I2 = 14%
HR3116/116−0.68 [−2.39, 1.04]P = 0.44I2 = 0%
Normotensive and Normolipidaemic
Placebo control
DBP8422/412−1.36 [−2.44, −0.28]P = 0.01I2 = 22%
MBP2227/243−1.22 [−6.82, 4.38]P = 0.67I2 = 70%
Basal control
SBP8432/432−1.38 [−5.02, 2.27]P = 0.46I2 = 86%
DBP8432/432−1.70 [−3.56, 0.17]P = 0.08I2 = 69%
MBP2227/2270.58 [−1.85, 3.01]P = 0.64I2 = 11%
Normotensive and Hyperlipidaemic
Placebo control
DBP221/21−2.37 [−7.80, 3.05]P = 0.39I2 = 0%
Basal control
SBP3143/143−7.41 [−11.18, −3.65]P = 0.0001I2 = 0%
DBP3143/143−1.10 [−5,9, 3.76]P = 0.66I2 = 76%
Baroreflex220/200.02 [−3.16, 3.19]P = 0.99I2 = 39%
Hypertensive and Hyperlipidaemic
 Placebo control
DBP5127/137−2.56 [−4.48, −0.63]P = 0.009I2 = 0%
MBP241/43−2.62 [−6.20, 0.96]P = 0.15I2 = 0%
Basal control
SBP5123/135−2.99 [−5.20, −0.79]P = 0.008I2 = 0%
DBP5123/135−2.19 [−4.20, −0.19]P = 0.03I2 = 0%
MBP237/37−2.78 [−6.54, 0.98]P = 0.15I2 = 0%
Cross-over and randomized clinical trials
Overall effect
Placebo control
SBP590/90−0.91 [−4.64, 2.82]P = 0.63I2 = 0%
LF/HF223/23−1.03 [−2.67, 0.61]P = 0.22I2 = 0%
HF223/236.13 [−71.41, 83.67]P = 0.88I2 = 0%
Basal control
SBP397/97−4.31 [−6.68, −1.95]P = 0.0003I2 = 0%
DBP397/97−3.79 [−5.31, −2.27]P < 0.00001I2 = 0%
HR256/52−3.46 [−7.33, 0.42]P = 0.08I2 = 0%
Normotensive and Normolipidaemic
Placebo control
SDNN475/754.39 [−1.20, 9.98]P = 0.12I2 = 0%
RMSSD475/754.47 [−0.01, 8.96]P = 0.05I2 = 0%
Basal control
SDNN255/552.66 [−9.68, 15.01]P = 0.67I2 = 0%
RMSSD255/55−0.80 [−7.49, 5.88]P = 0.81I2 = 0%
Hypertensive and Hyperlipidaemic
Basal control
SBP287/87−4.42 [−6.79, −2.04]P = 0.0003I2 = 0%
DBP287/87−3.86 [−5.39, −2.33]P < 0.00 001I2 = 0%
Hypertensive
Placebo control
SBP235/35−3.29 [−14.37, 7.79]P = 0.56I2 = 0%
Preclinical Studies
Standard diet-fed rats
MBP646/461.72 [−4.61, 8.04]P = 0.60I2 = 38%
HR534/348.15 [−19.47, 35.77]P = 0.56I2 = 68%
Hyperlipidaemic rats
DBP216/16−7.04 [−18.20, 4.13]P = 0.24I2 = 0%
SHR-SP rats
DBP474/74−14.69 [−26.92, −2.46]P = 0.02I2 = 0%
MBP684/84−25.92 [−40.96, −10.88]P = 0.0007I2 = 82%
HR636/36−11.79 [−31.50, 7.93]P = 0.24I2 = 15%
SHR rats
MBP432/32−7.22 [−22.68, 8.23]P = 0.36I2 = 86%
HR984/84−13.36 [−23.96, −2.76]P = 0.01I2 = 62%
Rats fed high salt 8%
MBP222/22−21.32 [−79.03, 36.39]P = 0.47I2 = 85%

ATV, atorvastatin; CI, confidence interval; CTRL, control; DBP, diastolic blood pressure; HF, high-frequency band; HR, heart rate; LF, low-frequency band; LF/HF, low-frequency and high-frequency band ratio; MBP, mean blood pressure; MD, mean difference; RMSSD, root mean square of successive differences between normal heart beats; SBP, systolic blood pressure; SDNN, standard deviation between normal intervals; SHR, spontaneously hypertensive rats; SHR-SP, spontaneously hypertensive rats stroke prone.

Table 3

Effect sizes of the overall and subgroup analysis from parallel or cross-over randomized clinical trials and preclinical studies.

TitleNumber of trialsNumber of participants: ATV/CTRLEffect size MD [95% CI]Overall effect, p valueHeterogeneity I2 value
Parallel and randomized clinical trials
Overall effect
Placebo control
DBP17680/666−1.39 [−2.14, −0.64]P = 0.0003I2 = 0%
MBP4268/286−1.44 [−4.33, 1.46]P = 0.33I2 = 37%
HR4132/1280.99 [−1.67, 3.65]P = 0.47I2 = 25%
Basal control
SBP18749/761−3.00 [−5.71, −0.29]P = 0.03I2 = 84%
DBP18747/761−1.82 [−3.08, −0.57]P = 0.004I2 = 52%
MBP4264/264−0.35 [−2.50, 1.80]P = 0.75I2 = 14%
HR3116/116−0.68 [−2.39, 1.04]P = 0.44I2 = 0%
Normotensive and Normolipidaemic
Placebo control
DBP8422/412−1.36 [−2.44, −0.28]P = 0.01I2 = 22%
MBP2227/243−1.22 [−6.82, 4.38]P = 0.67I2 = 70%
Basal control
SBP8432/432−1.38 [−5.02, 2.27]P = 0.46I2 = 86%
DBP8432/432−1.70 [−3.56, 0.17]P = 0.08I2 = 69%
MBP2227/2270.58 [−1.85, 3.01]P = 0.64I2 = 11%
Normotensive and Hyperlipidaemic
Placebo control
DBP221/21−2.37 [−7.80, 3.05]P = 0.39I2 = 0%
Basal control
SBP3143/143−7.41 [−11.18, −3.65]P = 0.0001I2 = 0%
DBP3143/143−1.10 [−5,9, 3.76]P = 0.66I2 = 76%
Baroreflex220/200.02 [−3.16, 3.19]P = 0.99I2 = 39%
Hypertensive and Hyperlipidaemic
 Placebo control
DBP5127/137−2.56 [−4.48, −0.63]P = 0.009I2 = 0%
MBP241/43−2.62 [−6.20, 0.96]P = 0.15I2 = 0%
Basal control
SBP5123/135−2.99 [−5.20, −0.79]P = 0.008I2 = 0%
DBP5123/135−2.19 [−4.20, −0.19]P = 0.03I2 = 0%
MBP237/37−2.78 [−6.54, 0.98]P = 0.15I2 = 0%
Cross-over and randomized clinical trials
Overall effect
Placebo control
SBP590/90−0.91 [−4.64, 2.82]P = 0.63I2 = 0%
LF/HF223/23−1.03 [−2.67, 0.61]P = 0.22I2 = 0%
HF223/236.13 [−71.41, 83.67]P = 0.88I2 = 0%
Basal control
SBP397/97−4.31 [−6.68, −1.95]P = 0.0003I2 = 0%
DBP397/97−3.79 [−5.31, −2.27]P < 0.00001I2 = 0%
HR256/52−3.46 [−7.33, 0.42]P = 0.08I2 = 0%
Normotensive and Normolipidaemic
Placebo control
SDNN475/754.39 [−1.20, 9.98]P = 0.12I2 = 0%
RMSSD475/754.47 [−0.01, 8.96]P = 0.05I2 = 0%
Basal control
SDNN255/552.66 [−9.68, 15.01]P = 0.67I2 = 0%
RMSSD255/55−0.80 [−7.49, 5.88]P = 0.81I2 = 0%
Hypertensive and Hyperlipidaemic
Basal control
SBP287/87−4.42 [−6.79, −2.04]P = 0.0003I2 = 0%
DBP287/87−3.86 [−5.39, −2.33]P < 0.00 001I2 = 0%
Hypertensive
Placebo control
SBP235/35−3.29 [−14.37, 7.79]P = 0.56I2 = 0%
Preclinical Studies
Standard diet-fed rats
MBP646/461.72 [−4.61, 8.04]P = 0.60I2 = 38%
HR534/348.15 [−19.47, 35.77]P = 0.56I2 = 68%
Hyperlipidaemic rats
DBP216/16−7.04 [−18.20, 4.13]P = 0.24I2 = 0%
SHR-SP rats
DBP474/74−14.69 [−26.92, −2.46]P = 0.02I2 = 0%
MBP684/84−25.92 [−40.96, −10.88]P = 0.0007I2 = 82%
HR636/36−11.79 [−31.50, 7.93]P = 0.24I2 = 15%
SHR rats
MBP432/32−7.22 [−22.68, 8.23]P = 0.36I2 = 86%
HR984/84−13.36 [−23.96, −2.76]P = 0.01I2 = 62%
Rats fed high salt 8%
MBP222/22−21.32 [−79.03, 36.39]P = 0.47I2 = 85%
TitleNumber of trialsNumber of participants: ATV/CTRLEffect size MD [95% CI]Overall effect, p valueHeterogeneity I2 value
Parallel and randomized clinical trials
Overall effect
Placebo control
DBP17680/666−1.39 [−2.14, −0.64]P = 0.0003I2 = 0%
MBP4268/286−1.44 [−4.33, 1.46]P = 0.33I2 = 37%
HR4132/1280.99 [−1.67, 3.65]P = 0.47I2 = 25%
Basal control
SBP18749/761−3.00 [−5.71, −0.29]P = 0.03I2 = 84%
DBP18747/761−1.82 [−3.08, −0.57]P = 0.004I2 = 52%
MBP4264/264−0.35 [−2.50, 1.80]P = 0.75I2 = 14%
HR3116/116−0.68 [−2.39, 1.04]P = 0.44I2 = 0%
Normotensive and Normolipidaemic
Placebo control
DBP8422/412−1.36 [−2.44, −0.28]P = 0.01I2 = 22%
MBP2227/243−1.22 [−6.82, 4.38]P = 0.67I2 = 70%
Basal control
SBP8432/432−1.38 [−5.02, 2.27]P = 0.46I2 = 86%
DBP8432/432−1.70 [−3.56, 0.17]P = 0.08I2 = 69%
MBP2227/2270.58 [−1.85, 3.01]P = 0.64I2 = 11%
Normotensive and Hyperlipidaemic
Placebo control
DBP221/21−2.37 [−7.80, 3.05]P = 0.39I2 = 0%
Basal control
SBP3143/143−7.41 [−11.18, −3.65]P = 0.0001I2 = 0%
DBP3143/143−1.10 [−5,9, 3.76]P = 0.66I2 = 76%
Baroreflex220/200.02 [−3.16, 3.19]P = 0.99I2 = 39%
Hypertensive and Hyperlipidaemic
 Placebo control
DBP5127/137−2.56 [−4.48, −0.63]P = 0.009I2 = 0%
MBP241/43−2.62 [−6.20, 0.96]P = 0.15I2 = 0%
Basal control
SBP5123/135−2.99 [−5.20, −0.79]P = 0.008I2 = 0%
DBP5123/135−2.19 [−4.20, −0.19]P = 0.03I2 = 0%
MBP237/37−2.78 [−6.54, 0.98]P = 0.15I2 = 0%
Cross-over and randomized clinical trials
Overall effect
Placebo control
SBP590/90−0.91 [−4.64, 2.82]P = 0.63I2 = 0%
LF/HF223/23−1.03 [−2.67, 0.61]P = 0.22I2 = 0%
HF223/236.13 [−71.41, 83.67]P = 0.88I2 = 0%
Basal control
SBP397/97−4.31 [−6.68, −1.95]P = 0.0003I2 = 0%
DBP397/97−3.79 [−5.31, −2.27]P < 0.00001I2 = 0%
HR256/52−3.46 [−7.33, 0.42]P = 0.08I2 = 0%
Normotensive and Normolipidaemic
Placebo control
SDNN475/754.39 [−1.20, 9.98]P = 0.12I2 = 0%
RMSSD475/754.47 [−0.01, 8.96]P = 0.05I2 = 0%
Basal control
SDNN255/552.66 [−9.68, 15.01]P = 0.67I2 = 0%
RMSSD255/55−0.80 [−7.49, 5.88]P = 0.81I2 = 0%
Hypertensive and Hyperlipidaemic
Basal control
SBP287/87−4.42 [−6.79, −2.04]P = 0.0003I2 = 0%
DBP287/87−3.86 [−5.39, −2.33]P < 0.00 001I2 = 0%
Hypertensive
Placebo control
SBP235/35−3.29 [−14.37, 7.79]P = 0.56I2 = 0%
Preclinical Studies
Standard diet-fed rats
MBP646/461.72 [−4.61, 8.04]P = 0.60I2 = 38%
HR534/348.15 [−19.47, 35.77]P = 0.56I2 = 68%
Hyperlipidaemic rats
DBP216/16−7.04 [−18.20, 4.13]P = 0.24I2 = 0%
SHR-SP rats
DBP474/74−14.69 [−26.92, −2.46]P = 0.02I2 = 0%
MBP684/84−25.92 [−40.96, −10.88]P = 0.0007I2 = 82%
HR636/36−11.79 [−31.50, 7.93]P = 0.24I2 = 15%
SHR rats
MBP432/32−7.22 [−22.68, 8.23]P = 0.36I2 = 86%
HR984/84−13.36 [−23.96, −2.76]P = 0.01I2 = 62%
Rats fed high salt 8%
MBP222/22−21.32 [−79.03, 36.39]P = 0.47I2 = 85%

