ABSTRACT

We present 206 unpublished optical spectra of 104 type II supernovae (SNe II) obtained by the Xinglong 2.16-m telescope and Lijiang 2.4-m telescope during the period from 2011 to 2018, spanning the phases from about 1 to 200 d after the SN explosion. The spectral line identifications, evolution of line velocities and pseudo-equivalent widths, as well as correlations between some important spectral parameters are presented. Our sample displays a large range in expansion velocities. For instance, the Fe ii 5169 velocities measured from spectra at t ∼ 50 d after the explosion vary from 2000 to 5500 km s−1, with an average value of 3872 ± 949 km s−1. Power-law functions can be used to fit the velocity evolution, with the power-law exponent quantifying the velocity decline rate. We found an anticorrelation existing between H β velocity at mid-plateau phase and its velocity decay exponent, SNe II with higher velocities tending to have smaller velocity decay rate. Moreover, we noticed that the velocity decay rate inferred from the Balmer lines (i.e. H α and H β) have moderate correlations with the ratio of absorption to emission for H α (a/e). In our sample, two objects show possibly flash-ionized features at early phases. Besides, we noticed that multiple high-velocity components may exist on the blue side of hydrogen lines of SN 2013ab, possibly suggesting that these features arise from complex line-forming region.

1 INTRODUCTION

Supernovae with prominent hydrogen lines in their optical spectra are classified as SNe II (Minkowski 1941; Filippenko 1997). It is generally accepted that these events are produced by explosion of massive stars with initial masses ≥8 M (Van Dyk, Li & Filippenko 2003; Smartt 2009; Smartt et al. 2009). The characteristic of SNe II displays a wide variety in photometric and spectroscopic features. Based on the spectral and photometric features, SNe II can be divided into subclasses of SNe IIP, IIL, IIb, and IIn etc. The subclasses of SNe IIP and IIL are primarily based on the shape of light curves. Those with almost constant luminosity (plateau) in light curves are called type IIP while those with a linear decline after maximun light are called type IIL (Barbon, Ciatti & Rosino 1979). Direct identifications of the progenitors of nearby SNe IIP, e.g. SN 2005cs (Maund, Smartt & Danziger 2005; Li et al. 2006), SN 2012aw (Fraser et al. 2012; Van Dyk et al. 2012), SN 2017eaw (Kilpatrick & Foley 2018; Rui et al. 2019; Van Dyk et al. 2019; Rodríguez et al. 2020), suggested that SNe IIP arise from red supergiant stars with initial masses of 8–17 M. Among SNe IIP, some have low expansion velocities and less amount of nickel synthesized in the explosion, which are thought to represent the low luminosity tail of a continuous distribution in the parameter space of SNe IIP and probably originate from intermediate-mass (10–15 M) stars (Spiro et al. 2014; Zhang et al. 2014). Although SNe IIP and SNe IIL have different light-curve shapes, there is increasing studies showing that no significant distinction exists between the observational properties of these two subclasses (Anderson et al. 2014; Sanders et al. 2015; Galbany et al. 2016; Valenti et al. 2016; de Jaeger et al. 2019). Anderson et al. (2014) found that more luminous SNe II tend to have faster post-peak declines and this trend could be used to estimate distances to SNe II (i.e. the photometric colour method, de Jaeger et al. 2015). Gutiérrez et al. (2014) also suggested that there is no definitive spectral distinction between SNe IIP and SNe IIL. More luminous SNe II tend to have larger H α velocities and smaller ratios of absorption to emission (a/e) of H α. Theoritical studies show that the plateaus in SNe IIP result from the combination of hydrogen envelope (Litvinova & Nadezhin 1983; Bartunov & Blinnikov 1992; Popov 1993; Morozova et al. 2015; Moriya et al. 2016), and the formation of SNe IIL can be due to that the exploding stars have less amount of hydrogen envelope (Anderson et al. 2014; Gutiérrez et al. 2017b).

Besides SNe IIP and SNe IIL, SNe with long lasting narrow or/and intermediate-width emission lines of hydrogen in their optical spectra are classified as SNe IIn (Schlegel 1990). Different from ‘normal’ type IIP and type IIL SNe, circumstellar interaction plays important roles in the observed properties of SNe IIn (Smith 2017). The spectra of some SNe II will evolve like SNe Ib a few weeks after the maximum light, which are called SNe IIb and are thought to be the transitional objects linking between SNe II with stripped-envelope SNe Ib (Filippenko, Matheson & Ho 1993). An even more rare subclass of SNe II is 1987A-like events, which shows unusually long rise to the peak (Hamuy et al. 1988; Xiang et al. 2023). We do not include the subclasses of SNe IIn, SNe IIb, and 1987A-like events in this work.

With the wide-field, high-cadence transient surveys, the observed properties of both interesting individual objects and large samples of SNe II have been studied. Spectroscopic observations provide important information on the physical origins and even stellar winds blown from their progenitors when the spectra can be obtained in very early phases. For example, the flash-ionized signatures allow constraints on the density and velocity of circumstellar material (CSM), and therefore the mass-loss history shortly before the SN explosion (Gal-Yam et al. 2014; Shivvers et al. 2015; Khazov et al. 2016; Yaron et al. 2017; Lin et al. 2021; Zhang et al. 2023). On the other hand, the spectra in the nebular phase can be used to estimate the progenitor mass (Jerkstrand et al. 2012; Maguire et al. 2012; Silverman et al. 2017). In this paper, we present data and analysis of 206 spectra for 104 SNe II obtained by Tsinghua Supernova Group during the period from 2011 to 2018. We describe our sample in Section 2. The spectral evolution and line identifications are presented in Section 3. The evolution of expansion velocities and the pseudo-equivalent width (pEW) of some important spectral lines are presented in Sections 4 and 5, respectively. The correlations between these spectrocopic parameters are given in Section 6, and we conclude in Section 7.

2 DATA SAMPLE

Our sample consists of 206 unpublished spectra for 104 SNe IIP/L observed between 2011 and 2018. The spectra were obtained using the Xinglong 2.16-m telescope (+BFOSC/OMR; Fan et al. 2016) of NAOC and the Lijiang 2.4-m telescope (+YFOSC; Fan et al. 2015) of Yunnan Observatories. All the spectra were reduced using standard iraf pipelines (Tody 1986, 1993), including bias and flat-field correction, cosmic ray removal, and wavelength and flux calibration. All spectra were corrected for atmospheric extinction using the extinction curves of the local observatories. Telluric absorptions were also removed for the spectra whenever possible.

For each SN, we used the same method following Gutiérrez et al. (2017a) to estimate their explosion dates. If high-cadence observations are available for the sample near the discovery, we adopt the mid-points between the last non-detection and the first discovery as the estimated explosion date. The lower and upper limits of the estimated explosion date will cover the non-detection and first-discovery epochs. For the object with sparse or without pre-discovery images, the explosion dates were estimated by matching spectral templates via the Supernova Identification (SNID) code (Blondin & Tonry 2007). SNID automatically gives matches that satisfy the default rlap cut (rlapmin ≥ 5). In general, the best-fitting templates are the first several templates that have the largest rlap values. The goodness of matching was also checked by eyes and we chose the best two from those rlap-ordered templates in most cases. The details of spectral matching and the plots with the best matches for each SN in our sample are shown in the supplementary materials. The explosion date is then taken as the average epoch of the two best-fitting templates and the uncertainty is taken as the standard deviation of the average value. For those that the explosion dates cannot be estimated from either the mid-point or the SNID fit, we have to treat the time of first discovery as the explosion dates.1 Among our 104 objects, 25 (24 per cent) explosion epochs were obtained using mid-point, 35 (34 per cent) were obtained using SNID template matching, while 25 (24 per cent) have to use the time of first discovery as the estimated explosion time. It should be noted that some of our SN II samples have already been studied, and the explosion dates of this portion (about 18 per cent of our sample) were taken from the literatures. The host galaxy redshifts of all our sample were taken from the NASA/IPAC Extragalactic Database (NED) and the Galactic extinctions were from Schlafly & Finkbeiner (2011). The information of each SN II of our sample is listed in Table A1 and the spectroscopic observations of each objects are listed in Table A2.

Fig. 1 shows the statistical distribution of our sample, including the number of spectra, host-galaxy redshift, the phases of first spectrum, and all spectra, respectively. A total of 206 spectra were collected for 104 objects. These spectra cover the phases from 1 to 200 d after the explosion. Of the 104 SNe IIP/L, 37 objects have at least two spectra, while PS 15cwo has 11 spectra. A total of 20 objects (19 per cent) were observed earlier than 5 d after the explosion and 46 object (44 per cent) were observed earlier than 10 d after the explosion. The redshifts of these SNe II range from 0.00199 (SN 2012A) to 0.08 (SN 2017hxz), with a median value of 0.016, among which 78 objects (75 per cent) are at hubble-flow distances (z > 0.01).

Distribution of SN-level and spectrum-level parameters. The upper-left panel shows the number of spectra per SN. The upper-right panel shows the redshift distribution of our sample. The lower-left and lower-right panels show the distribution of the phase of the first spectrum and all spectra, respectively.
Figure 1.

Distribution of SN-level and spectrum-level parameters. The upper-left panel shows the number of spectra per SN. The upper-right panel shows the redshift distribution of our sample. The lower-left and lower-right panels show the distribution of the phase of the first spectrum and all spectra, respectively.

3 SPECTRAL EVOLUTION AND LINE IDENTIFICATION

3.1 Overall evolution of the spectra

The spectral evolution of our sample is shown in Fig. A1. The evolution of two well-observed SNe IIL (PS15cwo and SN 2018aoq), and the spectral line identifications are shown in Fig. 2. One can see that the spectra at early phases are characterized by P-Cgyni profile of Balmer series and He i lines. The He i 5876 gradually evolves into Na i D absorption as the temperature decreases. For example, in the spectra of SN 2018aoq, the P-Cgyni profile near 5850 Å disappeared at t ∼ 20.5 d after the explosion and it reappeared in the t ∼ 24.6 d spectrum, with the new emergent feature being due to the Na i D absorption. As the SN ejecta expand and get cooler, features from the inner materials start to appear in the spectra. For instance, at t ∼ 1 month, the absorption feature of Fe ii lines near 4800–4900 Å, including Fe ii 5169, 5018, 4929, starts to appear and gets stronger with time. Later on, absorption features of other elements such as Sc ii 6247, 5663, Ba ii 6142, Ca ii near-infrared (NIR) triplet, and O i 7774 become visible in the spectra, and absorption features of Ba, Ti, and Sc are blended with Fe ii lines.

Spectral evolution and line identifications of PS 15cwo and SN 2018aoq. Shaded regions mark spectral lines of different species as labeled at the bottom of each panel.
Figure 2.

Spectral evolution and line identifications of PS 15cwo and SN 2018aoq. Shaded regions mark spectral lines of different species as labeled at the bottom of each panel.

In the nebular phase, when the SN ejecta became transparent, the SN is powered by the radioactive decay of 56Co. At this late phase, the nebular spectra are dominated by emission lines due to recombination, collisional excitation, and fluorescence (Branch, Baron & Jeffery 2001). The prominent features include emission lines of H α, [O i] 6300,6343, [Ca ii] 72 917 323, and Ca ii NIR triplet (see Fig. 3).

Nebular-phase spectra and line identifications for several SNe II objects in our sample.
Figure 3.

Nebular-phase spectra and line identifications for several SNe II objects in our sample.

3.2 High-velocity features of hydrogen

A few of SNe II are found to exhibit an extra absorption component on the blue side of H α lines. The notch could be the high-velocity (HV) feature of H α or absorption of other species. Gutiérrez et al. (2017a) suggested that this absorption feature observed before t ∼ 35 d after explosion can be associated with Si ii 6355 line, while those observed after the middle of the plateau are HV features of hydrogen. There are two explanations proposed for the origin of the HV features. Baron et al. (2000) suggested that the blue side absorption can be due to the second P-Cgyni profile of H α caused by non-local thermodynamic equilibrium effects. They reproduced the second absorption of H β line in their synthetic spectra with the full non-LTE atmosphere code phoenix. On the other hand, the HV features were also regarded as signs of interaction between SN ejecta and the CSM (Chugai, Chevalier & Utrobin 2007), which can be used to estimate the mass-loss rate of the progenitor star. In theory, the X-rays from the reverse shock can ionize and excite the outer layers of the ejecta, producing a shallow depression in the blue wings of absorption part of P-Cgyni profile (Chugai, Chevalier & Utrobin 2007). Moreover, the HV features can also result from cold dense shell, and such an absorption is usually deeper (Chugai, Chevalier & Utrobin 2007). Owing to the observed diversity of absorption shape, Gutiérrez et al. (2017a) suggested that these HV features are most likely produced by interaction.

For our sample presented in this work, we examined the blue part of H α in each spectrum and consider the notch as HV feature of H α if there is a similar absorption in H β line profile. The spectra with clear HV features are shown in Fig. 4, where one can also see that these HV features show significant diversities. The notches seen in SN 2012A and SN 2016B are shallower, while those seen in SN 2012ec, SN 2012fs, and SN 2018aoq are deeper. As CSM interaction can produce different shapes of HV features, we suggested that CSM interaction be more likely to produce the HV features.

HV features of hydrogen identified in our sample. The HV notches are marked by shadow regions: the notches of SN 2012A and SN 2016B are shallower, while those of SN 2012ec, SN 2012fs, SN 2018aoq are deeper. We found two notches in the t ∼ 76.2 d spectrum of SN 2013ab at 76.2 d, with the absorption minima locating at 9000 and 6500 km s−1, respectively. The overplotted t ∼ 75 d spectrum of SN 2013ab is taken from Silverman et al. (2012).
Figure 4.

HV features of hydrogen identified in our sample. The HV notches are marked by shadow regions: the notches of SN 2012A and SN 2016B are shallower, while those of SN 2012ec, SN 2012fs, SN 2018aoq are deeper. We found two notches in the t ∼ 76.2 d spectrum of SN 2013ab at 76.2 d, with the absorption minima locating at 9000 and 6500 km s−1, respectively. The overplotted t ∼ 75 d spectrum of SN 2013ab is taken from Silverman et al. (2012).

