Abstract

New tetrathiafulvalene (TTF)-type electron-donor molecules annelated with imidazole or benzimidazole moiety were designed and synthesized by the phosphite-mediated coupling reactions of imidazole- or benzimidazole-annelated 1,3-dithiole-2-thiones. The effect of imidazole-annelation on the redox properties was evaluated by theoretical calculation and electrochemical measurement, and the imidazole-annelation slightly enhances the electron-donating abilities of parent TTF and benzo-TTF skeletons. The substitution of the imidazole ring with an electron-withdrawing cyano group caused a large high potential shift of the oxidation potentials in the cyclic voltammetry and an intense intramolecular charge-transfer absorption band in the electronic spectrum. The self-assembling ability was investigated by crystal structure analysis, where solvent or counter anion mediated one-dimensional hydrogen-bonded arrays of imidazole rings were linked through π-stacks and S···S interactions to construct multidimensional networks. The donor molecules afforded weak charge-transfer complexes with tetracyanoquinodimethane (TCNQ) and fully ionic complexes with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) and 2,3,5,6-tetrafluoro-TCNQ. In the crystal structures of TCNQ complex and iodine salt of a benzimidazole-annelated derivative, π-stacking motifs, donor–acceptor alternating stack, and π-stacking dimer, respectively, were interacted through hydrogen-bonds.

References

1)

TTF Chemistry: Fundamentals and Applications of Tetrathiafulvalene, ed. by J.-i. Yamada, T. Sugimoto, Springer–Kodansha, Tokyo, 2004.

2) a)

Chem. Rev. 2004, 104, issue 11.

b)

G. Saito, Y. Yoshida, Bull. Chem. Soc. Jpn. 2007, 80, 1.

3)

M. Fourmigué, P. Batail, Chem. Rev. 2004, 104, 5379.

4)

M. Fourmigué, inHalogen Bonding: Fundamentals and Applications in Structure and Bonding, ed. by P. Metrangolo, G. Resnati, Springer-Verlag, Berlin-Heidelberg, 2008, Vol. 126, pp. 181–207. doi:10.1007/430_2007_059.

5) a)

S. A. Baudron, P. Batail, C. Coulon, R. Clérac, E. Canadell, V. Laukhin, R. Melzi, P. Wzietek, D. Jérome, P. Auban-Senzier, S. Ravy, J. Am. Chem. Soc. 2005, 127, 11785.

b)

R. J. Brown, A. C. Brooks, J.-P. Griffiths, B. Vital, P. Day, J. D. Wallis, Org. Biomol. Chem. 2007, 5, 3172.

c)

Y. Kobayashi, M. Yoshioka, K. Saigo, D. Hashizume, T. Ogura, J. Am. Chem. Soc. 2009, 131, 9995.

d)

A. El-Ghayoury, C. Mézière, S. Simonov, L. Zorina, M. Cobián, E. Canadell, C. Rovira, B. Náfrádi, B. Sipos, L. Forró, P. Batail, Chem.—Eur. J. 2010, 16, 14051.

e)

S. C. Lee, A. Ueda, H. Kamo, K. Takahashi, M. Uruichi, K. Yamamoto, K. Yakushi, A. Nakao, R. Kumai, K. Kobayashi, H. Nakao, Y. Murakami, H. Mori, Chem. Commun. 2012, 48, 8673.

f)

T. Isono, H. Kamo, A. Ueda, K. Takahashi, A. Nakao, R. Kumai, H. Nakao, K. Kobayashi, Y. Murakami, H. Mori, Nat. Commun. 2013, 4, 1344.