ATV, atorvastatin; CI, confidence interval; CTRL, control; DBP, diastolic blood pressure; HF, high-frequency band; HR, heart rate; LF, low-frequency band; LF/HF, low-frequency and high-frequency band ratio; MBP, mean blood pressure; MD, mean difference; RMSSD, root mean square of successive differences between normal heart beats; SBP, systolic blood pressure; SDNN, standard deviation between normal intervals; SHR, spontaneously hypertensive rats; SHR-SP, spontaneously hypertensive rats stroke prone.

Table 4

Meta-regression analyses relating serum LDL-cholesterol differences to blood pressure changes induced by atorvastatin.

TitleCovariateCoefficientStandard error95% Lower95% UpperNumber of trialsP-value
Parallel and randomized clinical trials
Overall Effect
 Placebo
SBPIntercept−1.1961.794−4.7122.321110.51
LDL-cholesterol0.0160.043−0.0680.100110.70
DBPIntercept−1.7140.637−2.963−0.466110.007
LDL-cholesterol−0.0050.018−0.0410.030110.77
Basal
SBPIntercept−0.0125.036−9.8819.858140.99
LDL-cholesterol0.0670.087−0.1040.237140.44
DBPIntercept−3.5761.964−7.4260.274140.07
LDL-cholesterol−0.0320.036−0.1020.038140.37
Normotensive and normolipidaemic individuals
 Placebo
SBPIntercept−1.3762.625−6.5213.76860.60
LDL-cholesterol−0.0220.069−0.1580.11460.75
DBPIntercept−1.7200.583−2.864−0.57760.003
LDL-cholesterol−0.0320.027−0.0850.02160.24
 Basal
SBPIntercept1.4658.091−14.39317.32370.86
LDL-cholesterol0.0720.148−0.2190.36370.63
DBPIntercept−1.1662.458−5.9833.65270.64
LDL-cholesterol0.0250.051−0.0750.12570.63
Preclinical trials
SHR
SBPIntercept−27.47511.653−50.313−4.63690.02
LDL-cholesterol−0.0550.937−1.8911.78290.96
TitleCovariateCoefficientStandard error95% Lower95% UpperNumber of trialsP-value
Parallel and randomized clinical trials
Overall Effect
 Placebo
SBPIntercept−1.1961.794−4.7122.321110.51
LDL-cholesterol0.0160.043−0.0680.100110.70
DBPIntercept−1.7140.637−2.963−0.466110.007
LDL-cholesterol−0.0050.018−0.0410.030110.77
Basal
SBPIntercept−0.0125.036−9.8819.858140.99
LDL-cholesterol0.0670.087−0.1040.237140.44
DBPIntercept−3.5761.964−7.4260.274140.07
LDL-cholesterol−0.0320.036−0.1020.038140.37
Normotensive and normolipidaemic individuals
 Placebo
SBPIntercept−1.3762.625−6.5213.76860.60
LDL-cholesterol−0.0220.069−0.1580.11460.75
DBPIntercept−1.7200.583−2.864−0.57760.003
LDL-cholesterol−0.0320.027−0.0850.02160.24
 Basal
SBPIntercept1.4658.091−14.39317.32370.86
LDL-cholesterol0.0720.148−0.2190.36370.63
DBPIntercept−1.1662.458−5.9833.65270.64
LDL-cholesterol0.0250.051−0.0750.12570.63
Preclinical trials
SHR
SBPIntercept−27.47511.653−50.313−4.63690.02
LDL-cholesterol−0.0550.937−1.8911.78290.96

DBP, diastolic blood pressure; LDL-cholesterol, low-density lipoprotein-cholesterol; SBP, systolic blood pressure; SHR, spontaneously hypertensive rats.

Table 4

Meta-regression analyses relating serum LDL-cholesterol differences to blood pressure changes induced by atorvastatin.

TitleCovariateCoefficientStandard error95% Lower95% UpperNumber of trialsP-value
Parallel and randomized clinical trials
Overall Effect
 Placebo
SBPIntercept−1.1961.794−4.7122.321110.51
LDL-cholesterol0.0160.043−0.0680.100110.70
DBPIntercept−1.7140.637−2.963−0.466110.007
LDL-cholesterol−0.0050.018−0.0410.030110.77
Basal
SBPIntercept−0.0125.036−9.8819.858140.99
LDL-cholesterol0.0670.087−0.1040.237140.44
DBPIntercept−3.5761.964−7.4260.274140.07
LDL-cholesterol−0.0320.036−0.1020.038140.37
Normotensive and normolipidaemic individuals
 Placebo
SBPIntercept−1.3762.625−6.5213.76860.60
LDL-cholesterol−0.0220.069−0.1580.11460.75
DBPIntercept−1.7200.583−2.864−0.57760.003
LDL-cholesterol−0.0320.027−0.0850.02160.24
 Basal
SBPIntercept1.4658.091−14.39317.32370.86
LDL-cholesterol0.0720.148−0.2190.36370.63
DBPIntercept−1.1662.458−5.9833.65270.64
LDL-cholesterol0.0250.051−0.0750.12570.63
Preclinical trials
SHR
SBPIntercept−27.47511.653−50.313−4.63690.02
LDL-cholesterol−0.0550.937−1.8911.78290.96
TitleCovariateCoefficientStandard error95% Lower95% UpperNumber of trialsP-value
Parallel and randomized clinical trials
Overall Effect
 Placebo
SBPIntercept−1.1961.794−4.7122.321110.51
LDL-cholesterol0.0160.043−0.0680.100110.70
DBPIntercept−1.7140.637−2.963−0.466110.007
LDL-cholesterol−0.0050.018−0.0410.030110.77
Basal
SBPIntercept−0.0125.036−9.8819.858140.99
LDL-cholesterol0.0670.087−0.1040.237140.44
DBPIntercept−3.5761.964−7.4260.274140.07
LDL-cholesterol−0.0320.036−0.1020.038140.37
Normotensive and normolipidaemic individuals
 Placebo
SBPIntercept−1.3762.625−6.5213.76860.60
LDL-cholesterol−0.0220.069−0.1580.11460.75
DBPIntercept−1.7200.583−2.864−0.57760.003
LDL-cholesterol−0.0320.027−0.0850.02160.24
 Basal
SBPIntercept1.4658.091−14.39317.32370.86
LDL-cholesterol0.0720.148−0.2190.36370.63
DBPIntercept−1.1662.458−5.9833.65270.64
LDL-cholesterol0.0250.051−0.0750.12570.63
Preclinical trials
SHR
SBPIntercept−27.47511.653−50.313−4.63690.02
LDL-cholesterol−0.0550.937−1.8911.78290.96

DBP, diastolic blood pressure; LDL-cholesterol, low-density lipoprotein-cholesterol; SBP, systolic blood pressure; SHR, spontaneously hypertensive rats.

The meta-analysis of the global effect of the crossover RCT showed that atorvastatin did not significantly affect SBP when compared with placebo (Table 3). However, when compared with baseline, atorvastatin indeed reduced the SBP with MD of −4.31 mmHg [95% CI −6.68 to −1.95], but it did not reduce the HR (Table 3). In addition, atorvastatin had no effects in low-frequency and high-frequency (LF/HF) band ratio and high-frequency (HF) band when compared with placebo, but there were only two trials for these analyses, and their sample sizes were small (Table 3).

In the normotensive and normolipidaemic groups, the meta-analysis of parallel RCT showed that atorvastatin does not affect SBP and MBP, both compared with placebo and baseline (Figure 2Table 3). However, atorvastatin reduced DBP with MD of −1.36 mmHg [95% CI −2.44 to −0.28] compared with placebo, but it did not affect DBP compared with baseline (Table 3). The meta-regression coefficient showed that the correlations between LDL-cholesterol changes vs. SBP or DBP changes induced by atorvastatin compared with baseline or to placebo were not statistically significant (Table 4). In addition, the meta-analysis of cross-over RCT showed that, in normotensive and normolipidaemic individuals, atorvastatin did not change the HRV in the time domain in the parameters: SDNN, and root mean square of successive differences between normal heart beats (RMSSD) compared with baseline (Table 3). However, when compared with placebo, atorvastatin increased the RMSSD with MD 4.47 milliseconds [95% CI−0.01 to 8.96], without increasing the SDNN. However, the low number of trials must be pointed (Table 3).

In normotensive and hyperlipidaemic individuals, the meta-analysis of parallel RCT showed that atorvastatin reduced SBP with MD −10.90 mmHg [95% CI −21.44 to −0.35] compared with placebo (Figure 2) and with MD −7.41 mmHg [95% CI −11.18 to −3.65] compared with baseline (Table 3), but it did not decrease DBP when compared with placebo or baseline, nor did it decrease baroreflex sensitivity compared with baseline (Table 3).

In hypertensive and hyperlipidaemic individuals, the meta-analysis of parallel RCT showed that atorvastatin reduced the SBP with MD −3.05 mmHg [95% CI −5.62 to −0.49] compared with placebo (Figure 2) and with MD −2.99 mmHg [95% CI −5.20 to −0.79] compared with baseline (Table 3), and the DBP compared with placebo and baseline (Table 3). Atorvastatin did not induce a significant difference in MBP, however there was a low number of trials (Table 3). In this group of hypertensive and hyperlipidaemic individuals, the meta-analysis of crossover RCT also showed that atorvastatin reduced the SBP with MD −4.42 mmHg [95% CI −6.79 to −2.04] and DBP when compared with baseline (Table 3). In hypertensive individuals, atorvastatin did not induce significant differences in SBP when compared with placebo (Table 3).

