Abstract

Propylthiouracil (PTU) is a common and effective clinical medicine for the treatment of hyperthyroidism. Our previous study demonstrated that short-term treatment with PTU inhibits progesterone production in rat granulosa cells. However, our present results indicate that a 16-h treatment with PTU was able to stimulate pregnenolone production in rat granulosa cells, although progesterone production was diminished by PTU through inhibition of 3β-hydroxysteroid dehydrogenase. Notably, we found that PTU treatment enhanced the conversion of cholesterol into pregnenolone, whereas the protein level of the cytochrome P450 side-chain cleavage enzyme (P450scc, which is the enzyme responding to this conversion) was not affected. Interestingly, the levels of steroidogenic acute regulatory protein (StAR) in both total cell lysate and the mitochondrial fraction were significantly increased by PTU treatment. Furthermore, the binding of steroidogenic factor-1 (SF-1) to the StAR promoter region was also enhanced by PTU treatment, which suggests that PTU could upregulate StAR gene expression. In addition to SF-1 regulation, we found that mitogen-activated protein (MAP) kinase kinase activation is an important regulator of PTU-stimulated StAR protein expression, based on the effects of the MEK inhibitor PD98059. In conclusion, these results indicate that PTU plays opposite roles in the production of progesterone and its precursor, pregnenolone. The regulation of negative feedback on speeding the cholesterol transportation and pregnenolone conversion after a 16-h PTU treatment may be the mechanism explaining PTU's inhibition of progesterone production in rat granulosa cells.

You do not currently have access to this article.

Comments

0 Comments
Submit a comment
You have entered an invalid code
Thank you for submitting a comment on this article. Your comment will be reviewed and published at the journal's discretion. Please check for further notifications by email.