We noticed that SN 2013ab likely showed two HV features in t ∼ 76 d spectrum, with the absorption minma locating at 9000 and 6500 km s−1, respectively. We further examed its t ∼ 75 d spectrum from Silverman et al. (2012) and found that the H β did have two distinct absorptions, though the corresponding absorption in H α is very weak at 6500 km s−1 and we were not sure if this absorption really existed. Nevertheless, multiple notches are found to exist in other individuals. For instance, SN 2001X seems to have two notches detected in the same spectra (see Fig. 18 in Faran et al. 2014a). However, Faran et al. (2014a) noticed that such an identification of HV feature is dubious as the velocities of H α and H β do not match. Another sample is SN 2009N, where two absorption features next to H α (i.e. an absorption with a velocity of about |$\rm 8000\ km\ s^{-1}$| and another absorption with a lower velocity) were detected at the same time in its spectra ranging from 62 to 77 d after the explosion (Takáts et al. 2014, see their fig 9). In SN 2009ip, four notches are found to embeded in the blue side of H α and its polarization spectra reveal a possibly clumpy line-forming region. It is possible that some notches shown in the spectra of these objects belong to other species instead of hydrogen. Othewise, multiple HV features may indicate complex structure of line-forming region that is possibly produced by interactions with asymmetric CSM.

3.3 Flashed-ionization features

Khazov et al. (2016) estimated that |$\ge 18~{{\ \rm per\ cent}}$| of SNe II tend to show ionization emission lines (flash ionized, FI) in their spectra if they are observed at sufficiently early times. Such FI features are formed by the recombination of the outermost CSM, which has been ionized by high-energy photons created during SN shock breakout (Gal-Yam et al. 2014). In our sample, narrow H α emission is primarily used to identify the flash-ionized signatures as it is stronger and lasts for longer time. Ionization emission lines of other species, including helium, carbon, nitrogen, and oxygen are also used whenever possible. As narrow emission lines of hydrogen can be easily contaminated by host-galaxy H ii region, the objects with clear emission lines of host galaxy (e.g. [O iii] 5007, S ii 6717, 6730) but without emission lines of other species except hydrogen, are not assigned as SN II sample with FI features (e.g. SN 2016hvu, see Fig. A1). Finally, we identified possible FI features in two objects, i.e. SN 2013ac and SN 2016aqw, among the 49 objects with spectra taken within 11 d after the explosion, (see Fig. 5). The narrow emission lines of He i 5876,7065 were observed in SN 2013ac and SN 2016aqw. In addition, the He ii 4686 line (may blend with C iii/N iii) can be observed in the spectra of SN 2016aqw. Lorentzian function is used to measure the full width at half-maximum (FWHM) of H α line profile, with the FWHM being |$\sim 1000$| and |$\sim \rm 800\ km \ s^{-1}$| for SN 2013ac and SN 2016aqw, respectively (see Fig. A2). Note that for SN 2013fs, the FI feature cannot be detected in our 5.4 d spectrum, however, the emission features of O vi 3811, O v 5597, O iv 3410, N v 4604, and He ii 4686 were detected in spectra that taken at earlier epochs than we observed (Yaron et al. 2017). Broad emission (with FWHM |$\sim 5000\ \rm km\ s^{-1}$|⁠) has been detected at the location of H α in SN 2016fmt. However, a narrow component seems to be superposed on the broad component (see Fig. A2) and a possible emission signature of C iv 5801 seems to be detected, suggesting that SN 2016aqw possibly has FI features.

The SNe II of our sample showing possible flash-ionized features in the early phases. Left panel: the original spectra and the best-fitting blackbody (grey line). Right panel: the blackbody continuum-subtracted spectral features. Vertical dashed lines represent emission lines of different species.
Figure 5.

The SNe II of our sample showing possible flash-ionized features in the early phases. Left panel: the original spectra and the best-fitting blackbody (grey line). Right panel: the blackbody continuum-subtracted spectral features. Vertical dashed lines represent emission lines of different species.

Besides the object with FI features, 19 of all 49 objects only show blue featureless spectra at early times (≤11 d). The phases of these spectra range from 1.1 to 9.3 d after explosion. As the FI features usually disappear quickly, detection of such features requires observations of SNe II within a few days after their explosions. SNe II with only blue featureless continuum probably produce no FI features at all or show FI signatures in the spectra at an epoch earlier than we observed.

4 EXPANSION VELOCITY

We measured the velocities of H α, H β, and Fe ii 5169 from the absorption minima of P Cgyni profiles in every spectrum where they can be clearly detected. At around the absorption minima, we choose a few regions with lower spectral flux density to measure the velocity. The average value of these measurements is used as the velocity and the standard derivation is used as the uncertainty. The results are shown in Fig. 6 and tabulated in Table A3. For comparison, we also included the average velocity evolution from the sample of Gutiérrez et al. (2017a), the typical IIP SN 1999em (Elmhamdi et al. 2003; Takáts & Vinkó 2012), the high-luminosity type IIP SN 2012aw (Bose et al. 2013), and the low-luminosity SN IIP 2005cs (LLSNe) (Pastorello et al. 2009). In Fig. 6, we see that all of our SNe except for SN 2016cok have velocities larger than SN 2005cs, which means that SN 2016cok could be a low-luminosity SN II. Kochanek et al. (2017) identified a pre-explosion counterpart to SN 2016cok in archival images of Hubble Space Telescope and they found that the initial mass of progenitor was most likely in the mass range of 8–12 M. Such a relative lower mass range is consistent with that expected for the progenitor stars of low-luminosity SNe.

Velocity evolution of H α, H β, and Fe ii 5169 lines of our SN II sample and some well-studied SNe II. The black solid line and dashed lines represent the average velocity evolution and 1σ standard deviation from the sample of Gutiérrez et al. (2017a).
Figure 6.

Velocity evolution of H α, H β, and Fe ii 5169 lines of our SN II sample and some well-studied SNe II. The black solid line and dashed lines represent the average velocity evolution and 1σ standard deviation from the sample of Gutiérrez et al. (2017a).

As the SN ejecta expand homologously, thus the expansion velocities decrease with time approximately in a power-law fashion (Faran et al. 2014a; de Jaeger et al. 2019). We thus fit the velocity evolution with a power-law function (i.e. |$v_{\rm {H\,\alpha }} = v^{50}_{\rm H\,\alpha }(t/{50})^{n_{\rm H\,\alpha }}$|⁠, |$v_{\rm {H\,\beta }} = v^{50}_{\rm H\,\beta }(t/{50})^{n_{\rm H\,\beta }}$|⁠, |$v_{\rm {Fe}} = v^{50}_{\rm Fe}(t/{50})^{n_{\rm Fe}}$|⁠) to estimate both the velocity at t = 50 d after the explosion and the power-law exponent. Power-law fitting can only be used for those having at least two velocity data points. In our sample, however, many SNe have only one spectrum. If their spectra were taken between 45 and 55 d after the explosion, the velocity measured by absorption minimum can be treated as v50 and they are included in our analysis to increase the number of statistics. The parameters of v50 and the power-law exponent are shown in Table A4. The velocity evolution of a part of SNe II and the fitting results are shown in Fig. A3, and the distribution of these parameters is shown in Fig. 7. At t ∼ 50 d after the explosion, the velocities have large varieties. For instance, the velocity of H α ranges from 4500 to 10 000 km s−1, with a mean value of 6904 ± 1336 km s−1, while the velocities of H β range from 3000 to 10 000 km s−1 and the velocity of Fe ii 5169 ranges from 2000 to 5500 km s−1. As seen in Fig. A3, for each SN, the velocity of hydrogen is higher than that of iron at similar epoch. This can be explained as that the Balmer lines are formed at larger radii than the iron lines.

Distribution of velocity measured at t ∼ 50 d after the explosion and the power-law exponents of H α, H β, and Fe ii 5169. The vertical dashed lines mark the average values. The total number and the average velocity (the unit of average velocity is $\rm km\ s^{-1}$) of each parameter are listed in each panel.
Figure 7.

Distribution of velocity measured at t ∼ 50 d after the explosion and the power-law exponents of H α, H β, and Fe ii 5169. The vertical dashed lines mark the average values. The total number and the average velocity (the unit of average velocity is |$\rm km\ s^{-1}$|⁠) of each parameter are listed in each panel.

Gutiérrez et al. (2017a) introduced Δv(H β) (the mean velocity decline rate in a fixed phase range) to quantify the decline rate of H β vecloity. They found that SNe II with larger decline rates at early times continue to show such behaviours at late times. In our analysis, we use the power-law exponent (e.g. |$\rm n_{H\alpha }$|⁠, see Section 4) to describe the velocity decline rate. Larger absolute values suggest faster decline rates. As seen from Fig. 7, the exponent measured from H α velocity evolution ranges from −0.45 to −0.15 and has a smaller range compared with those inferred from H β and Fe ii 5169 velocities. For example, the exponent inferred from the H β velocity evolution has a range of −1.1 ∼ −0.15. Among our sample, SN 2018bek, SN 2013gd and SN 2011az are the three showing the fastest decline rate of H β velocity. The exponent derived from Fe ii 5169 velocity is found to vary from −1.1 to −0.2, with SN 2015V and SN 2016jfu being the two showing the fastest decline rates and SN 2011bi and PS15cwo showing the slowest decline rates. However, it should be pointed out that the power-law exponent was derived from only a few data points, which may suffer large uncertainties. Sometimes we may overestimate or underestimate the decline rate. For example, the |$\rm n_{H\beta }$| of SN 2013gd, |$\rm n_{Fe}$| of SN 2015V, and |$\rm n_{Fe}$| of SN 2016jfu may be overestimated as shown in Fig. A3.

5 PSEUDO-EQUIVALENT WIDTHS

The pEW is used to describe the strength of spectral lines. We measured the pEW of the absorption part of H α, H β, and Fe ii 5169 lines, the emission part of H α, and the pEW ratio of absorption to emission component (a/e) of H α. The measurement results of our sample and the average values from sample presented in Gutiérrez et al. (2017a) are shown in Fig. 8. One can see that the measurements of our sample are consistent with those derived by Gutiérrez et al. (2017a), although it is complicated to determine by the underlying continuum of each line feature.2 The pEW of absorption component can reach at ∼100, ∼80, and ∼70 Å for H α, H β, and Fe ii 5169, respectively, while the emission component of H α can reach at ∼300 Å in the first ∼140 d. As noted by de Jaeger et al. (2019) and Gutiérrez et al. (2017a), generally speaking, the absorption components of Balmer lines and Fe ii lines tend to increase their strengths with time in the first one or two months and this increase behaviour becomes slowly at later phases. However, the pEW evolution shows diversities among different objects. For example, the absorption part of H α in PS15cwo, SN 2013gd, and SN 2018aoq start to decrease in strength at t ∼ 60–70 d after explosion, while this happened in SN 2016cok since t ∼ 15 d after the explosion. Diversities are also observed in the evolution of H α emission component. The evolution shows an overall increase with time but several objects show a decrease trend at some point. The general tendency of a/e shows an increasing tendency at early times and it remains constant or shows slight decrease at late times. The large diversities in the strength of the above lines among different SNe II may reflect diverse temperature evolution and progenitor metallicity (Gutiérrez et al. 2017a).

Temporal evolution of pEW of H α, H β, and Fe ii 5169. The grey solid line and the grey shadow represent, respectively, the average pEW value and 1σ standard deviation from the sample given by Gutiérrez et al. (2017a).
Figure 8.

Temporal evolution of pEW of H α, H β, and Fe ii 5169. The grey solid line and the grey shadow represent, respectively, the average pEW value and 1σ standard deviation from the sample given by Gutiérrez et al. (2017a).

6 PARAMETERS OF VELOCITY EVOLUTION

6.1 Correlations between velocity parameters

For these velocity parameters measured for our sample, we use the Pearson correlation coefficient (ρ) to examine their correlations. According to Evans (1996), the coefficients in the range of 0–0.19, 0.2–0.39, 0.4–0.59, 0.6–0.89, and 0.8–1.0 represent no, weak, moderate, strong, and very strong correlations, respectively. The results are shown in Fig. 9. For the velocities measured at 50 d after the explosion, we found that any two of |$v^{50}_{\rm H\alpha }$|⁠, |$v^{50}_{\rm H\beta }$|⁠, and |$v^{50}_{\rm FeII 5169}$| parameters show a strong positive correlation, with the Pearson correlation coefficient being larger than 0.8 (see the left three panels of Fig. 9). However, for the evolution exponent nH α, nH β, and |$\rm n_{Fe}$|⁠, we find no correlation between them, as shown in the middle panels of Fig. 9. Besides, we found that the H β velocity tends to show a slower decline for SNe II with higher velocities. (see panel (f) of Fig. 9). After excluding SN 2018bek, SN 2013gd, and SN 2011az, which are the three showing the fastest velocity declines,3 the Pearson coefficient increase froms 0.586 to 0.660.

Correlations between velocity evolution parameters inferred from H α, H β, and Fe ii 5169 lines. v50 represents the velocity derived from t ∼ 50 d spectra, while nH α, nH β, and nFe represent the power-law index determined by applying the power-law fits to the velocity decay from the H α, H β, and Fe ii 5169 absortpion features, respectively.
Figure 9.

Correlations between velocity evolution parameters inferred from H α, H β, and Fe ii 5169 lines. v50 represents the velocity derived from t ∼ 50 d spectra, while nH α, nH β, and nFe represent the power-law index determined by applying the power-law fits to the velocity decay from the H α, H β, and Fe ii 5169 absortpion features, respectively.

To test whether the above negative tendency really exists for SNe II, we further include some well-studied individual SNe II from the literature and those of Gutiérrez et al. (2017a) in the statistical sample. The velocity evolution and power-law fit for these well studied objects are shown in Fig. A4 and the relevant parameters of these well-studied sample are also given in Table A4. The power-law fitting and the parameters for the sample of Gutiérrez et al. (2017a) are shown in Fig. A5 and Table A5, respectively. For each spectral species, Pearson correlation coefficients were calculated for all the samples and for only the gold sample, respectively. (Those with error of power-law exponent less than 20 per cent are selected as the gold sample and they are represented by solid markers in Fig. 10.) As can be seen from Fig. 10, the tendency that high-velocity SNe II have slower velocity gradients still remains for H β when including more objects. Similar tendency probably exists in H α, with the Pearson coefficient being 0.45 for all sample and 0.65 for the well-observed SNe II from literature (after removing SN 2016bkv). Faran et al. (2014b) found that the velocities inferred from hydrogen lines of SNe IIL, especially H β, evolve more slowly than those of SNe IIP. In general, the velocities of SNe IIL are higher than those of SNe IIP, which means that SNe II with higher H β velocities also evolve more slowly in the samples of Faran et al. (2014b). Therefore, what they found is consistent with the negative correlation in H β revealed in this work. In comparison, the velocity decline rate of hydrogen derived in this work shows a continuous distribution and no distinction is found between the whole SNe II smaple.