The meta-analysis of preclinical studies showed that atorvastatin reduced the SBP in high-salt (4% NaCl) diet-fed rats with MD −27.70 mmHg [95% CI −41.60 to −13.80], surgically hypertensive rats with MD −55.11 mmHg [95% CI −65.64 to −44.58], diabetic rats with MD −26.59 mmHg [95% CI −37.68 to −15.50], dexamethasone-induced hypertensive rats with MD −10.14 mmHg [95% CI −12.29 to −7.99], hyperlipidaemic rats with MD −22.62 mmHg [95% CI −36.15 to −9.08], SHR-SP with MD −13.46 mmHg [95% CI −26.12 to −0.80] and SHR with MD −31.06 mmHg [95% CI −39.36 to −22.77], without affecting the SBP in standard diet-fed control rats (Figure 3). The meta-regression coefficient showed that the reducing effect of atorvastatin on SBP occurred independently of changes in LDL-cholesterol levels in SHR (Table 4). In addition, atorvastatin reduced the DBP and MBP in SHR-SP (Table 3) and did not induce significant differences in DBP in hyperlipidaemic rats and in MBP in SHR, in very high-salt (8%) diet-fed rats and in standard diet-fed control rats. Atorvastatin also reduced the HR in SHR with MD −13.36 mmHg [95% CI −23.96 to −2.76], but not in SHR-SP and standard diet-fed control rats (Table 3).

Discussion

The main finding of this meta-analyses of RCT was that atorvastatin reduces BP in hypertensive individuals, independently of hyperlipidaemia. The meta-regression clarified that the hypotensive effect of atorvastatin occurs independently of LDL-cholesterol level changes. In addition, atorvastatin reduced SBP in hyperlipidaemic individuals when compared with baseline and placebo, with or without hypertension. Concordantly, a meta-analysis of preclinical studies showed that atorvastatin reduced the SBP in hypertensive rats, even without hyperlipidaemia.

The quality analysis of the RCT showed that most studies were considered of high quality, and only one was of low quality. High quality in the Jadad classification was obtained through adequate blinding and the description of the study as double-blind. Regarding the quality of preclinical studies, 50% of the questions on the SYRCLE scale had uncertain answers. Thus, it is not recommended that this tool be used to perform a global assessment of each individual study.

Previous meta-analyses demonstrated, by comparing intervention and control groups, that statin and atorvastatin, including combined therapy with amlodipine, reduced the mean SBP difference between baseline and end-of-treatment.40,41 The effect of atorvastatin on the DBP was less clear, because one study showed a decrease,41 and another showed only a tendency to decrease this parameter.40 More recently, an association between the use of atorvastatin and decreases in BP was demonstrated through the reporting odds ratio (ROR) statistics.42 It has been previously suggested that the hypotensive effect of statin is greater in individuals with high BP and that it is not related to the decrease in serum cholesterol levels.40 By contrast, Takagi et al.43 reported that atorvastatin, alone or in combination with amlodipine, had an LDL-cholesterol-dependent effect on BP.43 The present meta-regression shows that atorvastatin has an LDL-cholesterol-independent effect on SBP and DBP reduction when compared with either baseline or placebo, in the overall population and in a normotensive-normolipidaemic subgroup. The limited number of studies did not allow us to perform a meta-regression among hyperlipidaemic individuals with and without hypertension.

In preclinical studies, atorvastatin reduced the SBP in high-salt (4%) diet-fed rats, genetically (SHR and SHR-SP), surgically and dexamethasone-induced hypertensive rats, and diabetic rats. In addition, in SHR rats, the meta-regression analysis showed that the reduction in SBP was independent of changes in LDL-cholesterol. Although it was not possible to perform a meta-regression in other animal models, they showed no plasma lipid changes, suggesting that the effect of atorvastatin is indeed independent of serum cholesterol levels.

These analyses did not allow us to clarify whether the BP-reducing effect of atorvastatin is dependent on the autonomic nervous system because the RMSSD, LF/HF, and HF were estimated only in normotensive individuals, and atorvastatin does not modulate SBP in this group. Further experiments are needed to clarify the involvement of the autonomic nervous system in the hypotensive effect of atorvastatin.

It is possible that atorvastatin regulates BP through peripheral vascular mechanisms. To the best of our knowledge, there is only one preclinical study evaluating simultaneously the effect of atorvastatin on BP and on these mechanisms.44 Atorvastatin (50 mg.kg−1 by 30 days) decreased SBP and angiotensin II-induced vasoconstriction and improved endothelial dysfunction in normocholesterolaemic SHR. Endothelial dysfunction was assessed by carbachol-induced vasorelaxation in aortic segments.44 These results are likely related to the ability of atorvastatin to increase the expression and activity of endothelial nitric oxide synthase (eNOS) in the aortas of rodents44,45 and block the negative regulation exerted by oxidized LDL-cholesterol on the eNOS mRNA and protein levels in vascular endothelial cells.46 In patients with peripheral arterial disease (n = 30), a prospective study showed a decrease in plasma nitrite levels after 1 month of atorvastatin treatment, suggesting an increase in the bioavailability of nitric oxide (NO).47 Several mechanisms may explain the increase in atorvastatin-induced NO, as follows. (1) Atorvastatin increases eNOS phosphorylation. In mouse aorta and myocardium, atorvastatin increased adenosine monophosphate-activated protein kinase (AMPK), acetyl-CoA carboxylase and eNOS phosphorylation. In cultured human vascular endothelial cells, atorvastatin-induced eNOS phosphorylation was inhibited by AMPK blockade.48 (2) Atorvastatin decreased Ras homolog family member A (RhoA)/Ras homology (Rho) kinase signalling and activation of the nitric oxide/protein kinase G (PKG) pathway.45,49,50 In the myocardium of rats with heart failure, atorvastatin decreased mRNA and protein expression of RhoA/Rho kinase and increased the mRNA and protein expression of eNOS.49 In the livers of cirrhotic rats, atorvastatin decreased Rho-kinase activity and the membrane association of RhoA and Ras (from Rat sarcoma virus) and increased eNOS mRNA and protein levels, eNOS phosphorylation, nitrite/nitrate, and the activity of PKG. In addition, incubation with atorvastatin dose-dependently relaxed the contraction of hepatic stellate cells, resulting in decreased portal pressure.50 In mouse aorta and cultured endothelial cells, atorvastatin decreased isoprenoid-dependent Rho membrane translocation and GTP-binding activity. Atorvastatin increased Rho gene transcription but not Rho mRNA stability and led to the accumulation of non-isoprenylated Rho in the cytosol. Withdrawal of statin treatment restored the availability of isoprenoids and resulted in a massive membrane translocation and activation of Rho, causing downregulation of endothelial NO production.45 (3) Atorvastatin promotes NO production by decreasing caveolin-1 expression in endothelial cells. This effect occurs with no changes in eNOS abundance and is reversed by providing mevalonate.51 (4) Atorvastatin decreases the expression of microRNAs 221/222 and increases NO levels and NOS3 mRNA expression.52 In human umbilical vein endothelial cells, the magnitude of the reduction of microRNAs 221 and 222 after atorvastatin treatment was correlated with the increment in NOS3 mRNA levels.52

Additional vascular mechanisms may mediate the effects of atorvastatin on BP, as follows. (1) Reduction of endothelin-1.46 Atorvastatin decreased the pre-pro endothelin mRNA expression in a concentration- and time-dependent fashion and decreased immunoreactive endothelin-1 levels in bovine aortic endothelial cells. This inhibitory effect was maintained in the presence of oxidized LDL-cholesterol and blocked by mevalonate administration.46 (2) Reduction in angiotensin II-induced vasoconstriction.44 Atorvastatin increased carbachol-induced vasodilation and decreased AT1 receptor mRNA and protein expression in the aortas of SHR.44 (3) Reduction in angiotensin II-induced vascular fibrosis.53 In cultured vascular smooth muscle cells, atorvastatin inhibited angiotensin II-induced connective tissue growth factor (CTGF) production, an effect reversed by the mevalonate and geranylgeranylpyrophosphate (GGPP) supply. In cultured vascular smooth muscle cells, atorvastatin inhibited angiotensin II-induced Rho membrane localization and activation. Atorvastatin downregulated angiotensin II/CTGF-induced activation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK), as well as redox processes. In rats infused with angiotensin II, atorvastatin decreased aortic CTGF and Rho activation without modifying BP. Statins also decreased extracellular matrix overexpression caused by angiotensin II in vivo and in vitro.53 (4) Reduction in serotonin-induced pulmonary artery smooth muscle cell mitogenesis and migration.54 Atorvastatin dose dependently inhibited serotonin [5-hydroxytryptamine (5-HT)]-induced mitogenesis and migration of cultured bovine pulmonary artery smooth muscle cells. This inhibition was reversed by mevalonate and GGPP supplementation. Concordantly, atorvastatin inhibited 5-HT-induced cellular RhoA activation, membrane localization, and Rho kinase-mediated phosphorylation of the myosin phosphatase-1 subunit. Atorvastatin also inhibited Rho signalling in human embryonic kidney (HEK)293 cells in a GGPP-dependent manner. While 5-HT-induced Akt kinase activation was unaffected by atorvastatin, 5-HT-induced Extracellular signal-Related Kinase (ERK) nuclear translocation was attenuated in a GGPP-dependent fashion.54

This study has some limitations. First, this study-level meta-analysis is not based on individual patient data. Second, stratification on several subgroups reduced considerably the number of studies and, thus, the power of the meta-analysis. In this regard, it was also not possible to group the studies by time and dose, because there was great heterogeneity regarding the treatment protocol. It was also not possible to perform meta-regression on the hypertensive and hyperlipidaemic group, due to the lack of data on serum lipid measurements. Finally, it was not possible to assess whether the antihypertensive effect of atorvastatin was related to changes in the autonomic nervous system, because the number of studies evaluating the effect of atorvastatin on HRV parameters is limited. Since SNS can activate the renin-angiotensin-aldosterone system, including it in the searching algorithm could contribute to clarify the action mechanism of atorvastatin. All these limitations indicate the need to increase the number of primary studies with this focus.

In summary, the present meta-analyses of clinical and preclinical studies indicate that atorvastatin lowers BP by vascular mechanisms independent of LDL-cholesterol levels. Additional studies are needed to estimate the involvement of the autonomic nervous system in the BP-lowering effect of atorvastatin.

Author contributions

All authors contributed to the development, analysis, drafting and editing of this article.

Funding

This work was supported through funding from the Federal University of São João del-Rei. G.S.C. received a fellowship from the Federal University of São João del-Rei.

Conflict of interest: The authors report no conflicts of interest.

Data availability

The data underlying this article are available in the article and in its online supplementary material.

References

1.

