Abstract

We consider an incomplete market in the form of a multidimensional Markovian factor model, driven by a general marked point process (representing discrete jump events), as well as by a standard multidimensional Wiener process. Within this framework, we study arbitrage-free gooddeal pricing bounds for derivative assets, thereby extending the results by Cochrane and Saá Requejo (2000) to the point process case, while, at the same time, obtaining a radical simplification of the theory. To illustrate, we present numerical results for the classic Merton jump-diffusion model. As a by-product of the general theory, we derive extended Hansen-Jagannathan bounds for the Sharpe Ratio process in the point process setting.

This content is only available as a PDF.
You do not currently have access to this article.