Similar as Fig. 9, with well-studied individuals in literature included, including some 'typical (red symbols)', fast-declining (green symbols), and low-luminosity (yellow symbols) SNe II.The solid markers represent the gold sample that satisfies the criteria that the uncertainty is less than 20 per cent, while the open markers represent other objects.
Figure 10.

Similar as Fig. 9, with well-studied individuals in literature included, including some 'typical (red symbols)', fast-declining (green symbols), and low-luminosity (yellow symbols) SNe II.The solid markers represent the gold sample that satisfies the criteria that the uncertainty is less than 20 per cent, while the open markers represent other objects.

Besides, a negative correlation possibly exists in Fe ii velocity and its velocity decay. However, we caution, that the negative correlation is not evident in the well-studied sample and the parameter distribution of Fe seems to have a larger scatter than that of hydrogen. Moreover, both Faran et al. (2014b) and de Jaeger et al. (2015) suggested that the Fe ii velocity of SNe IIL shows a similar evolution as that of SNe IIP (but with a significant scatter), which is not consistent with the negative correlation. Therefore, we cannot conclude the correlation between Fe ii velocity and its decay rate.

As shown in Fig. 10, the velocity parameters of some objects deviate from others. In some cases, the power-law results seem unreasonable due to bad spectral sampling (e.g. SN 2015V and SN 2016jfu). In other cases, the velocities evolve in distinct ways. The velocities of both SN 2016bkv (a low-luminosity SN II) and SN 2018zd show an increase at early times, which may be related to CSM interaction (Zhang et al. 2020), as shown in Fig. A4. Moreover, the velocity parameters of SN 2016bkv seem to show significant differences from others. Nakaoka et al. (2018) also noticed that SN 2016bkv showed a slower velocity evolution when compared with other LL SNe. It is not clear why some LL SNe II deviate from the ‘normal’ SN II sample in the v50n relation. The evolution of velocity is related to the physical properties of the progenitor star and expansion itself. Since SN 2016bkv could be the possible electron-capture SNe candidate (Hosseinzadeh et al. 2018), its distinct velocity evolution may be partly related with the possible electron-capture origin.

6.2 Correlations between pEW and velocity

The ratio of absorption part to emission part (a/e) of H α can be used to describe the diversity of SNe II. Patat et al. (1994) and Schlegel (1996) proposed that the subclass of SNe IIL have shallower P-Cgyni profiles, and hence smaller a/e values. Whereas Gutiérrez et al. (2014) proposed that there is no definitive spectral distinction between SNe IIP and SNe IIL, and SNe II with smaller a/e ratios of H α tend to have higher H α velocities, more rapid post-peak declines in light curve, higher peak brightness, and shorter optically thick phase duration (defined as time from the explosion epoch through the end of the plateau phase.). Our spectral data set also indicate that SNe II with higher H α velocities have smaller a/e ratios. Note that the a/e ratios at 50 days after explosion are listed in Table A6. Moreover, the exponents of velocity decay inferred from hydrogen lines seem to have a moderate correlation with the a/e values at 50 days after explosion (see Fig. 11), suggesting that the velocity evolution of hydrogen lines may be related to the hydrogen envelope. Faran et al. (2014b) proposed that the velocities of SNe IIL evolve more slowly than those of SNe IIP is due to that the hydrogen lines are formed in the outer thin layers of the ejecta rather than in a thick, gradually exposed hydrogen envelope. The moderate correlation in hydrogen lines revealed by our sample (i.e. SN II with slower velocity decay of hydrogen lines tends to have a smaller a/e ratio) favours the above explanation and also favours the traditional consensus that those traditionally classified SNe IIL likely have smaller hydrogen envelope mass at SN explosion.

Correlation between pEW ratios of absorption to emission component (a/e) of H α and the velocity power-law exponents. In the upper-right, lower-left, and lower-right panels, the gold sample (the definition of a gold sample is the same as Fig. 10) is represented by solid markers, while other objects are represented by open markers.
Figure 11.

Correlation between pEW ratios of absorption to emission component (a/e) of H α and the velocity power-law exponents. In the upper-right, lower-left, and lower-right panels, the gold sample (the definition of a gold sample is the same as Fig. 10) is represented by solid markers, while other objects are represented by open markers.

If SNe IIL are formed by single stars, less hydrogen envelope mass (larger mass-loss) could point to higher progenitor mass than SNe IIP (Smartt 2009) or high progenitor metallicity at which mass-loss is strong enough to remove much of the hydrogen envelope (Heger et al. 2003). Direct observations on progenitor stars of SNe IIL are rare and the estimated masses have large uncertainties. Nevertheless, Valenti et al. (2016) proposed that SNe IIL appear not to come from more massive progenitors than SNe IIP. Moreover, single stars with enough metallicity will be so massive and they tend to form blackholes by fallback with weak SNe (Heger et al. 2003). If part of SNe IIL do not have larger progenitor mass than SNe IIP, then it is possible that they originate from binary system and the mass transfer in binaries may play important roles in stripping part of the hydrogen shell. In future works, we intend to discuss the light-curve properties and the correlations between spectral and photometric parameters, as well as the SN environment, aiming to understand the SN progenitor and its explosion physics.

7 CONCLUSIONS

In this work, we present a compilation of the optical spectra of SNe IIP/IIL observed over the past decade by the Tsinghua Supernova group. The sample consists 206 unreleased spectra for 104 SNe II, covering the phases from ∼1 to ∼200 d after the explosion. Among 49 objects with spectra obtained within 10 d after explosion, two objects (SN 2013ac and SN 2016aqw) are found to show possble flash-ionized emission lines, including narrow lines of H α, H β, He i 5876,7065, and He ii 4686. Prominent HV features of hydrogen are detected in six objects and they show different line profiles. Two are shallower and three are deeper. Two HV features are found to likely exist in the blue side of both H α and H β in the t ∼ 76.2 d spectrum of SN 2013ab. Based on the diversity of line profiles and multiple components, we suggested that CSM interactions could be at least a partial origin of HV features.

The pEW of absorption component of H α in our sample can reach at ∼100 Å and the emission component can reach at ∼300 Å in the first ∼140 d. For individual object, the pEW of Balmer and metal lines show large scatter in the evolution, but we do not find definitive distinctions to separate SNe IIP from SNe IIL. A power-law function is used to fit the velocity evolution in order to estimate the velocity at 50 d after the explosion; moreover, the power-law exponent can be used to describe the velocity decay rate at the same time. For our sample, we found that SNe II with higher velocities during plateau phase show slower velocity evolution for H β. Moreover, the velocity decay rate of hydrogen (i.e. |$\rm n_{H\alpha }$| and |$\rm n_{H\beta }$|⁠) have a moderate correlation with the a/e of H α. SNe II with smaller velocity gradient of hydrogen lines tend to have smaller a/e ratios as well, suggesting the progenitors of those SNe II having less amount of hydorgen kept in the stellar envelope before explosion. Photometric parameters, as well as SN environment, will be discussed in future works, in order to understand the observational diversity of SNe II and the mechanisms responsible for these diversities.

ACKNOWLEDGEMENTS

We acknowledge the support of the staff of the Lijiang 2.4-m and Xinglong 2.16-m telescopes. This work is supported by the National Natural Science Foundation of China (NSFC grants 12288102, 12033002, and 11633002) and the Tencent Xplorer Prize. JZ is supported by the National Key R&D Program of China (2021YFA1600404), the National Natural Science Foundation of China (12173082), the Yunnan Province Foundation (202201AT070069), the Top-notch Young Talents Program of Yunnan Province, the Light of West China Program provided by the Chinese Academy of Sciences, and the International Centre of Supernovae, Yunnan Key Laboratory (202302AN360001). Y-ZC is supported by the National Natural Science Foundation of China (NSFC, grant no. 12303054). This work is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences, grant no. XDB0550100. This work is supported supported by the National Natural Science Foundation of China (grant nos. 12090041 and 12090040). This work was partially supported by the Open Project Program of the Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences. The LJT is jointly operated and administered by Yunnan Observatories and the Center for Astronomical MegaScience (CAS). Funding for the LJT has been provided by Chinese Academy of Sciences and the Peoples Government of Yunnan Province.

DATA AVAILABILITY

The data underlying this article are available in the article and in its online supplementary material. All the spectra have been uploaded to the webpage of WISeREP (https://www.wiserep.org) and Zenodo (https://doi.org/10.5281/zenodo.10466160). The spectra can also be found at https://thusn.phys.tsinghua.edu.cn/static/files/THUSN_SNII_spectra_20240110.zip.

Footnotes

1

Actually, for these objects, the time of first discovery is the upper limit of explosion date.

2

In our work, the continuum is determined by a linear fit to the two ends of the spectral line and the uncertainty of pEW is estimated by changing the range of two ends.

3

The point of SN 2017ivu is also removed since it is an oulier probably due to bad spectral sampling.

References

Anderson
J. P.
et al. ,
2014
,
ApJ
,
786
,
67

Barbarino
C.
et al. ,
2015
,
MNRAS
,
448
,
2312

Barbon
R.
,
Ciatti
F.
,
Rosino
L.
,
1979
,
A&A
,
72
,
287

Baron
E.
et al. ,
2000
,
ApJ
,
545
,
444

Bartunov
O. S.
,
Blinnikov
S. I.
,
1992
,
Sov. Astron. Lett.
,
18
,
43

Blondin
S.
,
Tonry
J. L.
,
2007
,
ApJ
,
666
,
1024

Bose
S.
et al. ,
2013
,
MNRAS
,
433
,
1871

Bose
S.
et al. ,
2015
,
MNRAS
,
450
,
2373

Bose
S.
et al. ,
2021
,
MNRAS
,
503
,
3472

Branch
D.
,
Baron
E.
,
Jeffery
D. J.
,
2001
, in
Weiler
K. W.
, ed.,
Supernovae and Gamma-Ray Bursts
.
Springer-Verlag

Chugai
N. N.
,
Chevalier
R. A.
,
Utrobin
V. P.
,
2007
,
ApJ
,
662
,
1136

Dall’Ora
M.
et al. ,
2014
,
ApJ
,
787
,
139

de Jaeger
T.
et al. ,
2015
,
ApJ
,
815
,
121

de Jaeger
T.
et al. ,
2018
,
MNRAS
,
478
,
3776

de Jaeger
T.
et al. ,
2019
,
MNRAS
,
490
,
2799

Elmhamdi
A.
et al. ,
2003
,
MNRAS
,
338
,
939

Evans
J.
,
1996
,
Straightforward Statistics for the Behavioral Sciences
.
Brooks/Cole Publishing
,
Pacific Grove, CA

Fan
Y.-F.
,
Bai
J.-M.
,
Zhang
J.-J.
,
Wang
C.-J.
,
Chang
L.
,
Xin
Y.-X.
,
Zhang
R.-L.
,
2015
,
Res. Astron. Astrophys.
,
15
,
918

Fan
Z.
et al. ,
2016
,
PASP
,
128
,
115005

Faran
T.
et al. ,
2014a
,
MNRAS
,
442
,
844

Faran
T.
et al. ,
2014b
,
MNRAS
,
445
,
554

Filippenko
A. V.
,
1997
,
ARA&A
,
35
,
309

Filippenko
A. V.
,
Matheson
T.
,
Ho
L. C.
,
1993
,
ApJ
,
415
,
L103

Fraser
M.
et al. ,
2012
,
ApJ
,
759
,
L13

Gal-Yam
A.
et al. ,
2014
,
Nature
,
509
,
471

Galbany
L.
et al. ,
2016
,
AJ
,
151
,
33

Gutiérrez
C. P.
et al. ,
2014
,
ApJ
,
786
,
L15

Gutiérrez
C. P.
et al. ,
2017a
,
ApJ
,
850
,
89

Gutiérrez
C. P.
et al. ,
2017b
,
ApJ
,
850
,
90

Hamuy
M.
,
Suntzeff
N. B.
,
Gonzalez
R.
,
Martin
G.
,
1988
,
AJ
,
95
,
63

Heger
A.
,
Fryer
C. L.
,
Woosley
S. E.
,
Langer
N.
,
Hartmann
D. H.
,
2003
,
ApJ
,
591
,
288

Hendry
M. A.
et al. ,
2005
,
MNRAS
,
359
,
906

Hosseinzadeh
G.
et al. ,
2018
,
ApJ
,
861
,
63

Huang
F.
et al. ,
2015
,
ApJ
,
807
,
59

Jerkstrand
A.
,
Fransson
C.
,
Maguire
K.
,
Smartt
S.
,
Ergon
M.
,
Spyromilio
J.
,
2012
,
A&A
,
546
,
A28

Khazov
D.
et al. ,
2016
,
ApJ
,
818
,
3

Kilpatrick
C. D.
,
Foley
R. J.
,
2018
,
MNRAS
,
481
,
2536

Kochanek
C. S.
et al. ,
2017
,
MNRAS
,
467
,
3347

Li
W.
,
Van Dyk
S. D.
,
Filippenko
A. V.
,
Cuillandre
J.-C.
,
Jha
S.
,
Bloom
J. S.
,
Riess
A. G.
,
Livio
M.
,
2006
,
ApJ
,
641
,
1060

Lin
H.
et al. ,
2021
,
MNRAS
,
505
,
4890

Litvinova
I. I.
,
Nadezhin
D. K.
,
1983
,
Ap&SS
,
89
,
89

Maguire
K.
et al. ,
2012
,
MNRAS
,
420
,
3451

Maund
J. R.
,
Smartt
S. J.
,
Danziger
I. J.
,
2005
,
MNRAS
,
364
,
L33

Minkowski
R.
,
1941
,
PASP
,
53
,
224

Moriya
T. J.
,
Pruzhinskaya
M. V.
,
Ergon
M.
,
Blinnikov
S. I.
,
2016
,
MNRAS
,
455
,
423

Morozova
V.
,
Piro
A. L.
,
Renzo
M.
,
Ott
C. D.
,
Clausen
D.
,
Couch
S. M.
,
Ellis
J.
,
Roberts
L. F.
,
2015
,
ApJ
,
814
,
63