Forouzanfar
MH
,
Afshin
A
,
Alexander
LT
,
Biryukov
S
,
Brauer
M
,
Cercy
K
,
Charlson
FJ
,
Cohen
AJ
,
Dandona
L
,
Estep
K
,
Ferrari
AJ
,
Frostad
JJ
,
Fullman
N
,
Godwin
WW
,
Griswold
M
,
Hay
SI
,
Kyu
HH
,
Larson
HJ
,
Lim
SS
,
Liu
PY
,
Lopez
AD
,
Lozano
R
,
Marczak
L
,
Mokdad
AH
,
Moradi-Lakeh
M
,
Naghavi
M
,
Reitsma
MB
,
Roth
GA
,
Sur
PJ
,
Vos
T
,
Wagner
JA
,
Wang
H
,
Zhao
Y
,
Zhou
M
,
Barber
RM
,
Bell
B
,
Blore
JD
,
Casey
DC
,
Coates
MM
,
Cooperrider
K
,
Cornaby
L
,
Dicker
D
,
Erskine
HE
,
Fleming
T
,
Foreman
K
,
Gakidou
E
,
Haagsma
JA
,
Johnson
CO
,
Kemmer
L
,
Ku
T
,
Leung
J
,
Masiye
F
,
Millear
A
,
Mirarefin
M
,
Misganaw
A
,
Mullany
E
,
Mumford
JE
,
Ng
M
,
Olsen
H
,
Rao
P
,
Reinig
N
,
Roman
Y
,
Sandar
L
,
Santomauro
DF
,
Slepak
EL
,
Sorensen
RJD
,
Thomas
BA
,
Vollset
SE
,
Whiteford
HA
,
Zipkin
B
,
Murray
CJL
,
Mock
CN
,
Anderson
BO
,
Futran
ND
,
Anderson
HR
,
Bhutta
ZA
,
Nisar
MI
,
Akseer
N
,
Krueger
H
,
Gotay
CC
,
Kissoon
N
,
Kopec
JA
,
Pourmalek
F
,
Burnett
R
,
Abajobir
AA
,
Knibbs
LD
,
Veerman
JL
,
Lalloo
R
,
Scott
JG
,
Alam
NKM
,
Gouda
HN
,
Guo
Y
,
McGrath
JJ
,
Jeemon
P
,
Dandona
R
,
Goenka
S
,
Kumar
GA
,
Gething
PW
,
Bisanzio
D
,
Deribew
A
,
Darby
SC
,
Ali
R
,
Bennett
DA
,
Jha
V
,
Kinfu
Y
,
McKee
M
,
Murthy
GVS
,
Pearce
N
,
Stöckl
H
,
Duan
L
,
Jin
Y
,
Li
Y
,
Liu
S
,
Wang
L
,
Ye
P
,
Liang
X
,
Azzopardi
P
,
Patton
GC
,
Meretoja
A
,
Alam
K
,
Borschmann
R
,
Colquhoun
SM
,
Weintraub
RG
,
Szoeke
CEI
,
Ademi
Z
,
Taylor
HR
,
Wijeratne
T
,
Batis
C
,
Barquera
S
,
Campos-Nonato
IR
,
Contreras
AG
,
Cuevas-Nasu
L
,
De
V
,
Gomez-Dantes
H
,
Heredia-Pi
IB
,
Medina
C
,
Mejia-Rodriguez
F
,
Montañez Hernandez
JC
,
Razo-García
CA
,
Rivera
JA
,
Rodríguez-Ramírez
S
,
Sánchez-Pimienta
TG
,
Servan-Mori
EE
,
Shamah
T
,
Mensah
GA
,
Hoff
HJ
,
Neal
B
,
Driscoll
TR
,
Kemp
AH
,
Leigh
J
,
Mekonnen
AB
,
Bhatt
S
,
Fürst
T
,
Piel
FB
,
Rodriguez
A
,
Hutchings
SJ
,
Majeed
A
,
Soljak
M
,
Salomon
JA
,
Thorne-Lyman
AL
,
Ajala
ON
,
Bärnighausen
T
,
Cahill
LE
,
Ding
EL
,
Farvid
MS
,
Khatibzadeh
S
,
Wagner
GR
,
Shrime
MG
,
Fitchett
JRA
,
Aasvang
GM
,
Savic
M
,
Abate
KH
,
Gebrehiwot
TT
,
Gebremedhin
AT
,
Abbafati
C
,
Abbas
KM
,
Abd-Allah
F
,
Abdulle
AM
,
Abera
SF
,
Melaku
YA
,
Abyu
GY
,
Betsu
BD
,
Hailu
GB
,
Tekle
DY
,
Yalew
AZ
,
Abraham
B
,
Abu-Raddad
LJ
,
Adebiyi
AO
,
Adedeji
IA
,
Adou
AK
,
Adsuar
JC
,
Agardh
EE
,
Rehm
J
,
Badawi
A
,
Popova
S
,
Agarwal
A
,
Ahmad
A
,
Akinyemiju
TF
,
Schwebel
DC
,
Singh
JA
,
Al-Aly
Z
,
Aldhahri
SF
,
Altirkawi
KA
,
Terkawi
AS
,
Aldridge
RW
,
Tillmann
T
,
Alemu
ZA
,
Tegegne
TK
,
Alkerwi
A
,
Alla
F
,
Guillemin
F
,
Allebeck
P
,
Rabiee
RHS
,
Fereshtehnejad
SM
,
Kivipelto
M
,
Carrero
JJ
,
Weiderpass
E
,
Havmoeller
R
,
Sindi
S
,
Alsharif
U
,
Alvarez
E
,
Alvis-Guzman
N
,
Amare
AT
,
Ciobanu
LG
,
Taye
BW
,
Amberbir
A
,
Amegah
AK
,
Amini
H
,
Karema
CK
,
Ammar
W
,
Harb
HL
,
Amrock
SM
,
Andersen
HH
,
Antonio
CAT
,
Faraon
EJA
,
Anwari
P
,
Ärnlöv
J
,
Larsson
A
,
Artaman
A
,
Asayesh
H
,
Asghar
RJ
,
Assadi
R
,
Atique
S
,
Avokpaho
EFGA
,
Awasthi
A
,
Ayala
BP
,
Bacha
U
,
Bahit
MC
,
Balakrishnan
K
,
Barac
A
,
Barker-Collo
SL
,
del Pozo-Cruz
B
,
Mohammed
S
,
Barregard
L
,
Petzold
M
,
Barrero
LH
,
Basu
S
,
Del
LC
,
Bazargan-Hejazi
S
,
Beardsley
J
,
Bedi
N
,
Beghi
E
,
Sheth
KN
,
Bell
ML
,
Huang
JJ
,
Bello
AK
,
Santos
IS
,
Bensenor
IM
,
Lotufo
PA
,
Berhane
A
,
Wolfe
CD
,
Bernabé
E
,
Roba
HS
,
Beyene
AS
,
Hassen
TA
,
Mesfin
YM
,
Bhala
N
,
Bhansali
A
,
Biadgilign
S
,
Bikbov
B
,
Bjertness
E
,
Htet
AS
,
Boufous
S
,
Degenhardt
L
,
Resnikoff
S
,
Calabria
B
,
Bourne
RRA
,
Brainin
M
,
Brazinova
A
,
Majdan
M
,
Shen
J
,
Breitborde
NJK
,
Brenner
H
,
Schöttker
B
,
Broday
DM
,
Brugha
TS
,
Brunekreef
B
,
Kromhout
H
,
Butt
ZA
,
van Donkelaar
A
,
Martin
RV
,
Cárdenas
R
,
Carpenter
DO
,
Castañeda-Orjuela
CA
,
Castillo
J
,
Castro
RE
,
Catalá-López
F
,
Chang
J
,
Chiang
PP
,
Chibalabala
M
,
Chimed-Ochir
O
,
Jiang
Y
,
Takahashi
K
,
Chisumpa
VH
,
Mapoma
CC
,
Chitheer
AA
,
Choi
JJ
,
Christensen
H
,
Christopher
DJ
,
Cooper
LT
,
Crump
JA
,
Poulton
RG
,
Damasceno
A
,
Dargan
PI
,
Neves
J das
,
Davis
AC
,
Newton
JN
,
Steel
N
,
Davletov
K
,
de Castro
EF
,
De
D
,
Dellavalle
RP
,
Des
DC
,
Dharmaratne
SD
,
Dhillon
PK
,
Lal
DK
,
Zodpey
S
,
Diaz-Torné
C
,
Dorsey
ER
,
Doyle
KE
,
Dubey
M
,
Rahman
MHU
,
Ram
U
,
Singh
A
,
Yadav
AK
,
Duncan
BB
,
Kieling
C
,
Schmidt
MI
,
Elyazar
I
,
Endries
AY
,
Ermakov
SP
,
Eshrati
B
,
Farzadfar
F
,
Kasaeian
A
,
Parsaeian
M
,
Esteghamati
A
,
Hafezi-Nejad
N
,
Sheikhbahaei
S
,
Fahimi
S
,
Malekzadeh
R
,
Roshandel
G
,
Sepanlou
SG
,
Hassanvand
MS
,
Heydarpour
P
,
Rahimi-Movaghar
V
,
Yaseri
M
,
Farid
TA
,
Khan
AR
,
Farinha
CSES
,
Faro
A
,
Feigin
VL
,
Fernandes
JG
,
Fischer
F
,
Foigt
N
,
Shiue
I
,
Fowkes
FGR
,
Franklin
RC
,
Garcia-Basteiro
AL
,
Geleijnse
JM
,
Jibat
T
,
Gessner
BD
,
Tefera
W
,
Giref
AZ
,
Haile
D
,
Manamo
WAA
,
Giroud
M
,
Gishu
MD
,
Martinez-Raga
J
,
Gomez-Cabrera
MC
,
Gona
P
,
Goodridge
A
,
Gopalani
SV
,
Goto
A
,
Inoue
M
,
Gugnani
HC
,
Gupta
R
,
Gutiérrez
RA
,
Orozco
R
,
Halasa
YA
,
Undurraga
EA
,
Hamadeh
RR
,
Hamidi
S
,
Handal
AJ
,
Hankey
GJ
,
Hao
Y
,
Harikrishnan
S
,
Haro
JM
,
Hernández-Llanes
NF
,
Hoek
HW
,
Tura
AK
,
Horino
M
,
Horita
N
,
Hosgood
HD
,
Hoy
DG
,
Hsairi
M
,
Hu
G
,
Husseini
A
,
Huybrechts
I
,
Iburg
KM
,
Idrisov
BT
,
Kwan
GF
,
Ileanu
BV
,
Pana
A
,
Kawakami
N
,
Shibuya
K
,
Jacobs
TA
,
Jacobsen
KH
,
Jahanmehr
N
,
Jakovljevic
MB
,
Jansen
HAF
,
Jassal
SK
,
Stein
MB
,
Javanbakht
M
,
Jayaraman
SP
,
Jayatilleke
AU
,
Jee
SH
,
Jonas
JB
,
Kabir
Z
,
Kalkonde
Y
,
Kamal
R
,
She
J
,
Kan
H
,
Karch
A
,
Karimkhani
C
,
Kaul
A
,
Kazi
DS
,
Keiyoro
PN
,
Parry
CD
,
Kengne
AP
,
Matzopoulos
R
,
Wiysonge
CS
,
Stein
DJ
,
Mayosi
BM
,
Keren
A
,
Khader
YS
,
Khan
EA
,
Khan
G
,
Khang
YH
,
Won
S
,
Khera
S
,
Tavakkoli
M
,
Khoja
TAM
,
Khubchandani
J
,
Kim
C
,
Kim
D
,
Kimokoti
RW
,
Kokubo
Y
,
Koul
PA
,
Koyanagi
A
,
Kravchenko
M
,
Varakin
YY
,
Kuate
B
,
Kuchenbecker
RS
,
Kucuk
B
,
Kuipers
EJ
,
Lallukka
T
,
Shiri
R
,
Meretoja
TJ
,
Lan
Q
,
Latif
AA
,
Lawrynowicz
AEB
,
Leasher
JL
,
Levi
M
,
Li
X
,
Liang
J
,
Lloyd
BK
,
Logroscino
G
,
Lunevicius
R
,
Pope
D
,
Mahdavi
M
,
Malta
DC
,
Marcenes
W
,
Matsushita
K
,
Nachega
JB
,
Tran
BX
,
Meaney
PA
,
Mehari
A
,
Tedla
BA
,
Memish
ZA
,
Mendoza
W
,
Mensink
GBM
,
Mhimbira
FA
,
Miller
TR
,
Mills
EJ
,
Mohammadi
A
,
Mola
GLD
,
Monasta
L
,
Morawska
L
,
Norman
RE
,
Mori
R
,
Mozaff
D
,
Shi
P
,
Werdecker
A
,
Mueller
UO
,
Paternina
AJ
,
Westerman
R
,
Seedat
S
,
Naheed
A
,
Nangia
V
,
Nassiri
N
,
Nguyen
QL
,
Nkamedjie
PM
,
Norheim
OF
,
Norrving
B
,
Nyakarahuka
L
,
Obermeyer
CM
,
Ogbo
FA
,
Oh
I
,
Oladimeji
O
,
Sartorius
B
,
Olusanya
BO
,
Olivares
PR
,
Olusanya
JO
,
Opio
JN
,
Oren
E
,
Ortiz
A
,
Ota
E
,
Mahesh
PA
,
Park
E
,
Patel
T
,
Patil
ST
,
Patten
SB
,
Wang
J
,
Pereira
DM
,
Cortinovis
M
,
Giussani
G
,
Perico
N
,
Remuzzi
G
,
Pesudovs
K
,
Phillips
MR
,
Pillay
JD
,
Plass
D
,
Tobollik
M
,
Polinder
S
,
Pond
CD
,
Pope
CA
,
Prasad
NM
,
Qorbani
M
,
Radfar
A
,
Rafay
A
,
Rana
SM
,
Rahman
M
,
Rahman
SU
,
Rajsic
S
,
Rai
RK
,
Raju
M
,
Ranganathan
K
,
Refaat
AH
,
Rehm
CD
,
Ribeiro
AL
,
Rojas-Rueda
D
,
Roy
A
,
Satpathy
M
,
Tandon
N
,
Rothenbacher
D
,
Saleh
MM
,
Sanabria
JR
,
Sanchez-Riera
L
,
Sanchez-Niño
MD
,
Sarmiento-Suarez
R
,
Sawhney
M
,
Schmidhuber
J
,
Schneider
IJC
,
Schutte
AE
,
Silva
DAS
,
Shahraz
S
,
Shin
M
,
Shaheen
A
,
Shaikh
MA
,
Sharma
R
,
Shigematsu
M
,
Yoon
S
,
Shishani
K
,
Sigfusdottir
ID
,
Singh
PK
,
Silveira
DGA
,
Silverberg
JI
,
Yano
Y
,
Soneji
S
,
Stranges
S
,
Steckling
N
,
Sreeramareddy
CT
,
Stathopoulou
V
,
Stroumpoulis
K
,
Sunguya
BF
,
Swaminathan
S
,
Sykes
BL
,
Tabarés-Seisdedos
R
,
Talongwa
RT
,
Tanne
D
,
Tuzcu
EM
,
Thakur
J
,
Shaddick
G
,
Thomas
ML
,
Thrift
AG
,
Thurston
GD
,
Thomson
AJ
,
Topor-Madry
R
,
Topouzis
F
,
Towbin
JA
,
Uthman
OA
,
Tobe-Gai
R
,
Tsilimparis
N
,
Tsala
Z
,
Tyrovolas
S
,
Ukwaja
KN
,
van Os
J
,
Vasankari
T
,
Venketasubramanian
N
,
Violante
FS
,
Waller
SG
,
Uneke
CJ
,
Wang
Y
,
Weichenthal
S
,
Woolf
AD
,
Xavier
D
,
Xu
G
,
Yakob
B
,
Yip
P
,
Kesavachandran
CN
,
Montico
M
,
Ronfani
L
,
Yu
C
,
Zaidi
Z
,
Yonemoto
N
,
Younis
MZ
,
Wubshet
M
,
Zuhlke
LJ
,
Zaki
ME
,
Zhu
J
.
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the global burden of disease study 2015
.
Lancet
2016
;
388
:
1659
1724
.