6) a)

Y. Morita, T. Murata, K. Nakasuji, Bull. Chem. Soc. Jpn. 2013, 86, 183.

b)

Y. Morita, S. Maki, M. Ohmoto, H. Kitagawa, T. Okubo, T. Mitani, K. Nakasuji, Org. Lett. 2002, 4, 2185.

c)

Y. Morita, S. Maki, M. Ohmoto, H. Kitagawa, T. Okubo, T. Mitani, K. Nakasuji, Synth. Met. 2003, 135–136, 541.

d)

Y. Morita, E. Miyazaki, K. Fukui, S. Maki, K. Nakasuji, Synth. Met. 2005, 152, 433.

e)

Y. Morita, E. Miyazaki, K. Fukui, S. Maki, K. Nakasuji, Bull. Chem. Soc. Jpn. 2005, 78, 2014.

f)

Y. Morita, E. Miyazaki, Y. Umemoto, K. Fukui, K. Nakasuji, J. Org. Chem. 2006, 71, 5631.

g)

E. Miyazaki, Y. Morita, Y. Umemoto, K. Fukui, K. Nakasuji, Chem. Lett. 2005, 34, 1326.

h)

E. Miyazaki, Y. Morita, Y. Yakiyama, S. Maki, Y. Umemoto, M. Ohmoto, K. Nakasuji, Chem. Lett. 2007, 36, 1102.

i)

T. Murata, S. Maki, M. Ohmoto, E. Miyazaki, Y. Umemoto, K. Nakasuji, Y. Morita, CrystEngComm 2011, 13, 6880.

j)

T. Murata, Y. Umemoto, E. Miyazaki, K. Nakasuji, Y. Morita, CrystEngComm 2012, 14, 6881.

k)

T. Murata, E. Miyazaki, S. Maki, Y. Umemoto, M. Ohmoto, K. Nakasuji, Y. Morita, Bull. Chem. Soc. Jpn. 2012, 85, 995.

7) a)

T. Mitani, G. Saito, H. Urayama, Phys. Rev. Lett. 1988, 60, 2299.

b)

K. Nakasuji, K. Sugiura, T. Kitagawa, J. Toyoda, H. Okamoto, K. Okaniwa, T. Mitani, H. Yamamoto, I. Murata, A. Kawamoto, J. Tanaka, J. Am. Chem. Soc. 1991, 113, 1862.

c)

K. Sugiura, J. Toyoda, H. Okamoto, K. Okaniwa, T. Mitani, A. Kawamoto, J. Tanaka, K. Nakasuji, Angew. Chem., Int. Ed. Engl. 1992, 31, 852.

d)

T. Kubo, M. Ohashi, K. Miyazaki, A. Ichimura, K. Nakasuji, Inorg. Chem. 2004, 43, 7301.

8)

P. Molina, A. Tárraga, F. Otón, Org. Biomol. Chem. 2012, 10, 1711.

9) a)

T. Akutagawa, G. Saito, H. Yamochi, M. Kusunoki, K. Sakaguchi, Synth. Met. 1995, 69, 591.

b)

T. Akutagawa, G. Saito, M. Kusunoki, K.-i. Sakaguchi, Bull. Chem. Soc. Jpn. 1996, 69, 2487.

c)

T. Akutagawa, T. Hasegawa, T. Nakamura, T. Inabe, G. Saito, Chem.—Eur. J. 2002, 8, 4402.

d)

T. Akutagawa, T. Hasegawa, T. Nakamura, G. Saito, CrystEngComm 2003, 5, 54.

10) a)

N. Yoshioka, H. Inoue, Crystal Control in Organic Radical Solids Chapter in Magnetic Properties of Organic Materials, ed. by P. M. Lahti, Marcel Dekker, New York, 1999, Chap. 27, pp. 553–572.

b)

D. Luneau, P. Rey, Mol. Cryst. Liq. Cryst. 1995, 273, 81.

c)

J. R. Ferrer, P. M. Lahti, C. George, G. Antorrena, F. Palacio, Chem. Mater. 1999, 11, 2205.

11) a)

T. Murata, Y. Morita, K. Fukui, K. Sato, D. Shiomi, T. Takui, M. Maesato, H. Yamochi, G. Saito, K. Nakasuji, Angew. Chem., Int. Ed. 2004, 43, 6343.

b)