Nakaoka
T.
et al. ,
2018
,
ApJ
,
859
,
78

Pastorello
A.
et al. ,
2009
,
MNRAS
,
394
,
2266

Patat
F.
,
Barbon
R.
,
Cappellaro
E.
,
Turatto
M.
,
1994
,
A&A
,
282
,
731

Pignata
G.
,
2015
,
Massive Stars: From α to Ω, msao.conf
. p.
176
,

Popov
D. V.
,
1993
,
ApJ
,
414
,
712

Rodríguez
Ó.
et al. ,
2020
,
MNRAS
,
494
,
5882

Rubin
A.
et al. ,
2016
,
ApJ
,
820
,
33

Rui
L.
et al. ,
2019
,
MNRAS
,
485
,
1990

Sahu
D. K.
,
Anupama
G. C.
,
Srividya
S.
,
Muneer
S.
,
2006
,
MNRAS
,
372
,
1315

Sanders
N. E.
et al. ,
2015
,
ApJ
,
799
,
208

Schlafly
E. F.
,
Finkbeiner
D. P.
,
2011
,
ApJ
,
737
,
103

Schlegel
E. M.
,
1990
,
MNRAS
,
244
,
269

Schlegel
E. M.
,
1996
,
AJ
,
111
,
1660

Shivvers
I.
,
Groh
J. H.
,
Mauerhan
J. C.
,
Fox
O. D.
,
Leonard
D. C.
,
Filippenko
A. V.
,
2015
,
ApJ
,
806
,
213

Silverman
J. M.
et al. ,
2012
,
MNRAS
,
425
,
1789

Silverman
J. M.
et al. ,
2017
,
MNRAS
,
467
,
369

Smartt
S. J.
,
2009
,
ARA&A
,
47
,
63

Smartt
S. J.
,
Eldridge
J. J.
,
Crockett
R. M.
,
Maund
J. R.
,
2009
,
MNRAS
,
395
,
1409

Smith
N.
,
2017
, in
Alsabti
A. W.
,
Murdin
P.
, eds,
Handbook of Supernovae
.
Springer International Publishing AG
, p.
403

Spiro
S.
et al. ,
2014
,
MNRAS
,
439
,
2873

Szalai
T.
et al. ,
2019
,
ApJ
,
876
,
19

Takáts
K.
,
Vinkó
J.
,
2012
,
MNRAS
,
419
,
2783

Takáts
K.
et al. ,
2014
,
MNRAS
,
438
,
368

Tody
D.
,
1986
, in
Crawford
D. L.
, ed.,
Proc. SPIE Conf. Ser. Vol. 627, Instrumentation in Astronomy VI
.
SPIE
,
Bellingham
, p.
733

Tody
D.
,
1993
, in
Hanisch
R. J.
,
Brissenden
R. J. V.
,
Barnes
J.
, eds,
ASP Conf. Ser. Vol. 52, Astronomical Data Analysis Software and Systems II
.
Astron. Soc. Pac
,
San Francisco
, p.
173

Valenti
S.
et al. ,
2016
,
MNRAS
,
459
,
3939

Van Dyk
S. D.
,
Li
W.
,
Filippenko
A. V.
,
2003
,
PASP
,
115
,
1289

Van Dyk
S. D.
et al. ,
2012
,
ApJ
,
756
,
131

Van Dyk
S. D.
et al. ,
2019
,
ApJ
,
875
,
136

Vinkó
J.
et al. ,
2006
,
MNRAS
,
369
,
1780

Xiang
D.
et al. ,
2023
,
MNRAS
,
520
,
2965

Yaron
O.
et al. ,
2017
,
Nat. Phys.
,
13
,
510

Zhang
J.
et al. ,
2014
,
ApJ
,
797
,
5

Zhang
J.
et al. ,
2020
,
MNRAS
,
498
,
84

Zhang
J.
et al. ,
2023
,
Sci. Bull.
,
68
,
2548

APPENDIX A: ADDITIONAL TABLES AND FIGURES

The H α line profile in the spectrum of SN2013ac, SN 2016aqw, and SN 2016fmt. The dashed lines are the Lorentzian fits for the H α line profile.
Figure A2.

The H α line profile in the spectrum of SN2013ac, SN 2016aqw, and SN 2016fmt. The dashed lines are the Lorentzian fits for the H α line profile.

The velocity evolution inferred from H α, H β, and Fe ii 5169 lines in the spectra of our sample of SNe II. Overplotted are the power-law fitting to the observed velocity evolution. We must notice that the power-law exponent of our sample has larger errors, and this is due to bad spectral sampling.
Figure A3.

The velocity evolution inferred from H α, H β, and Fe ii 5169 lines in the spectra of our sample of SNe II. Overplotted are the power-law fitting to the observed velocity evolution. We must notice that the power-law exponent of our sample has larger errors, and this is due to bad spectral sampling.

Same as Fig. A3, but for the well-studied sample in literature. The newly added sample include the typical SNe IIP like SN 1999em (Elmhamdi et al. 2003; Takáts & Vinkó 2012), SN 2004dj (Vinkó et al. 2006), SN 2012ec (Barbarino et al. 2015), SN2004et (Sahu et al. 2006; Takáts & Vinkó 2012), SN 2012aw (Bose et al. 2013), and SN 2017eaw(Szalai et al. 2019; Van Dyk et al. 2019); fast declining samples of SN 2013ej (Huang et al. 2015) and SN 2015bf (Lin et al. 2021)); the low-luminosity, low-velocity objects of SN 2003gd (Hendry et al. 2005), SN 2005cs (Pastorello et al. 2009; Takáts & Vinkó 2012), SN 2008bk(Pignata 2015), and SN2016bkv(Nakaoka et al. 2018); SN 2009N (Takáts et al. 2014), which link normal and subluminous SNe IIP; and SN 2018zd (Zhang et al. 2020). Among these objects, SN 2013fs, SN 2015bf, SN 2016bkv, and SN 2018zd have flash-ionized features at early phases, which indicate massive CSM and therefore larger mass-loss rate of progenitor shortly before the SN explosion.
Figure A4.

Same as Fig. A3, but for the well-studied sample in literature. The newly added sample include the typical SNe IIP like SN 1999em (Elmhamdi et al. 2003; Takáts & Vinkó 2012), SN 2004dj (Vinkó et al. 2006), SN 2012ec (Barbarino et al. 2015), SN2004et (Sahu et al. 2006; Takáts & Vinkó 2012), SN 2012aw (Bose et al. 2013), and SN 2017eaw(Szalai et al. 2019; Van Dyk et al. 2019); fast declining samples of SN 2013ej (Huang et al. 2015) and SN 2015bf (Lin et al. 2021)); the low-luminosity, low-velocity objects of SN 2003gd (Hendry et al. 2005), SN 2005cs (Pastorello et al. 2009; Takáts & Vinkó 2012), SN 2008bk(Pignata 2015), and SN2016bkv(Nakaoka et al. 2018); SN 2009N (Takáts et al. 2014), which link normal and subluminous SNe IIP; and SN 2018zd (Zhang et al. 2020). Among these objects, SN 2013fs, SN 2015bf, SN 2016bkv, and SN 2018zd have flash-ionized features at early phases, which indicate massive CSM and therefore larger mass-loss rate of progenitor shortly before the SN explosion.

Table A1.

SN II sample.