2.

BAKRIS
George L
,
SORRENTINO
M
, ed.
Hypertension: A Companion to Braunwald's Heart Disease E-Book
.
Elsevier Health Sciences
;
2017
.

3.

Borghi
C
,
Urso
R
,
Cicero
AF
.
Renin—angiotensin system at the crossroad of hypertension and hypercholesterolemia
.
Nutr Metab Cardiovasc Dis
2017
;
27
:
115
120
.

4.

Willey
JZ
,
Elkind
MSV
.
3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors in the treatment of central nervous system diseases
.
Arch Neurol
2010
;
67
:
1062
1067
.

5.

Horwich
TB
,
Middlekauff
HR
,
Maclellan
WR
,
Fonarow
GC
.
Statins do not significantly affect muscle sympathetic nerve activity in humans with nonischemic heart failure: a double-blind placebo-controlled trial
.
J. Card Fail.
2011
;
17
:
879
886
.

6.

Takemoto
M
,
Node
K
,
Nakagami
H
,
Liao
Y
,
Grimm
M
,
Takemoto
Y
,
Kitakaze
M
,
Liao
JK
.
Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy
.
J Clin Invest
2001
;
108
:
1429
1437
.

7.

Maack
C
,
Kartes
T
,
Kilter
H
,
Schäfers
H
,
Nickenig
G
,
Laufs
U
,
Maack
C
,
Kartes
T
,
Kilter
H
,
Schäfers
H
.
Oxygen free radical release in human failing myocardium is associated with increased activity of Rac1-GTPase and represents a target for statin treatment
.
Circulation
2003
;
108
:
1567
1574
.

8.

Soner
BC
,
Sahin
AS
.
Cardiovascular effects of resveratrol and atorvastatin treatments in an H(2)O(2)-induced stress model
.
Exp Ther Med
2014
;
8
:
1660
1664
.

9.

Hasegawa
H
,
Yamamoto
R
,
Takano
H
,
Mizukami
M
,
Asakawa
M
,
Nagai
T
,
Komuro
I
.
3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors prevent the development of cardiac hypertrophy and heart failure in rats
.
J. Mol. Cell. Cardiol.
2003
;
35
:
953
960
.

10.

Trochu
JN
,
Mital
S
,
Zhang
XP
,
Xu
X
,
Ochoa
M
,
Liao
JK
,
Recchia
FA
,
Hintze
TH
.
Preservation of NO production by statins in the treatment of heart failure
.
Cardiovasc Res
2003
;
60
:
250
258
.

11.

Koh
KK
,
Quon
MJ
,
Han
SH
,
Lee
Y
,
Park
JB
,
Kim
SJ
,
Koh
Y
,
Shin
EK
.
Additive beneficial effects of atorvastatin combined with amlodipine in patients with mild-to-moderate hypertension
.
Int J Cardiol
2011
;
146
:
319
325
.

12.

Kanaki
AI
,
Sarafidis
PA
,
Georgianos
PI
,
Stafylas
PC
,
Kanavos
K
,
Tziolas
IM
,
Lasaridis
AN
.
Low-dose atorvastatin reduces ambulatory blood pressure in patients with mild hypertension and hypercholesterolaemia: a double-blind, randomized, placebo-controlled study
.
J Hum Hypertens
2012
;
26
:
577
584
.

13.

Kanaki
AI
,
Sarafidis
PA
,
Georgianos
PI
,
Kanavos
K
,
Tziolas
IM
,
Zebekakis
PE
,
Lasaridis
AN
.
Effects of low-dose atorvastatin on arterial stiffness and central aortic pressure augmentation in patients with hypertension and hypercholesterolemia
.
Am. J. Hypertens
2013
;
26
:
608
616
.

14.

Hamaad
A
,
Lip
GY
,
MacFadyen
RJ
.
Atorvastatin improves power spectral heart rate variability in unselected chronic heart failure patients
.
Eur Heart J
2005
;
26
:
146
.

15.

Vrtovec
B
,
Okrajsek
R
,
Golicnik
A
,
Ferjan
M
,
Starc
V
,
Radovancevic
B
.
Atorvastatin therapy increases heart rate variability, decreases QT variability, and shortens QTc interval duration in patients with advanced chronic heart failure
.
J. Card Fail.
2005
;
11
:
684
690
.

16.

Gomes
ME
,
Lenders
JWM
,
Bellersen
L
,
Verheugt
FWA
,
Smits
P
,
Tack
CJ
.
Sympathoinhibitory effect of statins in chronic heart failure
.
Clin Auton Res
2010
;
20
:
73
78
.

17.

Celovska
D
,
Kruzliak
P
,
Rodrigo
L
,
Gonsorcik
J
,
Sabaka
P
,
Gaspar
P
,
Delev
D
,
Petrovic
D
,
Dukat
A
,
Gaspar
L
.
Effect of low dose atorvastatin therapy on baroreflex sensitivity in hypertensives
.
High blood Press Cardiovasc Prev Off J Ital Soc Hypertens
2016
;
23
:
133
140
.

18.

Sarath
TS
,
Waghe
P
,
Gupta
P
,
Choudhury
S
,
Kannan
K
,
Pillai
AH
,
Harikumar
SK
,
Mishra
SK
,
Sarkar
SN
.
Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats
.
Toxicol Appl Pharmacol
2014
;
280
:
443
454
.

19.

Guimarães
DA
,
Rizzi
E
,
Ceron
CS
,
Pinheiro
LC
,
Gerlach
RF
,
Tanus-Santos
JE
.
Atorvastatin and sildenafil lower blood pressure and improve endothelial dysfunction, but only atorvastatin increases vascular stores of nitric oxide in hypertension
.
Redox Biol
2013
;
1
:
578
585
.

20.

Kishi
T
,
Hirooka
Y
,
Mukai
Y
,
Shimokawa
H
,
Takeshita
A
.
Atorvastatin causes depressor and sympatho-inhibitory effects with upregulation of nitric oxide synthases in stroke-prone spontaneously hypertensive rats
.
J Hypertens
2003
;
21
:
379
386
.

21.

Szramka
M
,
Harriss
L
,
Ninnio
D
,
Windebank
E
,
Brack
J
,
Skiba
M
,
Krum
H
.
The effect of rapid lipid lowering with atorvastatin on autonomic parameters in patients with coronary artery disease
.
Int J Cardiol
.

22.

Kishi
T
,
Hirooka
Y
,
Konno
S
,
Sunagawa
K
.
Atorvastatin improves the impaired baroreflex sensitivity via anti-oxidant effect in the rostral ventrolateral medulla of SHRSP
.
Clin Exp Hypertens
2009
;
31
:
698
704
.

23.

Kishi
T
,
Sunagawa
K
.
Combination therapy of atorvastatin and amlodipine inhibits sympathetic nervous system activation and improves cognitive function in hypertensive rats
.
Circ J
2012
;
76
:
1934
1941
.

24.

Kishi
T
,
Hirooka
Y
,
Shimokawa
H
,
Takeshita
A
,
Sunagawa
K
.
Atorvastatin reduces oxidative stress in the rostral ventrolateral medulla of stroke-prone spontaneously hypertensive rats
.
Clin Exp Hypertens
2008
;
30
:
3
11
.

25.

Kishi
T
,
Hirooka
Y
,
Konno
S
,
Sunagawa
K
.
Sympathoinhibition induced by centrally administered atorvastatin is associated with alteration of NAD(P)H and Mn superoxide dismutase activity in rostral ventrolateral medulla of stroke-prone spontaneously hypertensive rats
.
J Cardiovasc Pharmacol
2010
;
55
:
184
190
.

26.

Pehlivanidis
AN
,
Athyros
VG
,
Demitriadis
DS
,
Papageorgiou
AA
,
Bouloukos
VJ
,
Kontopoulos
AG
.
Heart rate variability after long-term treatment with atorvastatin in hypercholesterolaemic patients with or without coronary artery disease
.
Atherosclerosis
2001
;
157
:
463
469
.

27.

Melenovsky
V
,
Wichterle
D
,
Simek
J
,
Malik
J
,
Haas
T
,
Ceska
R
,
Malik
M
.
Effect of atorvastatin and fenofibrate on autonomic tone in subjects with combined hyperlipidemia
.
Am J Cardiol
2003
;
92
:
337
341
.

28.

