Abstract

A cyclic arylene–ethynylene tetramer with a 1,5-anthrylene unit and a cramp moiety consisting of three anthrylene units and its derivatives with a 1,4-phenylene, 1,5-naphthylene, or 2,6-di-t-butyl-1,5-naphthylene unit were synthesized by macrocyclization with Sonogashira coupling. Except for the 1,4-phenylene compound, these cyclic compounds take the chiral C2 structure with parallel orientation of the two arylene units, as revealed by X-ray analysis and DFT calculation at the M05/3-21G level. The enantiomers of 1,5-anthrylene and 2,6-di-t-butyl-1,5-naphthylene compounds were resolved by chiral HPLC and their rotational barriers were determined to be 114 and >146 kJ mol−1, respectively, by classical kinetics. These high barriers are in contrast to the facile racemization or topomerization in the other compounds. These kinetic data of the rotation of arylene units about the acetylene axes are discussed in terms of steric hindrance based on molecular structures. The electronic spectra of the cyclic compounds and the chiroptical properties of the resolved samples were also measured.

References

1)

T. Ishikawa, T. Shimasaki, H. Akashi, S. Toyota, Org. Lett. 2008, 10, 417;

S. Toyota, R. Azami, T. Iwanaga, D. Matsuo, A. Orita, J. Otera, Bull. Chem. Soc. Jpn. 2009, 82, 1287.

2) a)

Poly(arylene ethynylene)s, ed. by C. Weder, Springer, Heidelberg, 2005.

b)

T. M. Swager, inAcetylene Chemistry, ed. by F. Diederich, P. J. Stang, R. R. Tykwinski, Wiley-VCH, Weinheim, 2005, Chap. 6.

c)

V. Balzani, M. Venturi, A. Credi, Molecular Devices and Machines, Wiley-VCH, Weinheim, 2003.

d)

T. Kawase, Synlett 2007, 2609.

e)

E. L. Spitler, C. A. Johnson, II, M. M. Haley, Chem. Rev. 2006, 106, 5344.

f)

W. Zhang, J. S. Moore, Angew. Chem., Int. Ed. 2006, 45, 4416.

3) a)

S. D. Karlen, M. A. Garcia-Garibay, inTopics in Current Chemistry: Molecular Machines, ed. by T. R. Kelly, Springer, Berlin, 2005, Vol. 262, p. 179.

b)

T.-A. V. Khuong, J. E. Nuñez, C. E. Godinez, M. A. Garcia-Garibay, Acc. Chem. Res. 2006, 39, 413.

c)

S. L. Gould, R. B. Rodriguez, M. A. Garcia-Garibay, Tetrahedron 2008, 64, 8336.

4) a)

G. Vives, J. M. Tour, Acc. Chem. Res. 2009, 42, 473.

b)

Y. Shirai, J.-F. Morin, T. Sasaki, J. M. Guerrero, J. M. Tour, Chem. Soc. Rev. 2006, 35, 1043.

c)

J.-F. Morin, T. Sasaki, Y. Shirai, J. M. Guerrero, J. M. Tour, J. Org. Chem. 2007, 72, 9481.

d)

C. Joachim, H. Tang, F. Moresco, G. Rapenne, G. Meyer, Nanotechnology 2002, 13, 330.

e)

L. Grill, K.-H. Rieder, F. Moresco, G. Rapenne, S. Stojkovic, X. Bouju, C. Joachim, Nat. Nanotechnol. 2007, 2, 95.

5) a)

K. Okuyama, T. Hasegawa, M. Ito, N. Mikami, J. Phys. Chem. 1984, 88, 1711.

b)

J. Seminario, A. G. Zacarias, J. M. Tour, J. Am. Chem. Soc. 1998, 120, 3970.

c)

Y. Li, J. Zhao, X. Yin, H. Liu, G. Yin, Phys. Chem. Chem. Phys. 2007, 9, 1186.

6)

S. Toyota, T. Yanagihara, Y. Yoshida, M. Goichi, Bull. Chem. Soc. Jpn. 2005, 78, 1351.

7)

O. Š. Miljanic, S. Han, D. Holmes, G. R. Schaller, K. P. C. Vollhardt, Chem. Commun. 2005, 2606.

8) a)

T. Makino, S. Toyota, Bull. Chem. Soc. Jpn. 2005, 78, 917.

b)

S. Toyota, T. Yamamori, T. Makino, Tetrahedron 2001, 57, 3521.

9)

T. C. Bedard, J. S. Moore, J. Am. Chem. Soc. 1995, 117, 10662.

10) a)

S. Toyota, M. Goichi, M. Kotani, Angew. Chem., Int. Ed. 2004, 43, 2248.

b)

S. Toyota, M. Goichi, M. Kotani, M. Takezaki, Bull. Chem. Soc. Jpn. 2005, 78, 2214.

11)

S. Toyota, H. Miyahara, M. Goichi, S. Yamasaki, T. Iwanaga, Bull. Chem. Soc. Jpn. 2009, 82, 931.

12)