SNRADec.Host galaxyRedshiftE(BV)mwLast non-detectionFirst discoveryExplosion date
ASASSN-14kg01:44:38.3835:48:20.45CGCG 521–0750.0144770.039556972.3856978.3656969.5(3)e
ASASSN-14ma23:55:09.1310:12:54.20SDSS J235509.00 + 101252.90.01370.08757004.2756994.5(2)b
ASASSN-15fi16:31:48.8020:24:38.50MRK 8840.0171820.049257098.6357098.5c
Gaia15acw08:49:20.2436:42:57.20NGC 26680.0250.029157003.3356996.6(2.2)b
iPTF13dkz01:36:11.5833:37:01.40⋅⋅⋅0.0160.038856547.556549.4356547.93(0.45)f
MASTER_J210321:03:18.46−14:03:51.70⋅⋅⋅0.0250.040756966.556952(1.5)b
MASTER_J233323:33:28.09−01:58:47.00MCG  + 00-60-060.0170.035457300.557289.7b
PS15cwo03:11:16.7301:11:34.50KUG 0308 + 0100.027230.089357341.4057334.6(0.2)b
SN2011az12:53:53.4036:05:19.60IC 38620.0140.012255638.9255638.5c
SN2011bi17:10:05.8342:22:20.30MCG  + 07-35-370.02770.022155654.0455627.8(8)b
SN2011cj14:32:53.8111:35:49.30UGC 93560.00740.021655690.3955688.1(0.2)b
SN2011eg18:42:54.2153:02:41.50UGC 113430.0280.037155765.2355765.5c
SN2011fd06:46:39.8560:21:02.80NGC 2273B0.0070.062655793.1255782.5(10)d
SN2011fu02:08:21.4141:29:12.30UGC 16260.0184890.064855825.0455824.7(3)b
SN2011ir11:48:00.3204:29:47.10UGC 67710.01990.020255886.8155886c
SN2011jy10:53:57.0323:22:34.50A105357 + 23220.040.020955925.7955924.5c
SN2012A10:25:07.3917:09:14.60NGC 32390.001990.027455933.3955929.4(3)d
SN2012aw10:43:53.7411:40:17.63NGC 33510.0025950.023956001.2756002.8556002g
SN2012bv19:21:30.3461:08:10.80NGC 67960.00730.05956025.7556025.5c
SN2012ec02:45:59.89−07:34:25.00NGC 10840.0046930.022956150.0456142.5d
SN2012fc23:10:12.7130:34:42.60MCG  + 05-54-420.023440.054256190.2656189.5c
SN2012fs00:37:39.3810:21:29.00IC 350.0150.154356207.9656199(0.5)b
SN2012gn09:24:01.7668:33:43.30UGC 49810.01320.067556242.5156242.5c
SN2012gq02:52:46.0146:55:52.30UGC 23510.02810.165656245.6756245.5c
SN2012ho22:40:17.02−02:25:34.10MCG -01-57-210.00990.044956267.3856261.7(0.6)b
SN2013ab14:32:44.4909:53:12.30NGC 56690.005320.023456338.556340.5456339.5(1)h
SN2013ac09:45:08.7958:40:07.30PGC 30868460.030130.010156338.756338.5c
SN2013af09:13:55.1755:46:56.70A091355 + 55460.0350.019756352.556305.5(4.8)b
SN2013bi18:25:01.9827:31:53.70NGC 66320.0160.09456375.9156375.5c
SN2013ca11:58:43.2519:08:56.20PGC 376980.0430.027656413.5456402.8(0.5)b
SN2013fl17:33:39.5350:22:25.50UGC 109080.0194070.020656557.8856537.1(1.5)b
SN2013fs23:19:44.7010:11:05.00NGC 76100.0118550.034656570.3456571.7456571.12i
SN2013fv03:36:16.0567:34:15.70UGC 27890.0104570.673956576.4356576.5c
SN2013gd03:49:05.64−03:03:28.30MCG -01-10-390.0135040.11756605.3556603.3(2)d
SN2013gm11:34:21.1615:39:33.10MCG  + 03-30-070.01730.035756616.8556615.5c
SN2013gu01:46:38.2704:13:24.40PGC 12652940.0177420.025556631.7556630.5c
SN2014A13:16:59.36−16:37:57.00NGC 50540.0060.070856658.5856611(4)b
SN2014B13:04:17.70−10:20:01.20NGC 49390.010370.03556659.656612.5(1.5)b
SN2014bf15:57:35.2318:01:47.60MCG  + 03-41-070.0130.034756799.556799.5c
SN2014bu01:50:58.4521:59:59.80NGC 6940.009840.06156825.1956824.5c
SN2014ce23:27:40.8623:35:21.40NGC 76730.0110.037256878.5256877.5(1)d
SN2014cn12:09:11.5429:10:20.90NGC 41340.0127620.01756771.3856767.2(4)d
SN2014cw22:15:26.55−10:28:34.60PGC 684140.0060.048656898.5456898.5c
SN2014dq22:23:16.12−28:58:30.78ESO 467–510.0060310.015456949.0956945.6(3)d
SN2014G10:54:34.1354:17:56.90NGC 34480.0045030.010256671.3256669.5(2)d
SN2015aq09:25:44.5334:16:36.10UGC 50150.00540.014957286.0757238.5(4.5)b
SN2015as10:08:11.3751:50:40.90UGC 54600.00360.007657341.7857341.5c
SN2015ay01:09:46.7713:18:28.90UGC 7220.0140.024357298.8457291.1(1.4)b
SN2015O18:13:49.2313:14:15.90LEDA 14261310.0560.127157195.3857194.7(1)d
SN2015V17:49:27.0536:08:36.00UGC 110000.0045660.031457116.5257112.5(4)d
SN2015W06:57:43.0313:34:45.70UGC 36170.0130.118157034.2857020.5(16)d
SN2016afa15:36:32.4716:36:36.60NGC 59620.0070.047157425.4757430.9257427.9(2.5)a
SN2016aip06:07:17.3346:01:35.90⋅⋅⋅0.0160.128357432.2357390.1(1.5)b
SN2016ak08:16:34.6624:29:43.30IC 22490.02970.037357401.5157387.6(1.9)b
SN2016aqp04:48:43.43−04:58:43.50MCG -01-13-120.0160.032757425.1557444.1457427.9(0.5)b
SN2016aqw10:55:53.8336:51:48.00UGC 60360.0216880.01457444.3857447.8457446.1(1.8)a
SN2016B11:55:04.2501:43:06.80CGCG 012–1160.0042930.01857380.5357390.6257385.6(5)a
SN2016bkx07:28:11.0472:34:31.50UGC 38380.010250.024957464.1757463.0957463.09c
SN2016bla07:45:26.9429:53:27.50⋅⋅⋅0.0230.037357448.157448.1c
SN2016blb11:37:20.64−04:54:36.842MASX J11372059-04544500.01830.044557467.4457475.2857471.4(4)a
SN2016ccf08:44:11.0534:42:55.80NGC 26490.0141260.026957508.2957505.2557504.2(1)b
SN2016ccm14:09:58.9117:45:49.40IC 9830.0190.020657437.4357502.0757498.4(1)b
SN2016cok11:20:19.0912:58:57.20M660.0024250.02957532.3257536.3057534.3(2)d
SN2016esw18:58:04.0943:56:22.60CGCG 229–0090.028310.058757607.357608.3157607.8(0.5)j
SN2016fmt01:34:50.5221:24:58.30NGC 6060.033220.064957612.2357628.1257620.2(8)a
SN2016fnb22:58:28.78−10:33:20.90FGC 24360.0250190.03757628.6957613.2(2.6)b
SN2016hbd02:56:06.2127:42:06.80PGC 906440.0220.118257664.9957664.5c
SN2016hgm01:22:11.7300:57:07.78NGC 4930.00780.027957672.4757680.4557676.5(4)a
SN2016hjg02:14:50.43−24:51:05.33ESO 478-G150.03780.013657641.257681.4457681.5c
SN2016hvu22:35:55.5620:19:12.58NGC 73160.018520.041157682.1557698.1157698.1c
SN2016I14:39:44.7323:23:43.27UGC 94500.01490.027757380.1157399.0757379.8(1)b
SN2016iog10:04:18.5943:25:29.14GALEXASC J100418.99 + 432525.70.0380.010757712.0957719.5657715.8(3.7)a
SN2016iyz05:52:37.43−17:47:13.02IC 21510.0105560.062757740.457742.457741.4(1)a
SN2016jby10:52:25.8910:32:38.20NGC 34380.0220.020257738.857749.557744.2(5.4)a
SN2016jft09:43:55.8741:41:17.82UGC 51980.01740.013457753.0557748.1(1.4)b
SN2016jfu12:54:42.6028:56:26.00NGC 47930.0082860.010257739.957752.7657746.3(6.4)a
SN2016N04:45:21.2873:23:41.09CGCG 328–0180.0150240.146857394.3957397.2857395.8(1.4)a
SN2017aub06:40:24.7064:33:02.75⋅⋅⋅0.0160.07257786.557799.357792.9(6.4)a
SN2017auf05:02:19.56−10:21:22.86MCG -02-13-380.0132930.076157794.1157798.2857796.2(2.1)a
SN2017auu01:24:46.8609:45:18.35UGC 9690.04840.07857767.557799.4757779.4(4.1)b
SN2017cfa09:57:03.89−07:52:51.14MCG -01-26-030.0140630.082657816.457828.4357821.2(0.5)b
SN2017cff13:39:17.0035:08:39.03⋅⋅⋅0.0190.009257807.757828.8357819.7(1.1)b
SN2017cjb12:53:50.4509:42:17.70NGC 47790.0094430.01957834.0657835.5857834.8(0.8)a
SN2017dka14:01:46.1009:29:57.40NGC 54090.0210.026957862.0557873.0257867.5(5.5)a
SN2017gtd02:22:40.1828:15:24.90IC 2210.0169780.090357990.7758008.9558008.5(1)b
SN2017gww00:03:49.2107:28:00.10NGC 78160.017480.054658022.5558022.6358022.6(0.1)a
SN2017hk12:45:15.3126:05:07.10KUG 1242 + 2630.0590.01257761.8857757.7(2)b
SN2017hxu02:59:27.6014:47:37.542MASX J02592769 + 14474170.040.148158065.6058054(1.4)b
SN2017hxz03:34:11.10−13:56:09.37GALEXASC J033410.88-135616.70.080.039958057.1958053.4458053.4c
SN2017imr04:21:04.79−04:43:06.05⋅⋅⋅0.03460.033158080.6658066.6(1)b
SN2017iub05:11:49.2767:29:15.10UGC 32520.01610.114958085.0758093.0258089(4)a
SN2017ivu15:36:32.7016:36:19.40NGC 59620.0065280.047158021.458098.8658076.7(1.1)b
SN2017jbj00:48:05.42−02:47:22.40NGC 2590.0134920.038758100.1558100.15c
SN2018afm07:59:25.0316:25:35.40UGC 41390.0162910.029458185.458190.1458187.8(2.4)a
SN2018aoq12:10:38.1939:23:47.00NGC 41510.0033190.023358206.558209.4358208(1.5)a
SN2018aql16:57:04.9639:22:54.10⋅⋅⋅0.0740.015758188.6458206.5658197.6(9)a
SN2018bek15:32:01.5568:14:31.00IC 11290.02180.023858234.5258242.3258238.4(3.9)a
SN2018gk16:35:53.9140:01:58.31WISE J163554.27 + 400151.80.0310090.008758128.6558131.6458130.1(0.4)k
SN2018kpo03:40:43.05−06:25:24.14MCG -01-10-190.0170.04958475.358476.3758475.8(0.5)a
SN2018lab06:16:26.53−21:22:32.46IC 21630.0092230.07758480.1358481.1358480.6(0.5)a
SN2018lcd01:51:10.81−03:29:26.87MCG -01-05-420.0070.02658480.3358481.2758480.8(0.5)a
SN2018pn07:56:11.3045:31:36.40⋅⋅⋅0.0480.046958154.658136.8b
SN2018rz14:27:11.44−02:16:10.07NGC 56180.023790.046458130.758142.8658136.8(6.1)a
SN2018yo12:41:11.14−01:35:20.40UGC 78400.01340.02735814058175.4258138.1(3.6)b
SNRADec.Host galaxyRedshiftE(BV)mwLast non-detectionFirst discoveryExplosion date
ASASSN-14kg01:44:38.3835:48:20.45CGCG 521–0750.0144770.039556972.3856978.3656969.5(3)e
ASASSN-14ma23:55:09.1310:12:54.20SDSS J235509.00 + 101252.90.01370.08757004.2756994.5(2)b
ASASSN-15fi16:31:48.8020:24:38.50MRK 8840.0171820.049257098.6357098.5c
Gaia15acw08:49:20.2436:42:57.20NGC 26680.0250.029157003.3356996.6(2.2)b
iPTF13dkz01:36:11.5833:37:01.40⋅⋅⋅0.0160.038856547.556549.4356547.93(0.45)f
MASTER_J210321:03:18.46−14:03:51.70⋅⋅⋅0.0250.040756966.556952(1.5)b
MASTER_J233323:33:28.09−01:58:47.00MCG  + 00-60-060.0170.035457300.557289.7b
PS15cwo03:11:16.7301:11:34.50KUG 0308 + 0100.027230.089357341.4057334.6(0.2)b
SN2011az12:53:53.4036:05:19.60IC 38620.0140.012255638.9255638.5c
SN2011bi17:10:05.8342:22:20.30MCG  + 07-35-370.02770.022155654.0455627.8(8)b
SN2011cj14:32:53.8111:35:49.30UGC 93560.00740.021655690.3955688.1(0.2)b
SN2011eg18:42:54.2153:02:41.50UGC 113430.0280.037155765.2355765.5c
SN2011fd06:46:39.8560:21:02.80NGC 2273B0.0070.062655793.1255782.5(10)d
SN2011fu02:08:21.4141:29:12.30UGC 16260.0184890.064855825.0455824.7(3)b
SN2011ir11:48:00.3204:29:47.10UGC 67710.01990.020255886.8155886c
SN2011jy10:53:57.0323:22:34.50A105357 + 23220.040.020955925.7955924.5c
SN2012A10:25:07.3917:09:14.60NGC 32390.001990.027455933.3955929.4(3)d
SN2012aw10:43:53.7411:40:17.63NGC 33510.0025950.023956001.2756002.8556002g
SN2012bv19:21:30.3461:08:10.80NGC 67960.00730.05956025.7556025.5c
SN2012ec02:45:59.89−07:34:25.00NGC 10840.0046930.022956150.0456142.5d
SN2012fc23:10:12.7130:34:42.60MCG  + 05-54-420.023440.054256190.2656189.5c
SN2012fs00:37:39.3810:21:29.00IC 350.0150.154356207.9656199(0.5)b
SN2012gn09:24:01.7668:33:43.30UGC 49810.01320.067556242.5156242.5c
SN2012gq02:52:46.0146:55:52.30UGC 23510.02810.165656245.6756245.5c
SN2012ho22:40:17.02−02:25:34.10MCG -01-57-210.00990.044956267.3856261.7(0.6)b
SN2013ab14:32:44.4909:53:12.30NGC 56690.005320.023456338.556340.5456339.5(1)h
SN2013ac09:45:08.7958:40:07.30PGC 30868460.030130.010156338.756338.5c
SN2013af09:13:55.1755:46:56.70A091355 + 55460.0350.019756352.556305.5(4.8)b
SN2013bi18:25:01.9827:31:53.70NGC 66320.0160.09456375.9156375.5c
SN2013ca11:58:43.2519:08:56.20PGC 376980.0430.027656413.5456402.8(0.5)b
SN2013fl17:33:39.5350:22:25.50UGC 109080.0194070.020656557.8856537.1(1.5)b
SN2013fs23:19:44.7010:11:05.00NGC 76100.0118550.034656570.3456571.7456571.12i
SN2013fv03:36:16.0567:34:15.70UGC 27890.0104570.673956576.4356576.5c
SN2013gd03:49:05.64−03:03:28.30MCG -01-10-390.0135040.11756605.3556603.3(2)d
SN2013gm11:34:21.1615:39:33.10MCG  + 03-30-070.01730.035756616.8556615.5c
SN2013gu01:46:38.2704:13:24.40PGC 12652940.0177420.025556631.7556630.5c
SN2014A13:16:59.36−16:37:57.00NGC 50540.0060.070856658.5856611(4)b
SN2014B13:04:17.70−10:20:01.20NGC 49390.010370.03556659.656612.5(1.5)b
SN2014bf15:57:35.2318:01:47.60MCG  + 03-41-070.0130.034756799.556799.5c
SN2014bu01:50:58.4521:59:59.80NGC 6940.009840.06156825.1956824.5c
SN2014ce23:27:40.8623:35:21.40NGC 76730.0110.037256878.5256877.5(1)d
SN2014cn12:09:11.5429:10:20.90NGC 41340.0127620.01756771.3856767.2(4)d
SN2014cw22:15:26.55−10:28:34.60PGC 684140.0060.048656898.5456898.5c
SN2014dq22:23:16.12−28:58:30.78ESO 467–510.0060310.015456949.0956945.6(3)d
SN2014G10:54:34.1354:17:56.90NGC 34480.0045030.010256671.3256669.5(2)d
SN2015aq09:25:44.5334:16:36.10UGC 50150.00540.014957286.0757238.5(4.5)b
SN2015as10:08:11.3751:50:40.90UGC 54600.00360.007657341.7857341.5c
SN2015ay01:09:46.7713:18:28.90UGC 7220.0140.024357298.8457291.1(1.4)b
SN2015O18:13:49.2313:14:15.90LEDA 14261310.0560.127157195.3857194.7(1)d
SN2015V17:49:27.0536:08:36.00UGC 110000.0045660.031457116.5257112.5(4)d
SN2015W06:57:43.0313:34:45.70UGC 36170.0130.118157034.2857020.5(16)d
SN2016afa15:36:32.4716:36:36.60NGC 59620.0070.047157425.4757430.9257427.9(2.5)a
SN2016aip06:07:17.3346:01:35.90⋅⋅⋅0.0160.128357432.2357390.1(1.5)b
SN2016ak08:16:34.6624:29:43.30IC 22490.02970.037357401.5157387.6(1.9)b
SN2016aqp04:48:43.43−04:58:43.50MCG -01-13-120.0160.032757425.1557444.1457427.9(0.5)b
SN2016aqw10:55:53.8336:51:48.00UGC 60360.0216880.01457444.3857447.8457446.1(1.8)a
SN2016B11:55:04.2501:43:06.80CGCG 012–1160.0042930.01857380.5357390.6257385.6(5)a
SN2016bkx07:28:11.0472:34:31.50UGC 38380.010250.024957464.1757463.0957463.09c
SN2016bla07:45:26.9429:53:27.50⋅⋅⋅0.0230.037357448.157448.1c
SN2016blb11:37:20.64−04:54:36.842MASX J11372059-04544500.01830.044557467.4457475.2857471.4(4)a
SN2016ccf08:44:11.0534:42:55.80NGC 26490.0141260.026957508.2957505.2557504.2(1)b
SN2016ccm14:09:58.9117:45:49.40IC 9830.0190.020657437.4357502.0757498.4(1)b
SN2016cok11:20:19.0912:58:57.20M660.0024250.02957532.3257536.3057534.3(2)d
SN2016esw18:58:04.0943:56:22.60CGCG 229–0090.028310.058757607.357608.3157607.8(0.5)j
SN2016fmt01:34:50.5221:24:58.30NGC 6060.033220.064957612.2357628.1257620.2(8)a
SN2016fnb22:58:28.78−10:33:20.90FGC 24360.0250190.03757628.6957613.2(2.6)b
SN2016hbd02:56:06.2127:42:06.80PGC 906440.0220.118257664.9957664.5c
SN2016hgm01:22:11.7300:57:07.78NGC 4930.00780.027957672.4757680.4557676.5(4)a
SN2016hjg02:14:50.43−24:51:05.33ESO 478-G150.03780.013657641.257681.4457681.5c
SN2016hvu22:35:55.5620:19:12.58NGC 73160.018520.041157682.1557698.1157698.1c
SN2016I14:39:44.7323:23:43.27UGC 94500.01490.027757380.1157399.0757379.8(1)b
SN2016iog10:04:18.5943:25:29.14GALEXASC J100418.99 + 432525.70.0380.010757712.0957719.5657715.8(3.7)a
SN2016iyz05:52:37.43−17:47:13.02IC 21510.0105560.062757740.457742.457741.4(1)a
SN2016jby10:52:25.8910:32:38.20NGC 34380.0220.020257738.857749.557744.2(5.4)a
SN2016jft09:43:55.8741:41:17.82UGC 51980.01740.013457753.0557748.1(1.4)b
SN2016jfu12:54:42.6028:56:26.00NGC 47930.0082860.010257739.957752.7657746.3(6.4)a
SN2016N04:45:21.2873:23:41.09CGCG 328–0180.0150240.146857394.3957397.2857395.8(1.4)a
SN2017aub06:40:24.7064:33:02.75⋅⋅⋅0.0160.07257786.557799.357792.9(6.4)a
SN2017auf05:02:19.56−10:21:22.86MCG -02-13-380.0132930.076157794.1157798.2857796.2(2.1)a
SN2017auu01:24:46.8609:45:18.35UGC 9690.04840.07857767.557799.4757779.4(4.1)b
SN2017cfa09:57:03.89−07:52:51.14MCG -01-26-030.0140630.082657816.457828.4357821.2(0.5)b
SN2017cff13:39:17.0035:08:39.03⋅⋅⋅0.0190.009257807.757828.8357819.7(1.1)b
SN2017cjb12:53:50.4509:42:17.70NGC 47790.0094430.01957834.0657835.5857834.8(0.8)a
SN2017dka14:01:46.1009:29:57.40NGC 54090.0210.026957862.0557873.0257867.5(5.5)a
SN2017gtd02:22:40.1828:15:24.90IC 2210.0169780.090357990.7758008.9558008.5(1)b
SN2017gww00:03:49.2107:28:00.10NGC 78160.017480.054658022.5558022.6358022.6(0.1)a
SN2017hk12:45:15.3126:05:07.10KUG 1242 + 2630.0590.01257761.8857757.7(2)b
SN2017hxu02:59:27.6014:47:37.542MASX J02592769 + 14474170.040.148158065.6058054(1.4)b
SN2017hxz03:34:11.10−13:56:09.37GALEXASC J033410.88-135616.70.080.039958057.1958053.4458053.4c
SN2017imr04:21:04.79−04:43:06.05⋅⋅⋅0.03460.033158080.6658066.6(1)b
SN2017iub05:11:49.2767:29:15.10UGC 32520.01610.114958085.0758093.0258089(4)a
SN2017ivu15:36:32.7016:36:19.40NGC 59620.0065280.047158021.458098.8658076.7(1.1)b
SN2017jbj00:48:05.42−02:47:22.40NGC 2590.0134920.038758100.1558100.15c
SN2018afm07:59:25.0316:25:35.40UGC 41390.0162910.029458185.458190.1458187.8(2.4)a
SN2018aoq12:10:38.1939:23:47.00NGC 41510.0033190.023358206.558209.4358208(1.5)a
SN2018aql16:57:04.9639:22:54.10⋅⋅⋅0.0740.015758188.6458206.5658197.6(9)a
SN2018bek15:32:01.5568:14:31.00IC 11290.02180.023858234.5258242.3258238.4(3.9)a
SN2018gk16:35:53.9140:01:58.31WISE J163554.27 + 400151.80.0310090.008758128.6558131.6458130.1(0.4)k
SN2018kpo03:40:43.05−06:25:24.14MCG -01-10-190.0170.04958475.358476.3758475.8(0.5)a
SN2018lab06:16:26.53−21:22:32.46IC 21630.0092230.07758480.1358481.1358480.6(0.5)a
SN2018lcd01:51:10.81−03:29:26.87MCG -01-05-420.0070.02658480.3358481.2758480.8(0.5)a
SN2018pn07:56:11.3045:31:36.40⋅⋅⋅0.0480.046958154.658136.8b
SN2018rz14:27:11.44−02:16:10.07NGC 56180.023790.046458130.758142.8658136.8(6.1)a
SN2018yo12:41:11.14−01:35:20.40UGC 78400.01340.02735814058175.4258138.1(3.6)b