Grigoropoulou
P
,
Eleftheriadou
I
,
Zoupas
C
,
Makrilakis
K
,
Papassotiriou
I
,
Margeli
A
,
Perrea
D
,
Katsilambros
N
,
Tentolouris
N
.
Effect of atorvastatin on baroreflex sensitivity in subjects with type 2 diabetes and dyslipidaemia
.
Diabetes Vasc Dis Res
2014
;
11
:
26
33
.

29.

Liberati
A
,
Altman
DG
,
Tetzlaff
J
,
Mulrow
C
,
Gotzsche
PC
,
Ioannidis
JPA
,
Clarke
M
,
Devereaux
PJ
,
Kleijnen
J
,
Moher
D
.
The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration
.
BMJ
2009
;
339
:
b2700
.

30.

Schardt
C
,
Adams
MB
,
Owens
T
,
Keitz
S
,
Fontelo
P
.
Utilization of the PICO framework to improve searching PubMed for clinical questions
.
BMC Med Inf Decis Making
2007
;
7
:
16
.

31.

Faludi
A
,
Izar
M
,
Saraiva
J
,
Chacra
A
,
Bianco
H
,
Afiune Neto
A
,
Bertolami
A
,
Pereira
A
,
Lottenberg
A
,
Sposito
A
,
Chagas
A
,
Casella-Filho
A
,
Simão
A
,
Alencar Filho
A
,
Caramelli
B
,
Magalhães
C
,
Magnoni
D
,
Negrão
C
,
Ferreira
C
,
Scherr
C
,
Feio
C
,
Kovacs
C
,
Araújo
D
,
Calderaro
D
,
Gualandro
D
,
Mello
E
Junior
,
Alexandre
E
,
Sato
I
,
Moriguchi
E
,
Rached
F
,
Santos
F
,
Cesena
F
,
Fonseca
F
,
Fonseca
H
,
Xavier
H
,
Pimentel
I
,
Giuliano
I
,
Issa
J
,
Diament
J
,
Pesquero
J
,
Santos
J
,
Neto
JR F
,
Melo Filho
J
,
Kato
J
,
Torres
K
,
Bertolami
M
,
Assad
M
,
Miname
M
,
Scartezini
M
,
Forti
N
,
Coelho
O
,
Maranhão
R
,
Santos Filho
R
,
Alves
R
,
Cassani
R
,
Betti
R
,
Carvalho
T
,
Martinez
T
,
Giraldez
V
,
Salgado Filho
W
.
Atualização da diretriz brasileira de dislipidemias e prevenção de aterosclerose - 2017
.
Arq Bras Cardiol
2017
;
109
:
1
76
.

32.

Williams
B
,
Mancia
G
,
Spierging
W
,
Rosei
EA
,
Azizi
M
,
Burnier
M
,
Clement
DL
,
Coca
A
,
de Simone
G
,
Dominiczak
A
,
Kahan
T
,
Mahfoud
F
,
Redon
J
,
Ruilope
L
,
Zanchetti
A
,
Kerins
M
,
Kjeldsen
SE
,
Kreutz
R
,
Laurent
S
,
Lip
GYH
,
McManus
R
,
Narkiewicz
K
,
Ruschitzka
F
,
Schmieder
RE
,
Shlyakhto
E
,
Tsiousfis
C
,
Aboyans
V
,
Desormais
I
.
2018 ESC/ESH guidelines for themanagement of arterial hypertension the task force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH)
.
Eur Heart J
2018
;
39
:
3021
3104
.

33.

Mach
F
,
Baigent
C
,
Catapano
AL
,
Koskinas
KC
,
Casula
M
,
Badimon
L
,
Chapman
MJ
,
De Backer
GG
,
Delgado
V
,
Ference
BA
,
Graham
IM
,
Halliday
A
,
Landmesser
U
,
Mihaylova
B
,
Pedersen
TR
,
Riccardi
G
,
Richter
DJ
,
Sabatine
MS
,
Taskinen
MR
,
Tokgozoglu
L
,
Wiklund
O
,
Mueller
C
,
Drexel
H
,
Aboyans
V
,
Corsini
A
,
Doehner
W
,
Farnier
M
,
Gigante
B
,
Kayikcioglu
M
,
Krstacic
G
,
Lambrinou
E
,
Lewis
BS
,
Masip
J
,
Moulin
P
,
Petersen
S
,
Petronio
AS
,
Piepoli
MF
,
Pinto
X
,
Raber
L
,
Ray
KK
,
Reiner
Z
,
Riesen
WF
,
Roffi
M
,
Schmid
JP
,
Shlyakhto
E
,
Simpson
IA
,
Stroes
E
,
Sudano
I
,
Tselepis
AD
,
Viigimaa
M
,
Vindis
C
,
Vonbank
A
,
Vrablik
M
,
Vrsalovic
M
,
Gomez
JLZ
,
Collet
JP
,
Windecker
S
,
Dean
V
,
Fitzsimons
D
,
Gale
CP
,
Grobbee
DE
,
Halvorsen
S
,
Hindricks
G
,
Iung
B
,
Jüni
P
,
Katus
HA
,
Leclercq
C
,
Lettino
M
,
Merkely
B
,
Sousa-Uva
M
,
Touyz
RM
,
Nibouche
D
,
Zelveian
PH
,
Siostrzonek
P
,
Najafov
R
,
Van De Borne
P
,
Pojskic
B
,
Postadzhiyan
A
,
Kypris
L
,
Spinar
J
,
Larsen
ML
,
Eldin
HS
,
Strandberg
TE
,
Ferrières
J
,
Agladze
R
,
Laufs
U
,
Rallidis
L
,
Bajnok
L
,
Gudjonsson
T
,
Maher
V
,
Henkin
Y
,
Gulizia
MM
,
Mussagaliyeva
A
,
Bajraktari
G
,
Kerimkulova
A
,
Latkovskis
G
,
Hamoui
O
,
Slapikas
R
,
Visser
L
,
Dingli
P
,
Ivanov
V
,
Boskovic
A
,
Nazzi
M
,
Visseren
F
,
Mitevska
I
,
Retterstøl
K
,
Jankowski
P
,
Fontes-Carvalho
R
,
Gaita
D
,
Ezhov
M
,
Foscoli
M
,
Giga
V
,
Pella
D
,
Fras
Z
,
De Isla
LP
,
Hagström
E
,
Lehmann
R
,
Abid
L
,
Ozdogan
O
,
Mitchenko
O
,
Patel
RS
.
2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk
.
Eur Heart J
2020
;
41
:
111
188
.

34.

Young
DS
,
Huth
EJ
.
SI units for clinical measurement
.
ACP Press
;
1998
.

35.

Paulsen
L
,
Holm
C
,
Bech
JN
,
Starklint
J
,
Pedersen
EB
.
Effects of statins on renal sodium and water handling
.
Nephrol Dial Transplant
2008
;
23
:
1556
1561
.

36.

Paulsen
L
,
Matthesen
SK
,
Bech
JN
,
Starklint
J
,
Pedersen
EB
.
Acute effects of atorvastatin on glomerular filtration rate, tubular function, blood pressure, and vasoactive hormones in patients with type 2 diabetes
.
J Clin Pharmacol
2010
;
50
:
816
822
.

37.

Wan
X
,
Wang
W
,
Liu
J
,
Tong
T
.
Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range
.
BMC Med Res Method
2014
;
14
:
1
13
.

38.

Jadad
AR
,
Moore
RA
,
Carroll
D
,
Jenkinson
C
,
Reynolds
DJ
,
Gavaghan
DJ
,
McQuay
HJ
.
Assessing the quality of reports of randomized clinical trials: is blinding necessary?
Control Clin Trials
1996
;
17
:
1
12
.

39.

Hooijmans
CR
,
Rovers
MM
,
de Vries
RBM
,
Leenaars
M
,
Ritskes-Hoitinga
M
,
Langendam
MW
.
SYRCLE's risk of bias tool for animal studies
.
BMC Med Res Method
2014
;
14
:
43
.

40.

Strazzullo
P
,
Kerry
SM
,
Barbato
A
,
Versiero
M
,
D'Elia
L
,
Cappuccio
FP
.
Do statins reduce blood pressure? A meta-analysis of randomized, controlled trials
.
Hypertension
2007
;
49
:
792
798
.

41.

Briasoulis
A
,
Agarwal
V
,
Valachis
A
,
Messerli
FH
.
Antihypertensive effects of statins: a meta-analysis of prospective controlled studies
.
J Clin Hypertens
2013
;
15
:
310
320
.

42.

You
T
,
Liu
X-G
,
Hou
X-D
,
Wang
X-K
,
Xie
H-H
,
Ding
F
,
Yi
K
,
Zhang
P
,
Xie
X-D
.
Effect of statins on blood pressure: analysis on adverse events released by FDA
.
Clin Exp Hypertens
2017
;
39
:
325
329
.

43.

Takagi
H
,
Umemoto
T
.
A low-density lipoprotein-dependent effect of atorvastatin upon the systolic blood pressure reduction: meta-regression analyses of randomized trials
.
Int J Cardiol
.

44.

Wassmann
S
,
Laufs
U
,
Bäumer
AT
,
Müller
K
,
Ahlbory
K
,
Linz
W
,
Itter
G
,
Rösen
R
,
Böhm
M
,
Nickenig
G
.
HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species
.
Hypertension
2001
;
37
:
1450
1457
.

45.

Laufs
U
,
Endres
M
,
Custodis
F
,
Gertz
K
,
Nickenig
G
,
Liao
JK
,
Böhm
M
.
Suppression of endothelial nitric oxide production after withdrawal of statin treatment is mediated by negative feedback regulation of rho GTPase gene transcription
.
Circulation
2000
;
102
:
3104
3110
.

46.

Hernández-Perera
O
,
Pérez-Sala
D
,
Navarro-Antolín
J
,
Sánchez-Pascuala
R
,
Hernández
G
,
Díaz
C
,
Lamas
S
.
Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells
.
J Clin Invest
1998
;
101
:
2711
2719
.

47.

Martínez Aguilar
E
,
De Haro Miralles
J
,
Flórez González
A
,
Varela Casariego
C
,
Bleda Moreno
S
,
Acín García
F
.
In vivo confirmation of the role of statins in reducing nitric oxide and C-Reactive protein levels in peripheral arterial disease
.
Eur J Vasc Endovasc Surg
2009
;
37
:
443
447
.

48.

Sun
W
,
Lee
TS
,
Zhu
M
,
Gu
C
,
Wang
Y
,
Zhu
Y
,
Shyy
JYJ
.
Statins activate AMP-activated protein kinase in vitro and in vivo
.
Circulation
2006
;
114
:
2655
2662
.

49.

An
L
,
An
S
,
Jia
Z
,
Wang
H
,
Yang
Z
,
Xu
C
,
Teng
X
,
Wang
J
,
Liu
X
,
Cao
Q
,
Wang
S
.
Atorvastatin improves left ventricular remodeling and cardiac function in rats with congestive heart failure by inhibiting RhoA/Rho kinase-mediated endothelial nitric oxide synthase
.
Exp Ther Med
2018
:
960
966
.

50.

Trebicka
J
,
Hennenberg
M
,
Laleman
W
,
Shelest
N
,
Biecker
E
,
Schepke
M
,
Nevens
F
,
Sauerbruch
T
,
Heller
J
.
Atorvastatin lowers portal pressure in cirrhotic rats by inhibition of RhoA/Rho-kinase and activation of endothelial nitric oxide synthase
.
Hepatology
2007
;
46
:
242
253
.

51.

Feron
O
,
Dessy
C
,
Desager
J
,
Balligand
J
.
Through a decrease in caveolin abundance
.
Louv Med
2001
:
113
118
.

52.

