Abstract

Nanobiodevices are developed to analyze biomolecules and cells for genome and proteome analysis. In this article, I describe numerous advantages of nanobiodevices, especially in biological, medical, and clinical applications. I also describe the development of a nanopillar device for the ultrafast separation of DNA and nanoball materials for the fast separation of wide range of DNA fragments. Bacterial cellulose is applied to the separation of DNA and SNPs (single nucleotide polymorphism) analysis of cancer genes for diagnosis of cancer. I developed a new synthetic method for quantum dots (QDs) based on appropriate cluster confirmation by ab initio molecular orbital calculation. QDs are applied to the screening of siRNA, highly sensitive detection of disease related proteins, and development of theranostic device for cancer diagnosis and therapy. Because of the high efficiency of nanobiodevices in the biomolecular and cellular analysis, numerous types of nanobiodevices are developed and applied to the diagnosis of diseases, including cancer, diabetes, hypertension, and infectious diseases.

References

1)

C. Wei, T. Nagai, W. Wei, T. Nemoto, M. Awais, O. Niwa, R. Kurita, Y. Baba, New Advances in Nanomedicine: Diagnosis and Preventive Medicine in Medical Clinics of North America, Elsevier, 2007, Vol. 91, Issue 5, pp. 871–879. doi:10.1016/j.mcna.2007.05.002.

2)

Micro Total Analysis Systems 2002: Proceedings of the μTAS 2002 Symposium, ed. by Y. Baba, S. Shoji, A. van den Berg, Kluwer, 2002.

3)

Y. Baba, L. Zhang, Nucleic Acids and Their Constituents in Chromatography: Fundamentals and Applications of Chromatography and Related Differential Migration Method, Part B: Applications, 6th ed., ed. by E. Heftmann, Elsevier, 2004, Chap. 19, p. 905.

4)

L. Mahmoudian, M. R. Mohamadi, N. Kaji, M. Tokeshi, Y. Baba, Nanoscale DNA Analysis in Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques, 3rd. ed., ed. by J. P. Landers, CRC Press, 2008, Chap. 55, p. 1527.

5)

N. Kaji, M. Tokeshi, Y. Baba, Nanopillers and Nanoballs for DNA Analysis in Nanofluidics: Nanoscience and Nanotechnology, ed. by J. B. Edel, A. J. deMello, RSC Publishing, 2009, Chap. 9, p. 179.

6)

N. Kaji, Y. Okamoto, M. Tokeshi, Y. Baba, Chem. Soc. Rev. 2010, 39, 948.

7)

N. Kaji, M. Tokeshi, Y. Baba, Chem. Rec. 2007, 7, 295.

8)

Z. Zhelev, R. Bakalova, H. Ohba, Y. Baba, Quantum Dot-based Nanobiohybrids for Fluorescent Detection of Molecular and Cellular Biological Targets in Nanomaterials for Biosensors in Nanotechnologies for the Life Sciences, ed. by C. S. S. R. Kumar, Wiley-VCH, 2006.

9)

N. Kaji, Y. Tezuka, Y. Takamura, M. Ueda, T. Nishimoto, H. Nakanishi, Y. Horiike, Y. Baba, Anal. Chem. 2004, 76, 15.

10)

G. Hashiguchi, T. Goda, M. Hosogi, K. Hirano, N. Kaji, Y. Baba, K. Kakushima, H. Fujita, Anal. Chem. 2003, 75, 4347.

11)

M. Tabuchi, M. Ueda, N. Kaji, Y. Yamasaki, Y. Nagasaki, K. Yoshikawa, K. Kataoka, Y. Baba, Nat. Biotechnol. 2004, 22, 337.

12)

M. Tabuchi, Y. Katsuyama, K. Nogami, H. Nagata, K. Wakuda, M. Fujimoto, Y. Nagasaki, K. Yoshikawa, K. Kataoka, Y. Baba, Lab Chip 2005, 5, 199.

13)

M. Tabuchi, K. Kobayashi, M. Fujimoto, Y. Baba, Lab Chip 2005, 5, 1412.

14)

M. Tabuchi, Y. Baba, Anal. Chem. 2005, 77, 7090.

15)

R. Bakalova, H. Ohba, Z. Zhelev, M. Ishikawa, Y. Baba, Nat. Biotechnol. 2004, 22, 1360.

16)

R. Bakalova, H. Ohba, Z. Zhelev, T. Nagase, R. Jose, M. Ishikawa, Y. Baba, Nano Lett. 2004, 4, 1567.

17)

R. Bakalova, Z. Zhelev, H. Ohba, Y. Baba, J. Am. Chem. Soc. 2005, 127, 9328.

18)

R. Bakalova, Z. Zhelev, H. Ohba, Y. Baba, J. Am. Chem. Soc. 2005, 127, 11328.

19)

R. Jose, N. U. Zhanpeisov, H. Fukumura, Y. Baba, M. Ishikawa, J. Am. Chem. Soc. 2006, 128, 629.

20)

V. Biju, Y. Makita, A. Sonoda, H. Yokoyama, Y. Baba, M. Ishikawa, J. Phys. Chem. B 2005, 109, 13899.

21)

Z. Zhelev, R. Bakalova, H. Ohba, R. Jose, Y. Imai, Y. Baba, Anal. Chem. 2006, 78, 321.

22)

R. Jose, Z. Zhelev, R. Bakalova, Y. Baba, M. Ishikawa, Appl. Phys. Lett. 2006, 89, 013115.

23)

V. Biju, T. Itoh, Y. Baba, M. Ishikawa, J. Phys. Chem. B 2006, 110, 26068.

24)

V. Biju, R. Kanemoto, Y. Matsumoto, S. Ishii, S. Nakanishi, T. Itoh, Y. Baba, M. Ishikawa, J. Phys. Chem. C 2007, 111, 7924.

25)

V. Biju, D. Muraleedharan, K. Nakayama, Y. Shinohara, T. Itoh, Y. Baba, M. Ishikawa, Langmuir 2007, 23, 10254.

26)

F. Dang, O. Tabata, M. Kurokawa, A. A. Ewis, L. Zhang, Y. Yamaoka, S. Shinohara, M. Ishikawa, Y. Baba, Anal. Chem. 2005, 77, 2140.

27)

F. Dang, S. Shinohara, O. Tabata, Y. Yamaoka, M. Kurokawa, Y. Shinohara, M. Ishikawa, Y. Baba, Lab Chip 2005, 5, 472.

28)

N. Kaji, A. Oki, R. Ogawa, Y. Takamura, T. Nishimoto, H. Nakanishi, Y. Horiike, M. Tokeshi, Y. Baba, Isr. J. Chem. 2008, 47, 161.

29)

M. Tabuchi, Y. Baba, J. Proteome Res. 2004, 3, 871.

30)

G. Ping, B. Zhu, M. Jabasini, F. Xu, H. Oka, H. Sugihara, Y. Baba, Anal. Chem. 2005, 77, 7282.

31)

F. Dang, K. Kakehi, J. Cheng, O. Tabata, M. Kurokawa, K. Nakajima, M. Ishikawa, Y. Baba, Anal. Chem. 2006, 78, 1452.

32)

M. R. Mohamadi, N. Kaji, M. Tokeshi, Y. Baba, Anal. Chem. 2007, 79, 3667.

This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/pages/standard-publication-reuse-rights)