a Explosion date estimated by mid-points between the last non-detection and the first discovery.

b Explosion date estimated by matching spectral templates via the SNID.

c First discovery was used as explosion date.

d (de Jaeger et al. 2019); e:(Valenti et al. 2016); f:(Rubin et al. 2016); g:(Dall’Ora et al. 2014).

h (Bose et al. 2015); i:(Yaron et al. 2017); j:(de Jaeger et al. 2018); k:(Bose et al. 2021).

Table A1.

SN II sample.

SNRADec.Host galaxyRedshiftE(BV)mwLast non-detectionFirst discoveryExplosion date
ASASSN-14kg01:44:38.3835:48:20.45CGCG 521–0750.0144770.039556972.3856978.3656969.5(3)e
ASASSN-14ma23:55:09.1310:12:54.20SDSS J235509.00 + 101252.90.01370.08757004.2756994.5(2)b
ASASSN-15fi16:31:48.8020:24:38.50MRK 8840.0171820.049257098.6357098.5c
Gaia15acw08:49:20.2436:42:57.20NGC 26680.0250.029157003.3356996.6(2.2)b
iPTF13dkz01:36:11.5833:37:01.40⋅⋅⋅0.0160.038856547.556549.4356547.93(0.45)f
MASTER_J210321:03:18.46−14:03:51.70⋅⋅⋅0.0250.040756966.556952(1.5)b
MASTER_J233323:33:28.09−01:58:47.00MCG  + 00-60-060.0170.035457300.557289.7b
PS15cwo03:11:16.7301:11:34.50KUG 0308 + 0100.027230.089357341.4057334.6(0.2)b
SN2011az12:53:53.4036:05:19.60IC 38620.0140.012255638.9255638.5c
SN2011bi17:10:05.8342:22:20.30MCG  + 07-35-370.02770.022155654.0455627.8(8)b
SN2011cj14:32:53.8111:35:49.30UGC 93560.00740.021655690.3955688.1(0.2)b
SN2011eg18:42:54.2153:02:41.50UGC 113430.0280.037155765.2355765.5c
SN2011fd06:46:39.8560:21:02.80NGC 2273B0.0070.062655793.1255782.5(10)d
SN2011fu02:08:21.4141:29:12.30UGC 16260.0184890.064855825.0455824.7(3)b
SN2011ir11:48:00.3204:29:47.10UGC 67710.01990.020255886.8155886c
SN2011jy10:53:57.0323:22:34.50A105357 + 23220.040.020955925.7955924.5c
SN2012A10:25:07.3917:09:14.60NGC 32390.001990.027455933.3955929.4(3)d
SN2012aw10:43:53.7411:40:17.63NGC 33510.0025950.023956001.2756002.8556002g
SN2012bv19:21:30.3461:08:10.80NGC 67960.00730.05956025.7556025.5c
SN2012ec02:45:59.89−07:34:25.00NGC 10840.0046930.022956150.0456142.5d
SN2012fc23:10:12.7130:34:42.60MCG  + 05-54-420.023440.054256190.2656189.5c
SN2012fs00:37:39.3810:21:29.00IC 350.0150.154356207.9656199(0.5)b
SN2012gn09:24:01.7668:33:43.30UGC 49810.01320.067556242.5156242.5c
SN2012gq02:52:46.0146:55:52.30UGC 23510.02810.165656245.6756245.5c
SN2012ho22:40:17.02−02:25:34.10MCG -01-57-210.00990.044956267.3856261.7(0.6)b
SN2013ab14:32:44.4909:53:12.30NGC 56690.005320.023456338.556340.5456339.5(1)h
SN2013ac09:45:08.7958:40:07.30PGC 30868460.030130.010156338.756338.5c
SN2013af09:13:55.1755:46:56.70A091355 + 55460.0350.019756352.556305.5(4.8)b
SN2013bi18:25:01.9827:31:53.70NGC 66320.0160.09456375.9156375.5c
SN2013ca11:58:43.2519:08:56.20PGC 376980.0430.027656413.5456402.8(0.5)b
SN2013fl17:33:39.5350:22:25.50UGC 109080.0194070.020656557.8856537.1(1.5)b
SN2013fs23:19:44.7010:11:05.00NGC 76100.0118550.034656570.3456571.7456571.12i
SN2013fv03:36:16.0567:34:15.70UGC 27890.0104570.673956576.4356576.5c
SN2013gd03:49:05.64−03:03:28.30MCG -01-10-390.0135040.11756605.3556603.3(2)d
SN2013gm11:34:21.1615:39:33.10MCG  + 03-30-070.01730.035756616.8556615.5c
SN2013gu01:46:38.2704:13:24.40PGC 12652940.0177420.025556631.7556630.5c
SN2014A13:16:59.36−16:37:57.00NGC 50540.0060.070856658.5856611(4)b
SN2014B13:04:17.70−10:20:01.20NGC 49390.010370.03556659.656612.5(1.5)b
SN2014bf15:57:35.2318:01:47.60MCG  + 03-41-070.0130.034756799.556799.5c
SN2014bu01:50:58.4521:59:59.80NGC 6940.009840.06156825.1956824.5c
SN2014ce23:27:40.8623:35:21.40NGC 76730.0110.037256878.5256877.5(1)d
SN2014cn12:09:11.5429:10:20.90NGC 41340.0127620.01756771.3856767.2(4)d
SN2014cw22:15:26.55−10:28:34.60PGC 684140.0060.048656898.5456898.5c
SN2014dq22:23:16.12−28:58:30.78ESO 467–510.0060310.015456949.0956945.6(3)d
SN2014G10:54:34.1354:17:56.90NGC 34480.0045030.010256671.3256669.5(2)d
SN2015aq09:25:44.5334:16:36.10UGC 50150.00540.014957286.0757238.5(4.5)b
SN2015as10:08:11.3751:50:40.90UGC 54600.00360.007657341.7857341.5c
SN2015ay01:09:46.7713:18:28.90UGC 7220.0140.024357298.8457291.1(1.4)b
SN2015O18:13:49.2313:14:15.90LEDA 14261310.0560.127157195.3857194.7(1)d
SN2015V17:49:27.0536:08:36.00UGC 110000.0045660.031457116.5257112.5(4)d
SN2015W06:57:43.0313:34:45.70UGC 36170.0130.118157034.2857020.5(16)d
SN2016afa15:36:32.4716:36:36.60NGC 59620.0070.047157425.4757430.9257427.9(2.5)a
SN2016aip06:07:17.3346:01:35.90⋅⋅⋅0.0160.128357432.2357390.1(1.5)b
SN2016ak08:16:34.6624:29:43.30IC 22490.02970.037357401.5157387.6(1.9)b
SN2016aqp04:48:43.43−04:58:43.50MCG -01-13-120.0160.032757425.1557444.1457427.9(0.5)b
SN2016aqw10:55:53.8336:51:48.00UGC 60360.0216880.01457444.3857447.8457446.1(1.8)a
SN2016B11:55:04.2501:43:06.80CGCG 012–1160.0042930.01857380.5357390.6257385.6(5)a
SN2016bkx07:28:11.0472:34:31.50UGC 38380.010250.024957464.1757463.0957463.09c
SN2016bla07:45:26.9429:53:27.50⋅⋅⋅0.0230.037357448.157448.1c
SN2016blb11:37:20.64−04:54:36.842MASX J11372059-04544500.01830.044557467.4457475.2857471.4(4)a
SN2016ccf08:44:11.0534:42:55.80NGC 26490.0141260.026957508.2957505.2557504.2(1)b
SN2016ccm14:09:58.9117:45:49.40IC 9830.0190.020657437.4357502.0757498.4(1)b
SN2016cok11:20:19.0912:58:57.20M660.0024250.02957532.3257536.3057534.3(2)d
SN2016esw18:58:04.0943:56:22.60CGCG 229–0090.028310.058757607.357608.3157607.8(0.5)j
SN2016fmt01:34:50.5221:24:58.30NGC 6060.033220.064957612.2357628.1257620.2(8)a
SN2016fnb22:58:28.78−10:33:20.90FGC 24360.0250190.03757628.6957613.2(2.6)b
SN2016hbd02:56:06.2127:42:06.80PGC 906440.0220.118257664.9957664.5c
SN2016hgm01:22:11.7300:57:07.78NGC 4930.00780.027957672.4757680.4557676.5(4)a
SN2016hjg02:14:50.43−24:51:05.33ESO 478-G150.03780.013657641.257681.4457681.5c
SN2016hvu22:35:55.5620:19:12.58NGC 73160.018520.041157682.1557698.1157698.1c
SN2016I14:39:44.7323:23:43.27UGC 94500.01490.027757380.1157399.0757379.8(1)b
SN2016iog10:04:18.5943:25:29.14GALEXASC J100418.99 + 432525.70.0380.010757712.0957719.5657715.8(3.7)a
SN2016iyz05:52:37.43−17:47:13.02IC 21510.0105560.062757740.457742.457741.4(1)a
SN2016jby10:52:25.8910:32:38.20NGC 34380.0220.020257738.857749.557744.2(5.4)a
SN2016jft09:43:55.8741:41:17.82UGC 51980.01740.013457753.0557748.1(1.4)b
SN2016jfu12:54:42.6028:56:26.00NGC 47930.0082860.010257739.957752.7657746.3(6.4)a
SN2016N04:45:21.2873:23:41.09CGCG 328–0180.0150240.146857394.3957397.2857395.8(1.4)a
SN2017aub06:40:24.7064:33:02.75⋅⋅⋅0.0160.07257786.557799.357792.9(6.4)a
SN2017auf05:02:19.56−10:21:22.86MCG -02-13-380.0132930.076157794.1157798.2857796.2(2.1)a
SN2017auu01:24:46.8609:45:18.35UGC 9690.04840.07857767.557799.4757779.4(4.1)b
SN2017cfa09:57:03.89−07:52:51.14MCG -01-26-030.0140630.082657816.457828.4357821.2(0.5)b
SN2017cff13:39:17.0035:08:39.03⋅⋅⋅0.0190.009257807.757828.8357819.7(1.1)b
SN2017cjb12:53:50.4509:42:17.70NGC 47790.0094430.01957834.0657835.5857834.8(0.8)a
SN2017dka14:01:46.1009:29:57.40NGC 54090.0210.026957862.0557873.0257867.5(5.5)a
SN2017gtd02:22:40.1828:15:24.90IC 2210.0169780.090357990.7758008.9558008.5(1)b
SN2017gww00:03:49.2107:28:00.10NGC 78160.017480.054658022.5558022.6358022.6(0.1)a
SN2017hk12:45:15.3126:05:07.10KUG 1242 + 2630.0590.01257761.8857757.7(2)b
SN2017hxu02:59:27.6014:47:37.542MASX J02592769 + 14474170.040.148158065.6058054(1.4)b
SN2017hxz03:34:11.10−13:56:09.37GALEXASC J033410.88-135616.70.080.039958057.1958053.4458053.4c
SN2017imr04:21:04.79−04:43:06.05⋅⋅⋅0.03460.033158080.6658066.6(1)b
SN2017iub05:11:49.2767:29:15.10UGC 32520.01610.114958085.0758093.0258089(4)a
SN2017ivu15:36:32.7016:36:19.40NGC 59620.0065280.047158021.458098.8658076.7(1.1)b
SN2017jbj00:48:05.42−02:47:22.40NGC 2590.0134920.038758100.1558100.15c
SN2018afm07:59:25.0316:25:35.40UGC 41390.0162910.029458185.458190.1458187.8(2.4)a
SN2018aoq12:10:38.1939:23:47.00NGC 41510.0033190.023358206.558209.4358208(1.5)a
SN2018aql16:57:04.9639:22:54.10⋅⋅⋅0.0740.015758188.6458206.5658197.6(9)a
SN2018bek15:32:01.5568:14:31.00IC 11290.02180.023858234.5258242.3258238.4(3.9)a
SN2018gk16:35:53.9140:01:58.31WISE J163554.27 + 400151.80.0310090.008758128.6558131.6458130.1(0.4)k
SN2018kpo03:40:43.05−06:25:24.14MCG -01-10-190.0170.04958475.358476.3758475.8(0.5)a
SN2018lab06:16:26.53−21:22:32.46IC 21630.0092230.07758480.1358481.1358480.6(0.5)a
SN2018lcd01:51:10.81−03:29:26.87MCG -01-05-420.0070.02658480.3358481.2758480.8(0.5)a
SN2018pn07:56:11.3045:31:36.40⋅⋅⋅0.0480.046958154.658136.8b
SN2018rz14:27:11.44−02:16:10.07NGC 56180.023790.046458130.758142.8658136.8(6.1)a
SN2018yo12:41:11.14−01:35:20.40UGC 78400.01340.02735814058175.4258138.1(3.6)b