Cerda
A
,
Fajardo
CM
,
Basso
RG
,
Hirata
MH
,
Hirata
RDC
.
Role of microRNAs 221/222 on statin induced nitric oxide release in human endothelial cells
.
Arq Bras Cardiol
2015
;
104
:
195
201
.

53.

Rupérez
M
,
Rodrigues-Díez
R
,
Blanco-Colio
LM
,
Sánchez-López
E
,
Rodríguez-Vita
J
,
Esteban
V
,
Carvajal
G
,
Plaza
JJ
,
Egido
J
,
Ruiz-Ortega
M
.
HMG-CoA reductase inhibitors decrease angiotensin II-induced vascular fibrosis: role of RhoA/ROCK and MAPK pathways
.
Hypertension
2007
;
50
:
377
383
.

54.

Li
M
,
Liu
Y
,
Dutt
P
,
Fanburg
BL
,
Toksoz
D
.
Inhibition of serotonin-induced mitogenesis, migration, and ERK MAPK nuclear translocation in vascular smooth muscle cells by atorvastatin
.
Am J Physiol - Lung Cell Mol Physiol
2007
;
293
:
L463
L471
.

55.

Bleske
BE
,
Nicklas
JM
,
Bard
RL
,
Brook
RD
,
Gurbel
PA
,
Bliden
KP
,
Rajagopalan
S
,
Pitt
B
.
Neutral effect on markers of heart failure, inflammation, endothelial activation and function, and vagal tone after high-dose HMG-CoA reductase inhibition in non-diabetic patients with non-ischemic cardiomyopathy and average low-density lipoprotein level
.
J Am Coll Cardiol
2006
;
47
:
338
341
.

56.

Joyeux-Faure
M
,
Tamisier
R
,
Baguet
J-P
,
Dias-Domingos
S
,
Perrig
S
,
Leftheriotis
G
,
Janssens
J-P
,
Trzepizur
W
,
Launois
SH
,
Stanke-Labesque
F
,
Lévy
PA
,
Gagnadoux
F
,
Pepin
J-L
.
Response to statin therapy in obstructive sleep apnea syndrome: a multicenter randomized controlled trial
.
Mediators Inflamm
2014
;
2014
:
1
.

57.

Mukherjee
S
,
Mukhopadhyay
P
,
Pandit
K
,
Mukherjee
S
,
Chowdhury
S
.
Atorvastatin improves arterial stiffness in normotensive normolipidaemic persons with type 2 diabetes
.
J Indian Med Assoc
2008
;
106
:
716
719
.

58.

Orr
JS
,
Dengo
AL
,
Rivero
JM
,
Davy
KP
.
Arterial destiffening with atorvastatin in overweight and obese middle-aged and older adults
.
Hypertension
2009
;
54
:
763
768
.

59.

Raja-Khan
N
,
Kunselman
AR
,
Hogeman
CS
,
Stetter
CM
,
Demers
LM
,
Legro
RS
.
Effects of atorvastatin on vascular function, inflammation, and androgens in women with polycystic ovary syndrome: a double-blind, randomized, placebo-controlled trial
.
Fertil Steril
2011
;
95
:
1849
1852
.

60.

Riahi
S
,
Schmidt
EB
,
Amanavicius
N
,
Karmisholt
J
,
Jensen
HS
,
Christoffersen
RP
,
Niebuhr
U
,
Christensen
JH
,
Toft
E
.
The effect of atorvastatin on heart rate variability and lipoproteins in patients treated with coronary bypass surgery
.
Int J Cardiol
2006
;
111
:
436
441
.

61.

Teramoto
T
,
Takeuchi
M
,
Morisaki
Y
,
Ruotolo
G
,
Krueger
KA
.
Efficacy, safety, tolerability, and pharmacokinetic profile of evacetrapib administered as monotherapy or in combination with atorvastatin in Japanese patients with dyslipidemia
.
Am J Cardiol
2014
;
113
:
2021
2029
.

62.

Zaleski
AL
,
Mentch
ML
,
Pescatello
LS
,
Taylor
BA
,
Capizzi
JA
,
Grimaldi
AS
,
Clarkson
PM
,
Moeckel-Cole
SA
,
Chipkin
SR
,
Keadle
J
,
White
CM
,
Thompson
PD
.
Effects of atorvastatin on resting and peak exercise blood pressure among normotensive men and women
.
Cholesterol
2014
;
2014
:
1
.

63.

Zou
G
,
Song
L
,
Chang
L
,
Wang
H
.
Comparison and analysis of statins drug use in the treatment of diastolic dysfunction in patients
.
Pak J Pharm Sci
2018
;
31
:
1725
1730
.

64.

Renke
M
,
Tylicki
L
,
Rutkowski
P
,
Neuwelt
A
,
Larczyński
W
,
Ziętkiewicz
M
,
Aleksandrowicz
E
,
Lysiak-Szydłowska
W
,
Rutkowski
B
.
Atorvastatin improves tubular status in non-diabetic patients with chronic kidney disease - placebo controlled, randomized, cross-over study
.
Acta Biochim Pol
2010
;
57
:
547
552
.

65.

Kadoglou
NPE
,
Sailer
N
,
Moumtzouoglou
A
,
Kapelouzou
A
,
Gerasimidis
T
,
Liapis
CD
.
Aggressive lipid-lowering is more effective than moderate lipid-lowering treatment in carotid plaque stabilization
.
J Vasc Surg
2010
;
51
:
114
121
.

66.

Tokuhisa
H
,
Murai
H
,
Okabe
Y
,
Hamaoka
T
,
Sugimoto
H
,
Mukai
Y
,
Inoue
O
,
Takashima
S-I
,
Kato
T
,
Usui
S
,
Furusho
H
,
Kaneko
S
,
Takamura
M
.
Differential effects of lipophilic and hydrophilic statins on muscle sympathetic nerve activity in heart failure with preserved left ventricular ejection fraction
.
Auton Neurosci
2018
;
213
:
8
14
.

67.

Manisty
C
,
Mayet
J
,
Tapp
RJ
,
Sever
PS
,
Poulter
N
,
Thom
SAM
,
Hughes
AD
,
Investigators
A
.
Atorvastatin treatment is associated with less augmentation of the carotid pressure waveform in hypertension a substudy of the Anglo-Scandinavian Cardiac Outcome Trial (ASCOT)
.
Hypertension
2009
;
54
:
1009
1013
.

68.

Martin-Ventura
JL
,
Munoz-Garcia
B
,
Blanco-Colio
LM
,
Martin-Conejero
A
,
Madrigal-Matute
J
,
Vega
M
,
Ortega
L
,
Serrano
J
,
Egido
J
.
Treatment with amlodipine and atorvastatin has additive effect on blood and plaque inflammation in hypertensive patients with carotid atherosclerosis
.
Kidney Int
2008
;
74
:
S71
S74
.

69.

Fassett
RG
,
Robertson
IK
,
Ball
MJ
,
Geraghty
DP
,
Coombes
JS
.
Effect of atorvastatin on kidney function in chronic kidney disease: a randomised double-blind placebo-controlled trial
.
Atherosclerosis
2010
;
213
:
218
224
.

70.

Fassett
RG
,
Robertson
IK
,
Ball
MJ
,
Geraghty
DP
,
Sharman
JE
,
Coombes
JS
.
Effects of atorvastatin on arterial stiffness in chronic kidney disease: a randomised controlled trial
.
J. Atheroscler Thromb.
2010
;
17
:
235
241
.

71.

Fogari
R
,
Derosa
G
,
Lazzari
P
,
Zoppi
A
,
Fogari
E
,
Rinaldi
A
,
Mugellini
A
.
Effect of amlodipine-atorvastatin combination on fibrinolysis in hypertensive hypercholesterolemic patients with insulin resistance
.
Am. J. Hypertens
2004
;
17
:
823
827
.

72.

Kanaki
AI
,
Sarafidis
PA
,
Georgianos
PI
,
Kanavos
K
,
Tziolas
IM
,
Zebekakis
PE
,
Lasaridis
AN
.
Effects of low-dose atorvastatin on arterial stiffness and central aortic pressure augmentation in patients with hypertension and hypercholesterolemia
.
Am. J. Hypertens
2013
;
26
:
608
616
.

73.

Kanaki
AI
,
Sarafidis
PA
,
Georgianos
PI
,
Stafylas
PC
,
Kanavos
K
,
Tziolas
IM
,
Lasaridis
AN
.
Low-dose atorvastatin reduces ambulatory blood pressure in patients with mild hypertension and hypercholesterolaemia: a double-blind, randomized, placebo-controlled study
.
J Hum Hypertens
2012
;
26
:
577
584
.

74.

Magen
E
,
Viskoper
R
,
Mishal
J
,
Priluk
R
,
Berezovsky
A
,
Laszt
A
,
London
D
,
Yosefy
C
.
Resistant arterial hypertension and hyperlipidemia: atorvastatin, not vitamin C, for blood pressure control
.
Isr Med Assoc J
2004
;
6
:
742
746
.

75.

Raison
J
,
Rudnichi
A
,
Safar
ME
.
Effects of atorvastatin on aortic pulse wave velocity in patients with hypertension and hypercholesterolaemia: ass preliminary study
.
J Hum Hypertens
2002
;
16
:
705
710
.

76.

Ferrier
KE
,
Muhlmann
MH
,
Baguet
JP
,
Cameron
JD
,
Jennings
GL
,
Dart
AM
,
Kingwell
BA
.
Intensive cholesterol reduction lowers blood pressure and large artery stiffness in isolated systolic hypertension
.
J Am Coll Cardiol
2002
;
39
:
1020
1025
.

77.

Crespo
MJ
,
Quidgley
J
.
Simvastatin, atorvastatin, and pravastatin equally improve the hemodynamic status of diabetic rats
.
World J Diabetes
2015
;
6
:
1168
1178
.

78.

Fiore
MC
,
Jimenez
PM
,
Cremonezzi
D
,
Juncos
LI
,
García
NH
.
Statins reverse renal inflammation and endothelial dysfunction induced by chronic high salt intake
.
Am J Physiol Renal Physiol
2011
;
301
:
F263
70
.

79.

Marumo
H
,
Satoh
K
,
Yamamoto
A
,
Kaneta
S
,
Ichihara
K
.
Simvastatin and atorvastatin enhance hypotensive effect of diltiazem in rats
.
Yakugaku Zasshi
2001
;
121
:
761
764
.

80.

Mohammadi
MT
,
Amini
R
,
Jahanbakhsh
Z
,
Shekarforoush
S
.
Effects of atorvastatin on the hypertension-induced oxidative stress in the rat brain
.
Iran Biomed J
2013
;
17
:
152
157
.

81.

Manickavasagam
S
,
Ye
Y
,
Lin
Y
,
Perez-Polo
RJ
,
Huang
M-H
,
Lui
CY
,
Hughes
MG
,
McAdoo
DJ
,
Uretsky
BF
,
Birnbaum
Y
.
The cardioprotective effect of a statin and cilostazol combination: relationship to Akt and endothelial nitric oxide synthase activation
.
Cardiovasc Drugs Ther
2007
;
21
:
321
330
.

82.

Mondo
CK
,
Yang
W-S
,
Zhang
N
,
Huang
T-G
.
Anti-oxidant effects of atorvastatin in dexamethasone-induced hypertension in the rat
.
Clin Exp Pharmacol Physiol
2006
;
33
:
1029
1034
.

83.

Mondo
CK
,
Yang
W-S
,
Su
J-Z
,
Huang
T-G
.
Atorvastatin prevented and reversed dexamethasone-induced hypertension in the rat
.
Clin Exp Hypertens
2006
;
28
:
499
509
.

84.