T. Murata, Y. Morita, Y. Yakiyama, K. Fukui, H. Yamochi, G. Saito, K. Nakasuji, J. Am. Chem. Soc. 2007, 129, 10837.

c)

T. Murata, Y. Morita, Y. Yakiyama, Y. Nishimura, T. Ise, D. Shiomi, K. Sato, T. Takui, K. Nakasuji, Chem. Commun. 2007, 4009.

d)

T. Murata, Y. Morita, Y. Yakiyama, K. Nakasuji, Physica B (Amsterdam, Neth.) 2010, 405, S41.

e)

T. Murata, Y. Yakiyama, K. Nakasuji, Y. Morita, CrystEngComm 2011, 13, 3689.

f)

T. Murata, K. Nakasuji, Y. Morita, Eur. J. Org. Chem. 2012, 4123.

12)

Y. Morita, Y. Yamamoto, Y. Yakiyama, T. Murata, K. Nakasuji, Chem. Lett. 2008, 37, 24.

13)

J. Wu, S.-X. Liu, A. Neels, F. Le Derf, M. Sallé, S. Decurtins, Tetrahedron 2007, 63, 11282.

14)

J. Wu, N. Dupont, S.-X. Liu, A. Neels, A. Hauser, S. Decurtins, Chem.—Asian J. 2009, 4, 392.

15)

C. Jia, S.-X. Liu, C. Tanner, C. Leiggener, A. Neels, L. Sanguinet, E. Levillain, S. Leutwyler, A. Hauser, S. Decurtins, Chem.—Eur. J. 2007, 13, 3804.

16)

P. A. Koutentis, Molecules 2005, 10, 346.

17) a)

O. Neilands, S. Belyakov, V. Tilika, A. Edina, J. Chem. Soc., Chem. Commun. 1995, 325.

b)

O. Neilands, V. Tilika, I. Sudmale, I. Grigorjeva, A. Edzina, E. Fonavs, I. Muzikante, Adv. Mater. Opt. Electron. 1997, 7, 39.

c)

O. Neilands, V. Liepinsh, B. Turovska, Org. Lett. 1999, 1, 2065.

d)

O. Neilands, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 2001, 355, 331.

e)

K. Balodis, S. Khasanov, C. Chong, M. Maesato, H. Yamochi, G. Saito, O. Neilands, Synth. Met. 2003, 133–134, 353.

18)

A. Bondi, J. Phys. Chem. 1964, 68, 441.

19) a)

J. B. Torrance, B. A. Scott, B. Welber, F. B. Kaufman, P. E. Seiden, Phys. Rev. B 1979, 19, 730.

b)

J. B. Torrance, Acc. Chem. Res. 1979, 12, 79.

c)

S. Yamaguchi, Y. Moritomo, Y. Tokura, Phys. Rev. B 1993, 48, 6654.

d)

M. Meneghetti, Phys. Rev. B 1994, 50, 16899.

20) a)

J. B. Torrance, J. E. Vazquez, J. J. Mayerle, V. Y. Lee, Phys. Rev. Lett. 1981, 46, 253.

b)

G. Saito, J. P. Ferraris, Bull. Chem. Soc. Jpn. 1980, 53, 2141.

21)

J. S. Chappell, A. N. Bloch, W. A. Bryden, M. Maxfield, T. O. Poehler, D. O. Cowan, J. Am. Chem. Soc. 1981, 103, 2442.

22) a)

J. A. Hansen, J. Becher, J. O. Jeppesen, E. Levillain, M. B. Nielsen, B. M. Petersen, J. C. Petersen, Y. ahin, J. Mater. Chem. 2004, 14, 179.

b)

N. Svenstrup, K. M. Rasmussen, T. K. Hansen, J. Becher, Synthesis 1994, 809.

23)

M. C. Burla, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, G. Polidori, R. Spagna, J. Appl. Crystallogr. 2003, 36, 1103.

24)

G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112.

25)

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian 98 (Revision A6), Gaussian Inc., Pittsburgh PA, 1998.

This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/pages/standard-publication-reuse-rights)

Supplementary data