SNRADec.Host galaxyRedshiftE(BV)mwLast non-detectionFirst discoveryExplosion date
ASASSN-14kg01:44:38.3835:48:20.45CGCG 521–0750.0144770.039556972.3856978.3656969.5(3)e
ASASSN-14ma23:55:09.1310:12:54.20SDSS J235509.00 + 101252.90.01370.08757004.2756994.5(2)b
ASASSN-15fi16:31:48.8020:24:38.50MRK 8840.0171820.049257098.6357098.5c
Gaia15acw08:49:20.2436:42:57.20NGC 26680.0250.029157003.3356996.6(2.2)b
iPTF13dkz01:36:11.5833:37:01.40⋅⋅⋅0.0160.038856547.556549.4356547.93(0.45)f
MASTER_J210321:03:18.46−14:03:51.70⋅⋅⋅0.0250.040756966.556952(1.5)b
MASTER_J233323:33:28.09−01:58:47.00MCG  + 00-60-060.0170.035457300.557289.7b
PS15cwo03:11:16.7301:11:34.50KUG 0308 + 0100.027230.089357341.4057334.6(0.2)b
SN2011az12:53:53.4036:05:19.60IC 38620.0140.012255638.9255638.5c
SN2011bi17:10:05.8342:22:20.30MCG  + 07-35-370.02770.022155654.0455627.8(8)b
SN2011cj14:32:53.8111:35:49.30UGC 93560.00740.021655690.3955688.1(0.2)b
SN2011eg18:42:54.2153:02:41.50UGC 113430.0280.037155765.2355765.5c
SN2011fd06:46:39.8560:21:02.80NGC 2273B0.0070.062655793.1255782.5(10)d
SN2011fu02:08:21.4141:29:12.30UGC 16260.0184890.064855825.0455824.7(3)b
SN2011ir11:48:00.3204:29:47.10UGC 67710.01990.020255886.8155886c
SN2011jy10:53:57.0323:22:34.50A105357 + 23220.040.020955925.7955924.5c
SN2012A10:25:07.3917:09:14.60NGC 32390.001990.027455933.3955929.4(3)d
SN2012aw10:43:53.7411:40:17.63NGC 33510.0025950.023956001.2756002.8556002g
SN2012bv19:21:30.3461:08:10.80NGC 67960.00730.05956025.7556025.5c
SN2012ec02:45:59.89−07:34:25.00NGC 10840.0046930.022956150.0456142.5d
SN2012fc23:10:12.7130:34:42.60MCG  + 05-54-420.023440.054256190.2656189.5c
SN2012fs00:37:39.3810:21:29.00IC 350.0150.154356207.9656199(0.5)b
SN2012gn09:24:01.7668:33:43.30UGC 49810.01320.067556242.5156242.5c
SN2012gq02:52:46.0146:55:52.30UGC 23510.02810.165656245.6756245.5c
SN2012ho22:40:17.02−02:25:34.10MCG -01-57-210.00990.044956267.3856261.7(0.6)b
SN2013ab14:32:44.4909:53:12.30NGC 56690.005320.023456338.556340.5456339.5(1)h
SN2013ac09:45:08.7958:40:07.30PGC 30868460.030130.010156338.756338.5c
SN2013af09:13:55.1755:46:56.70A091355 + 55460.0350.019756352.556305.5(4.8)b
SN2013bi18:25:01.9827:31:53.70NGC 66320.0160.09456375.9156375.5c
SN2013ca11:58:43.2519:08:56.20PGC 376980.0430.027656413.5456402.8(0.5)b
SN2013fl17:33:39.5350:22:25.50UGC 109080.0194070.020656557.8856537.1(1.5)b
SN2013fs23:19:44.7010:11:05.00NGC 76100.0118550.034656570.3456571.7456571.12i
SN2013fv03:36:16.0567:34:15.70UGC 27890.0104570.673956576.4356576.5c
SN2013gd03:49:05.64−03:03:28.30MCG -01-10-390.0135040.11756605.3556603.3(2)d
SN2013gm11:34:21.1615:39:33.10MCG  + 03-30-070.01730.035756616.8556615.5c
SN2013gu01:46:38.2704:13:24.40PGC 12652940.0177420.025556631.7556630.5c
SN2014A13:16:59.36−16:37:57.00NGC 50540.0060.070856658.5856611(4)b
SN2014B13:04:17.70−10:20:01.20NGC 49390.010370.03556659.656612.5(1.5)b
SN2014bf15:57:35.2318:01:47.60MCG  + 03-41-070.0130.034756799.556799.5c
SN2014bu01:50:58.4521:59:59.80NGC 6940.009840.06156825.1956824.5c
SN2014ce23:27:40.8623:35:21.40NGC 76730.0110.037256878.5256877.5(1)d
SN2014cn12:09:11.5429:10:20.90NGC 41340.0127620.01756771.3856767.2(4)d
SN2014cw22:15:26.55−10:28:34.60PGC 684140.0060.048656898.5456898.5c
SN2014dq22:23:16.12−28:58:30.78ESO 467–510.0060310.015456949.0956945.6(3)d
SN2014G10:54:34.1354:17:56.90NGC 34480.0045030.010256671.3256669.5(2)d
SN2015aq09:25:44.5334:16:36.10UGC 50150.00540.014957286.0757238.5(4.5)b
SN2015as10:08:11.3751:50:40.90UGC 54600.00360.007657341.7857341.5c
SN2015ay01:09:46.7713:18:28.90UGC 7220.0140.024357298.8457291.1(1.4)b
SN2015O18:13:49.2313:14:15.90LEDA 14261310.0560.127157195.3857194.7(1)d
SN2015V17:49:27.0536:08:36.00UGC 110000.0045660.031457116.5257112.5(4)d
SN2015W06:57:43.0313:34:45.70UGC 36170.0130.118157034.2857020.5(16)d
SN2016afa15:36:32.4716:36:36.60NGC 59620.0070.047157425.4757430.9257427.9(2.5)a
SN2016aip06:07:17.3346:01:35.90⋅⋅⋅0.0160.128357432.2357390.1(1.5)b
SN2016ak08:16:34.6624:29:43.30IC 22490.02970.037357401.5157387.6(1.9)b
SN2016aqp04:48:43.43−04:58:43.50MCG -01-13-120.0160.032757425.1557444.1457427.9(0.5)b
SN2016aqw10:55:53.8336:51:48.00UGC 60360.0216880.01457444.3857447.8457446.1(1.8)a
SN2016B11:55:04.2501:43:06.80CGCG 012–1160.0042930.01857380.5357390.6257385.6(5)a
SN2016bkx07:28:11.0472:34:31.50UGC 38380.010250.024957464.1757463.0957463.09c
SN2016bla07:45:26.9429:53:27.50⋅⋅⋅0.0230.037357448.157448.1c
SN2016blb11:37:20.64−04:54:36.842MASX J11372059-04544500.01830.044557467.4457475.2857471.4(4)a
SN2016ccf08:44:11.0534:42:55.80NGC 26490.0141260.026957508.2957505.2557504.2(1)b
SN2016ccm14:09:58.9117:45:49.40IC 9830.0190.020657437.4357502.0757498.4(1)b
SN2016cok11:20:19.0912:58:57.20M660.0024250.02957532.3257536.3057534.3(2)d
SN2016esw18:58:04.0943:56:22.60CGCG 229–0090.028310.058757607.357608.3157607.8(0.5)j
SN2016fmt01:34:50.5221:24:58.30NGC 6060.033220.064957612.2357628.1257620.2(8)a
SN2016fnb22:58:28.78−10:33:20.90FGC 24360.0250190.03757628.6957613.2(2.6)b
SN2016hbd02:56:06.2127:42:06.80PGC 906440.0220.118257664.9957664.5c
SN2016hgm01:22:11.7300:57:07.78NGC 4930.00780.027957672.4757680.4557676.5(4)a
SN2016hjg02:14:50.43−24:51:05.33ESO 478-G150.03780.013657641.257681.4457681.5c
SN2016hvu22:35:55.5620:19:12.58NGC 73160.018520.041157682.1557698.1157698.1c
SN2016I14:39:44.7323:23:43.27UGC 94500.01490.027757380.1157399.0757379.8(1)b
SN2016iog10:04:18.5943:25:29.14GALEXASC J100418.99 + 432525.70.0380.010757712.0957719.5657715.8(3.7)a
SN2016iyz05:52:37.43−17:47:13.02IC 21510.0105560.062757740.457742.457741.4(1)a
SN2016jby10:52:25.8910:32:38.20NGC 34380.0220.020257738.857749.557744.2(5.4)a
SN2016jft09:43:55.8741:41:17.82UGC 51980.01740.013457753.0557748.1(1.4)b
SN2016jfu12:54:42.6028:56:26.00NGC 47930.0082860.010257739.957752.7657746.3(6.4)a
SN2016N04:45:21.2873:23:41.09CGCG 328–0180.0150240.146857394.3957397.2857395.8(1.4)a
SN2017aub06:40:24.7064:33:02.75⋅⋅⋅0.0160.07257786.557799.357792.9(6.4)a
SN2017auf05:02:19.56−10:21:22.86MCG -02-13-380.0132930.076157794.1157798.2857796.2(2.1)a
SN2017auu01:24:46.8609:45:18.35UGC 9690.04840.07857767.557799.4757779.4(4.1)b
SN2017cfa09:57:03.89−07:52:51.14MCG -01-26-030.0140630.082657816.457828.4357821.2(0.5)b
SN2017cff13:39:17.0035:08:39.03⋅⋅⋅0.0190.009257807.757828.8357819.7(1.1)b
SN2017cjb12:53:50.4509:42:17.70NGC 47790.0094430.01957834.0657835.5857834.8(0.8)a
SN2017dka14:01:46.1009:29:57.40NGC 54090.0210.026957862.0557873.0257867.5(5.5)a
SN2017gtd02:22:40.1828:15:24.90IC 2210.0169780.090357990.7758008.9558008.5(1)b
SN2017gww00:03:49.2107:28:00.10NGC 78160.017480.054658022.5558022.6358022.6(0.1)a
SN2017hk12:45:15.3126:05:07.10KUG 1242 + 2630.0590.01257761.8857757.7(2)b
SN2017hxu02:59:27.6014:47:37.542MASX J02592769 + 14474170.040.148158065.6058054(1.4)b
SN2017hxz03:34:11.10−13:56:09.37GALEXASC J033410.88-135616.70.080.039958057.1958053.4458053.4c
SN2017imr04:21:04.79−04:43:06.05⋅⋅⋅0.03460.033158080.6658066.6(1)b
SN2017iub05:11:49.2767:29:15.10UGC 32520.01610.114958085.0758093.0258089(4)a
SN2017ivu15:36:32.7016:36:19.40NGC 59620.0065280.047158021.458098.8658076.7(1.1)b
SN2017jbj00:48:05.42−02:47:22.40NGC 2590.0134920.038758100.1558100.15c
SN2018afm07:59:25.0316:25:35.40UGC 41390.0162910.029458185.458190.1458187.8(2.4)a
SN2018aoq12:10:38.1939:23:47.00NGC 41510.0033190.023358206.558209.4358208(1.5)a
SN2018aql16:57:04.9639:22:54.10⋅⋅⋅0.0740.015758188.6458206.5658197.6(9)a
SN2018bek15:32:01.5568:14:31.00IC 11290.02180.023858234.5258242.3258238.4(3.9)a
SN2018gk16:35:53.9140:01:58.31WISE J163554.27 + 400151.80.0310090.008758128.6558131.6458130.1(0.4)k
SN2018kpo03:40:43.05−06:25:24.14MCG -01-10-190.0170.04958475.358476.3758475.8(0.5)a
SN2018lab06:16:26.53−21:22:32.46IC 21630.0092230.07758480.1358481.1358480.6(0.5)a
SN2018lcd01:51:10.81−03:29:26.87MCG -01-05-420.0070.02658480.3358481.2758480.8(0.5)a
SN2018pn07:56:11.3045:31:36.40⋅⋅⋅0.0480.046958154.658136.8b
SN2018rz14:27:11.44−02:16:10.07NGC 56180.023790.046458130.758142.8658136.8(6.1)a
SN2018yo12:41:11.14−01:35:20.40UGC 78400.01340.02735814058175.4258138.1(3.6)b

a Explosion date estimated by mid-points between the last non-detection and the first discovery.

b Explosion date estimated by matching spectral templates via the SNID.

c First discovery was used as explosion date.

d (de Jaeger et al. 2019); e:(Valenti et al. 2016); f:(Rubin et al. 2016); g:(Dall’Ora et al. 2014).

h (Bose et al. 2015); i:(Yaron et al. 2017); j:(de Jaeger et al. 2018); k:(Bose et al. 2021).

Table A2.

Journal of spectroscopic observations of our SN II sample.