S. Toyota, H. Miyahara, M. Goichi, K. Wakamatsu, T. Iwanaga, Bull. Chem. Soc. Jpn. 2008, 81, 1147.

13)

S. Toyota, M. Kurokawa, M. Araki, K. Nakamura, T. Iwanaga, Org. Lett. 2007, 9, 3655.

14)

Y. Tobe, M. Sonoda, inModern Cyclophane Chemistry, ed. by R. Gleiter, H. Hopf, Wiley-VCH, Weinheim, 2004, Chap. 1.

15)

K. Campbell, R. R. Tykwinski, inCarbon-Rich Compounds, ed. by M. M. Haley, R. R. Tykwinski, Wiley-VCH, Weinheim, 2006, Chap. 6.

16)

B. F. Duerr, Y. S. Chung, A. W. Czarnik, J. Org. Chem. 1988, 53, 2120.

17)

M. Nishio, M. Hirota, Y. Umezawa, The CH/π Interactions: Significance in Molecular Recognition, Wiley-VCH, New York, 1998.

18) a)

Y. Zhao, N. E. Schultz, D. G. Truhlar, J. Chem. Theory Comput. 2006, 2, 364.

b)

Y. Zhao, D. G. Truhlar, J. Phys. Chem. A 2006, 110, 10478.

c)

Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157.

19) a)

S. Akiyama, K. Nakasuji, M. Nakagawa, Bull. Chem. Soc. Jpn. 1971, 44, 2231.

b)

S. Akiyama, K. Nakashima, S. Nakatsuji, M. Nakagawa, Dyes Pigm. 1990, 13, 117.

20)

L. Flamigni, A. M. Talarico, B. Ventura, R. Rein, N. Solladié, Chem.—Eur. J. 2006, 12, 701.

21) a)

A. Iwama, T. Toyoda, M. Yoshida, T. Otsubo, Y. Sakata, S. Misumi, Bull. Chem. Soc. Jpn. 1978, 51, 2988.

b)

M. Morita, T. Kishi, M. Tanaka, J. Tanaka, J. Ferguson, Y. Sakata, S. Misumi, T. Hayashi, N. Mataga, Bull. Chem. Soc. Jpn. 1978, 51, 3449.

22)

S. Nakatsuji, K. Matsuda, Y. Uesugi, K. Nakashima, S. Akiyama, W. Fabian, J. Chem. Soc., Perkin Trans. 1 1992, 755.

23)

I. Yamazaki, S. Akimoto, N. Aratani, A. Osuka, Bull. Chem. Soc. Jpn. 2004, 77, 1959.

24) a)

P. Rademacher, inModern Cyclophane Chemistry, ed. by R. Gleiter, H. Hopf, Wiley-VCH, Weinheim, 2004, Chap. 11.

b)

M. Ohkita, K. Ando, T. Suzuki, T. Tsuji, J. Org. Chem. 2000, 65, 4385.

25)

S. Toyota, S. Suzuki, M. Goichi, Chem.—Eur. J. 2006, 12, 2482.

26) a)

R. L. Jarek, R. J. Flesher, S. K. Shin, J. Chem. Educ. 1997, 74, 978.

b)

J. Sandstrom, Dynamic NMR Spectroscopy, Academic, New York, 1982.

27)

T. Ikai, Y. Okamoto, Chem. Rev. 2009, 109, 6077.

28)

S. Toyota, H. Onishi, K. Wakamatsu, T. Iwanaga, Chem. Lett. 2009, 38, 350.

29) a)

V. Prelog, G. Helmchen, Angew. Chem., Int. Ed. Engl. 1982, 21, 567.

b)

E. L. Eliel, S. H. Wilen, Stereochemistry of Organic Compounds, Wiley, New York, 1994, Chap. 14.

30)

C. Diedrich, S. Grimme, J. Phys. Chem. A 2003, 107, 2524.

31) a)

M. Parac, S. Grimme, Chem. Phys. 2003, 292, 11.

b)

S. Grimme, M. Parac, ChemPhysChem 2003, 4, 292.

32)

M. A. Heuft, S. K. Collins, A. G. Fallis, Org. Lett. 2003, 5, 1911.

33)

J. G. Rodríguez, J. L. Tejedor, J. Org. Chem. 2002, 67, 7631.

34)

N. G. Pschirer, A. R. Marshall, C. Stanley, H. W. Beckham, U. H. F. Bunz, Macromol. Rapid Commun. 2000, 21, 493.

35)

J. K. Kendall, H. Shechter, J. Org. Chem. 2001, 66, 6643.

36)

G. M. Sheldrick, Programs for Crystal Structure Determination from Single-Crystal Diffraction Data, University of Göttingen, Germany, 1997.

37)

H. D. Flack, Acta Crystallogr., Sect. A 1983, 39, 876.

38)

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CT, 2004.

This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/pages/standard-publication-reuse-rights)

Supplementary data