Mondo
CK
,
Yang
W-S
,
Su
J-Z
,
Huang
T-G
.
Atorvastatin prevented and partially reversed adrenocorticotropic hormone-induced hypertension in the rat
.
Clin Exp Pharmacol Physiol
2006
;
33
:
369
373
.

85.

Okamura
T
,
Tawa
M
,
Geddawy
A
,
Shimosato
T
,
Iwasaki
H
,
Shintaku
H
,
Yoshida
Y
,
Masada
M
,
Shinozaki
K
,
Imamura
T
.
Effects of atorvastatin, amlodipine, and their combination on vascular dysfunction in insulin-resistant rats
.
J Pharmacol Sci
2014
;
124
:
76
85
.

86.

Quidgley
J
,
Cruz
N
,
Crespo
MJ
.
Atorvastatin improves systolic function, but does not prevent the development of dilated cardiomyopathy in streptozotocin-induced diabetic rats
.
Ther Adv Cardiovasc Dis
2014
;
8
:
133
144
.

87.

Sarath
TS
,
Waghe
P
,
Gupta
P
,
Choudhury
S
,
Kannan
K
,
Pillai
AH
,
Harikumar
SK
,
Mishra
SK
,
Sarkar
SN
.
Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats
.
Toxicol Appl Pharmacol
2014
;
280
:
443
454
.

88.

Subramani
J
,
Kathirvel
K
,
Leo
MDM
,
Kuntamallappanavar
G
,
Uttam Singh
T
,
Mishra
SK
.
Atorvastatin restores the impaired vascular endothelium-dependent relaxations mediated by nitric oxide and endothelium-derived hyperpolarizing factors but not hypotension in sepsis
.
J Cardiovasc Pharmacol
2009
;
54
:
526
534
.

89.

Totoson
P
,
Fhayli
W
,
Faury
G
,
Korichneva
I
,
Cachot
S
,
Baldazza
M
,
Ribuot
C
,
Pépin
J-L
,
Lévy
P
,
Joyeux-Faure
M
.
Atorvastatin protects against deleterious cardiovascular consequences induced by chronic intermittent hypoxia
.
Exp Biol Med (Maywood)
2013
;
238
:
223
232
.

90.

Ge
C
,
Hu
S
,
Wu
Y
,
Chen
N
.
Effects of atorvastatin on vascular remodeling in spontaneously hypertensive rats
.
J Zhejiang Univ Sci
2003
;
4
:
612
615
.

91.

Chen
Y
,
Chang
Y
,
Zhang
N
,
Guo
X
,
Sun
G
,
Sun
Y
.
Atorvastatin attenuates myocardial hypertrophy in spontaneously hypertensive rats via the C
/EBP beta/PGC-1 alpha/UCP3 pathway
.
Cell Physiol Biochem
2018
;
46
:
1009
1018
.

92.

Doyon
M
,
Hale
TM
,
Huot-Marchand
J-E
,
Wu
R
,
de Champlain
J
,
DeBlois
D
.
Does atorvastatin induce aortic smooth muscle cell apoptosis in vivo?
Vasc Pharmacol
2011
;
54
:
5
12
.

93.

Fang
T
,
Guo
B
,
Xue
L
,
Wang
L
.
Atorvastatin prevents myocardial fibrosis in spontaneous hypertension via interleukin-6 (IL-6
)/Signal transducer and activator of transcription 3 (STAT3)/Endothelin-1 (ET-1) pathway
.
Med Sci Monit Int Med J Exp Clin Res
2019
;
25
:
318
323
.

94.

Geng
J
,
Zhao
Z
,
Kang
W
,
Wang
W
,
Zhang
Y
,
Zhiming
GE
.
Atorvastatin reverses cardiac remodeling possibly through regulation of protein kinase D
/myocyte enhancer factor 2D activation in spontaneously hypertensive rats
.
Pharmacol Res
2010
;
61
:
40
47
.

95.

Huang
X
,
Yang
J
,
Song
B
,
Wang
N
,
Ma
M
,
Wang
H
,
Wang
S
,
Hao
S
,
Cheng
G
.
Caduet enhances connexin 43 phosphorylation in left ventricular and thoracic aorta of SH model rats
.
Exp Ther Med
2020
;
20
:
80
.

96.

Ito
D
,
Ito
O
,
Mori
N
,
Muroya
Y
,
Cao
P-Y
,
Takashima
K
,
Kanazawa
M
,
Kohzuki
M
.
Atorvastatin upregulates nitric oxide synthases with Rho-kinase inhibition and Akt activation in the kidney of spontaneously hypertensive rats
.
J Hypertens
2010
;
28
:
2278
2288
.

97.

Kang
L
,
Ge
C-J
,
Hu
S-J
.
Beneficial effect of atorvastatin on left ventricular remodeling in spontaneously hypertensive rats
.
Pharmacology
2007
;
80
:
120
126
.

98.

Kang
L
,
Fang
Q
,
Hu
S-J
.
Regulation of phospholamban and sarcoplasmic reticulum Ca2+-ATPase by atorvastatin: implication for cardiac hypertrophy
.
Arch Pharmacal Res
2007
;
30
:
596
602
.

99.

Lu
J
,
Hao
J
,
Du
H
,
Xiao
B
,
Li
Y
,
Yang
X
,
Cui
W
.
Amlodipine and atorvastatin improved hypertensive cardiac remodeling through regulation of MMPs
/TIMPs in SHR rats
.
Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol
2016
;
39
:
47
60
.

100.

Lu
J
,
Liu
F
,
Liu
D
,
Du
H
,
Hao
J
,
Yang
X
,
Cui
W
.
Amlodipine and atorvastatin improved hypertensive cardiac hypertrophy through regulation of receptor activator of nuclear factor kappa B ligand
/receptor activator of nuclear factor kappa B/osteoprotegerin system in spontaneous hypertension rats
.
Exp Biol Med (Maywood)
2016
;
241
:
1237
1249
.

101.

Wassmann
S
,
Laufs
U
,
Bäumer
AT
,
Müller
K
,
Ahlbory
K
,
Linz
W
,
Itter
G
,
Rösen
R
,
Böhm
M
,
Nickenig
G
.
HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species
.
Hypertens (Dallas, Tex 1979)
2001
;
37
:
1450
1457
.

102.

Yuan
H
,
Wang
D
,
Zhang
Y
,
Geng
J
.
Atorvastatin attenuates vascular remodelling in spontaneously hypertensive rats via the protein kinase D
/extracellular signal-regulated kinase 5 pathway
.
Clin Exp Pharmacol Physiol
2020
;
47
:
1429
1438
.

103.

Zhao
X-Y
,
Li
L
,
Zhang
J-Y
,
Liu
G-Q
,
Chen
Y-L
,
Yang
P-L
,
Liu
R-Y
.
Atorvastatin prevents left ventricular remodeling in spontaneously hypertensive rats
.
Int Heart J
2010
;
51
:
426
431
.

104.

Hayashi
A
,
Suzuki
M
,
Ogawa
Y
,
Sonoda
R
,
Sasamata
M
.
Post-stroke atorvastatin treatment reduces neurological deficits and mortality rate in the stroke-prone spontaneously hypertensive rat
.
J Pharm Pharmacol
2004
;
56
:
893
898
.

105.

Kishi
T
,
Sunagawa
K
.
Combination therapy of atorvastatin and amlodipine inhibits sympathetic nervous system activation and improves cognitive function in hypertensive rats
.
Circ J
2012
;
76
:
1934
1941
.

106.

Mason
RP
,
Corbalan
JJ
,
Jacob
RF
,
Dawoud
H
,
Malinski
T
.
Atorvastatin enhanced nitric oxide release and reduced blood pressure, nitroxidative stress and rantes levels in hypertensive rats with diabetes
.
J Physiol Pharmacol an Off J Polish Physiol Soc
2015
;
66
:
65
72
.

107.

Akahori
H
,
Tsujino
T
,
Naito
Y
,
Matsumoto
M
,
Sasaki
N
,
Iwasaku
T
,
Eguchi
A
,
Sawada
H
,
Hirotani
S
,
Masuyama
T
.
Atorvastatin ameliorates cardiac fibrosis and improves left ventricular diastolic function in hypertensive diastolic heart failure model rats
.
J Hypertens
2014
;
32
:
1534
1541
;
discussion 1541
.

108.

Zhao
J
,
Cheng
Q
,
Liu
Y
,
Yang
G
,
Wang
X
.
Atorvastatin alleviates early hypertensive renal damage in spontaneously hypertensive rats
.
Biomed Pharmacother
2019
;
109
:
602
60
.

109.

Zhou
M-S
,
Schuman
IH
,
Jaimes
EA
,
Raij
L
.
Renoprotection by statins is linked to a decrease in renal oxidative stress, TGF-beta, and fibronectin with concomitant increase in nitric oxide bioavailability
.
Am J Physiol Renal Physiol
2008
;
295
:
F53
9
.

110.

Zhou
M-S
,
Jaimes
EA
,
Raij
L
.
Atorvastatin prevents end-organ injury in salt-sensitive hypertension: role of eNOS and oxidant stress
.
Hypertens (Dallas, Tex 1979)
2004
;
44
:
186
190
.

111.

Zhou
M-S
,
Tian
R
,
Jaimes
EA
,
Raij
L
.
Combination therapy of amlodipine and atorvastatin has more beneficial vascular effects than monotherapy in salt-sensitive hypertension
.
Am. J. Hypertens
2014
;
27
:
873
880
.

112.

Guimarães
DA
,
Rizzi
E
,
Ceron
CS
,
Martins-Oliveira
A
,
Gerlach
RF
,
Shiva
S
,
Tanus-Santos
JE
.
Atorvastatin and sildenafil decrease vascular TGF-β levels and MMP-2 activity and ameliorate arterial remodeling in a model of renovascular hypertension
.
Redox Biol
2015
;
6
:
386
395
.

113.

Guimarães
DA
,
Rizzi
E
,
Ceron
CS
,
Pinheiro
LC
,
Gerlach
RF
,
Tanus-Santos
JE
.
Atorvastatin and sildenafil lower blood pressure and improve endothelial dysfunction, but only atorvastatin increases vascular stores of nitric oxide in hypertension
.
Redox Biol
2013
;
1
:
578
585
.

114.

Patel
TB
,
Patel
LD
,
Patel
TB
,
Makwana
SH
,
Patel
TR
,
Adeshara
SP
.
Effects of Atorvastatin as antioxidants in diabetic associated cardiovascular complications
.
J Pharm Sci Res
2010
;
2
:
247
256
.

115.

Bezek
Š
,
Brnoliaková
Z
,
Sotníková
R
,
Knezl
V
,
Paulovičová
E
,
Navarová
J
,
Bauer
V
.
Monotherapy of experimental metabolic syndrome: I. Efficacy and safety
.
Interdiscip Toxicol
2017
;
10
:
81
85
.

116.

Parvin
A
,
Yaghmaei
P
,
Noureddini
M
,
Haeri Roohani
SA
,
Aminzadeh
S
.
Comparative effects of quercetin and hydroalcoholic extract of Otostegia persica boiss with atorvastatin on atherosclerosis complication in male wistar rats
.
Food Sci Nutr
2019
;
7
:
2875
2887
.

117.

Sotnikova
R
,
Bacova
B
,
Vlkovicova
J
,
Navarova
J
,
Tribulova
N
.
Sex differences in endothelial function of aged hypertriglyceridemic rats - effect of atorvastatin treatment
.
Interdiscip Toxicol
2012
;
5
:
155
158
.

118.

Knezl
V
,
Sotníková
R
,
Brnoliaková
Z
,
Stankovičová
T
,
Bauer
V
,
Bezek
Š
.
Monotherapy of experimental metabolic syndrome: II. Study of cardiovascular effects
.
Interdiscip Toxicol
2017
;
10
:
86
92
.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Supplementary data