SNObs. dateJDPhasea (d)InstrumentResolution (Å |$\ \rm pix^{-1}$|⁠)Wavelength range (Å)
ASASSN-14kg201411232456985.18 + 15.2BFOSC4.423800–8800
ASASSN-14ma201412142457006.98 + 12.0dYFOSC2.933500–8900
ASASSN-15fi201503242457106.24>7.2dBFOSC4.423800–8800
Gaia15acw201412142457006.25 + 9.1YFOSC7.913900–8300
iPTF13dkz201310112456576.21 + 27.8BFOSC4.424000–8700
MASTER_J2103201411082456970.98 + 18.5YFOSC2.933500–8900
MASTER_J2333201510132457309.00 + 18.8BFOSC4.423800–8800
MASTER_J2333201511032457330.01 + 39.8BFOSC18.33800–8800
PS15cwo201511112457339.31 + 4.2YFOSC2.933500–8900
PS15cwo201511142457341.18 + 6.1YFOSC2.933500–8900
PS15cwo201511152457343.18 + 8.1YFOSC2.933500–8900
PS15cwo201511202457348.22 + 13.1YFOSC2.933500–8900
PS15cwo201511232457350.17 + 15.1YFOSC2.933500–8400
PS15cwo201511272457355.30 + 20.2YFOSC2.933500–8700
PS15cwo201512082457366.19 + 31.1YFOSC2.933500–8900
PS15cwo201601022457391.16 + 56.1YFOSC2.933500–8900
PS15cwo201601062457395.11 + 60.0YFOSC2.933500–8900
PS15cwo201601132457401.99 + 66.9YFOSC2.933500–8900
PS15cwo201601292457418.14 + 83.0YFOSC2.933500–8900
SN2011az201104032455655.20>16.2OMR4.83500–8900
SN2011az201104082455659.18>20.2OMR4.83500–8900
SN2011az201104222455673.18>34.2BFOSC4.423800–8700
SN2011bi201104082455659.30 + 31OMR4.84000–8900
SN2011bi201105132455695.28 + 67.0BFOSC4.424600–8700
SN2011cj201105132455695.15 + 6.5BFOSC4.423500–8700
SN2011cj201105272455709.50 + 20.9BFOSC4.423900–8700
SN2011eg201109302455834.98>69OMR4.83500–8900
SN2011fd201112232455919.08 + 136.1BFOSC4.423500–8900
SN2011fu201109302455835.13 + 9.9OMR4.83900–8500
SN2011fu201110212455856.21 + 31.0OMR16.24000–8900
SN2011ir201112232455918.30>31.8OMR4.83800–8900
SN2011jy201201272455953.50>28.5dBFOSC18.24000–8700
SN2012A201201272455953.50 + 23.6BFOSC4.423700–8700
SN2012A201202042455963.03 + 33.1YFOSC2.935300–9600
SN2012A201203162456003.07 + 73.1OMR4.83700–8900
SN2012A201204012456018.50 + 88.6YFOSC2.933500–8900
SN2012aw201203202456006.50 + 4YFOSC2.933500–8800
SN2012aw201203312456017.50 + 15YFOSC2.933500–8800
SN2012aw201204012456018.50 + 16YFOSC2.933500–8900
SN2012aw201205222456070.03 + 67.5BFOSC4.423900–8700
SN2012bv201204292456046.02>20.0YFOSC2.934000–8800
SN2012ec201209142456184.25 + 41.3BFOSC4.423600–8700
SN2012ec201210122456213.24 + 70.2OMR4.83600–8900
SN2012ec201301182456310.50 + 167.5BFOSC4.423800–8700
SN2012fc201211092456241.04>51.0BFOSC4.423800–8700
SN2012fs201210122456213.10 + 13.6OMR4.84000–8500
SN2012fs201211092456241.11 + 41.6BFOSC4.424000–8700
SN2012gn201211162456248.32>5.3OMR4.84200–8900
SN2012gq201211162456248.23>2.2OMR4.84500–8000
SN2012ho201212072456268.98 + 6.7YFOSC2.933500–8800
SN2012ho201212102456271.00 + 8.8YFOSC2.933500–8900
SN2012ho201212122456273.50 + 11.3YFOSC2.933500–8900
SN2013ab201302252456347.36 + 7.4YFOSC2.933500–8800
SN2013ab201305032456416.23 + 76.2BFOSC2.933500–8800
SN2013ac201302162456339.46>0.5YFOSC2.933800–8800
SN2013af201303022456354.07 + 48.1YFOSC2.934200–8900
SN2013bi201304052456388.14>12.1BFOSC4.424100–8700
SN2013ca201505032456416.07 + 12.8BFOSC4.423900–8700
SN2013fl201309252456560.97 + 23.4OMR4.84000–8900
SN2013fs201310112456577.06 + 5.4BFOSC4.423800–8700
SN2013fv201310142456579.20>2.2BFOSC4.423800–8700
SN2013gd201311292456626.14 + 22.3BFOSC4.423800–8700
SN2013gd201312062456633.14 + 29.3BFOSC4.423800–8700
SN2013gd201401072456666.10 + 62.3YFOSC2.933500–8900
SN2013gm201311212456618.41>1.4YFOSC2.933500–8900
SN2013gu201312062456633.09>2.1BFOSC4.423800–8700
SN2014A201401022456660.42 + 48.9YFOSC2.933500–8900
SN2014A201404232456771.23 + 159.7YFOSC7.913900–9100
SN2014B201401042456662.38 + 49.4BFOSC4.423800–8700
SN2014bf201405242456802.17>2.1BFOSC4.423800–8700
SN2014bf201405242456802.31>2.3YFOSC7.913500–9200
SN2014bu201409182456919.27>94.3OMR9.63500–8800
SN2014ce201410032456934.02 + 56.0YFOSC2.933500–8900
SN2014cn201404242456772.22 + 4.5YFOSC7.913900–9000
SN2014cw201409182456919.07>20.1OMR4.83500–8800
SN2014dq201410192456949.98 + 3.9YFOSC2.933500–8800
SN2014dq201410242456956.00 + 9.9YFOSC2.933500–8900
SN2014dq201410302456962.08 + 16.0YFOSC2.934000–8900
SN2014dq201411162456977.99 + 31.9YFOSC2.933500–8900
SN2014dq201412022456993.99 + 47.9YFOSC2.933500–9100
SN2014G201401272456684.26 + 14.3BFOSC4.423800–8800
SN2014G201402062456695.40 + 25.4YFOSC2.933500–8900
SN2014G201403072456724.18 + 54.2OMR4.83900–9200
SN2014G201403212456738.24 + 68.2BFOSC4.424200–8700
SN2014G201404112456759.21 + 89.2YFOSC2.933500–8900
SN2014G201405222456800.05 + 130.1BFOSC4.423800–8700
SN2015aq201512042457361.39 + 122.4BFOSC4.423800–8800
SN2015aq201512172457374.33 + 135.3BFOSC2.973700–8500
SN2015as201606022457542.05>200.1BFOSC5.883600–8800
SN2015ay201510132457309.23 + 17.6BFOSC4.423800–8800
SN2015O201506232457197.21 + 2.0YFOSC2.933500–8900
SN2015O201506262457200.19 + 5.0YFOSC2.933500–8900
SN2015V201504062457120.28 + 7.3YFOSC2.933500–8900
SN2015V201505112457154.18 + 41.2BFOSC4.423900–8800
SN2015V201505252457168.27 + 55.3BFOSC273600–8700
SN2015W201502132457067.01 + 46.0BFOSC4.423800–8800
SN2016afa201602132457432.46 + 4.1YFOSC2.933500–8900
SN2016afa201602142457433.44 + 5.0YFOSC2.933500–8900
SN2016aip201602172457437.04 + 46.4YFOSC2.933500–8900
SN2016ak201601182457406.33 + 18.2YFOSC7.914000–8700
SN2016aqp201602262457446.02 + 17.6YFOSC2.933500–8900
SN2016aqw201603032457451.36 + 5.0YFOSC2.933500–8900
SN2016B201601042457392.36 + 6.4YFOSC2.933500–8900
SN2016B201601082457396.28 + 10.3BFOSC4.423800–8800
SN2016B201603112457459.13 + 73.1BFOSC4.423800–8800
SN2016B201604042457483.13 + 97.1BFOSC4.424200–8800
SN2016B201605072457516.08 + 130.1OMR2.43900–9100
SN2016bkx201603252457474.11>10.5YFOSC2.933500–8900
SN2016bla201603302457478.12>29.5YFOSC2.933500–8900
SN2016blb201604042457483.16 + 11.3BFOSC4.424200–8800
SN2016ccf201605062457515.03>10.3BFOSC2.974300–9000
SN2016ccm201605062457515.24>16.3BFOSC2.974200–9000
SN2016cok201605282457537.12 + 2.3YFOSC2.933500–8900
SN2016cok201605292457538.06 + 3.3BFOSC6.633700–8800
SN2016cok201605302457540.15 + 5.4YFOSC2.933500–8900
SN2016cok201606012457542.17 + 7.4YFOSC2.933500–8900
SN2016cok201606042457544.16 + 9.4YFOSC2.933400–8900
SN2016cok201606082457548.02 + 13.2BFOSC6.634000–8000
SN2016cok201606102457550.04 + 15.2BFOSC6.634000–8000
SN2016esw201608092457610.02 + 1.7BFOSC2.973800–8800
SN2016fmt201608302457631.31 + 10.6BFOSC2.973800–8800
SN2016fnb201608302457631.25 + 17.5BFOSC2.973900–8800
SN2016hbd201610282457690.26>25.3BFOSC2.974000–8800
SN2016hgm201610282457690.17 + 13.2BFOSC2.974000–8800
SN2016hjg201611182457712.18>30.2YFOSC7.914000–8300
SN2016hvu201611082457700.96>2.4BFOSC2.973700–8800
SN2016hvu201611162457710.16>11.6YFOSC2.933500–8900
SN2016hvu201611232457715.95>17.4BFOSC2.973800–8800
SN2016hvu201612022457724.98>26.4BFOSC2.973700–8800
SN2016I201601132457401.43 + 21.1YFOSC2.933500–8900
SN2016iog201612022457725.39 + 9.3BFOSC2.973700–8800
SN2016iyz201612222457745.23 + 3.3YFOSC2.933500–8700
SN2016jby201612282457751.31 + 6.6BFOSC2.973900–8800
SN2016jby201702052457790.35 + 45.6YFOSC2.933500–8900
SN2016jft201612312457755.23 + 6.6YFOSC2.933500–8900
SN2016jft201701062457761.33 + 12.7YFOSC2.933500–8900
SN2016jft201701192457773.23 + 24.6YFOSC2.933500–8900
SN2016jft201702132457798.34 + 49.7YFOSC2.933500–8900
SN2016jfu201612312457754.38 + 7.5BFOSC2.973700–8800
SN2016jfu201701022457756.38 + 9.6BFOSC2.973700–8800
SN2016jfu201701042457758.35 + 11.5BFOSC6.633700–8800
SN2016jfu201701202457774.28 + 27.5BFOSC11.83800–8800
SN2016jfu201701312457785.35 + 38.5BFOSC2.973800–8800
SN2016jfu201702122457797.24 + 50.4YFOSC2.933500–8900
SN2016N201601182457406.08 + 9.8BFOSC18.24200–8800
SN2017aub201702172457802.11 + 8.7BFOSC2.974000–8800
SN2017aub201702222457807.03 + 13.6BFOSC2.974000–8800
SN2017aub201702252457809.95 + 16.6BFOSC6.633700–8800
SN2017aub201703032457815.95 + 22.6BFOSC2.973700–8800
SN2017aub201703082457820.97 + 27.6BFOSC2.973700–8800
SN2017aub201703172457829.99 + 36.6BFOSC2.973700–8800
SN2017aub201703282457840.98 + 47.6BFOSC2.973700–8800
SN2017auf201702172457802.06 + 5.4BFOSC2.974000–8800
SN2017auu201702162457801.01 + 21.0YFOSC7.914000–8100
SN2017cfa201703172457830.06 + 8.4BFOSC2.974000–8800
SN2017cff201703192457832.24 + 12.0YFOSC2.933500–8900
SN2017cff201704082457852.23 + 32.0YFOSC2.933500–9200
SN2017cjb201703282457841.22 + 5.9YFOSC2.933500–8700
SN2017dka201705022457876.31 + 8.3YFOSC7.914000–8300
SN2017gtd201709202458017.31 + 8.3BFOSC2.973700–8800
SN2017gww201709272458024.21 + 1.1BFOSC2.973700–8800
SN2017gww201710012458028.15 + 5.1YFOSC2.933500–8900
SN2017gww201712302458117.99 + 94.9YFOSC2.933500–8900
SN2017hk201701202457774.37 + 16.2YFOSC2.933500–8900
SN2017hk201702062457791.41 + 33.2YFOSC2.933500–8900
SN2017hxu201711122458070.20 + 15.7YFOSC2.933500–8800
SN2017hxu201711142458072.19 + 17.7YFOSC2.933500–8800
SN2017hxu201711202458078.07 + 23.6YFOSC2.933500–8800
SN2017hxz201711152458073.22>19.3YFOSC2.933500–8800
SN2017imr201711282458086.18 + 19.1YFOSC2.933500–8900
SN2017iub201712102458098.26 + 8.8BFOSC2.974600–7100
SN2017ivu201802122458162.27 + 85.0BFOSC8.84000–8800
SN2017ivu201802202458170.39 + 93.2YFOSC2.933500–9000
SN2017ivu201803012458179.42 + 102.2YFOSC2.933500–9000
SN2017ivu201803132458191.35 + 114.1YFOSC2.933500–9000
SN2017jbj201712302458118.02>17.4YFOSC2.933500–8900
SN2018afm201803232458200.97 + 12.7BFOSC2.974000–8800
SN2018aoq201804082458217.20 + 8.7BFOSC2.974000–8800
SN2018aoq201804102458219.12 + 10.6BFOSC2.974000–8800
SN2018aoq201804202458229.04 + 20.5OMR9.63500–8800
SN2018aoq201804242458233.13 + 24.6BFOSC2.974000–8800
SN2018aoq201804262458235.22 + 26.7BFOSC2.974000–8800
SN2018aoq201804282458237.13 + 28.6BFOSC2.974000–8800
SN2018aoq201805072458246.13 + 37.6BFOSC2.974000–8800
SN2018aoq201806042458274.11 + 65.6BFOSC2.974000–8800
SN2018aoq201806122458282.05 + 73.5BFOSC2.974000–8800
SN2018aoq201806232458293.04 + 84.5BFOSC2.974000–8800
SN2018aql201805142458253.20 + 55.1YFOSC2.933500–9000
SN2018aql201805152458254.32 + 56.2YFOSC2.933500–9000
SN2018bek201805062458245.27 + 6.4BFOSC2.974000–8800
SN2018bek201805072458246.17 + 7.3BFOSC2.974000–8800
SN2018bek201805082458247.22 + 8.3BFOSC2.974000–8800
SN2018bek201805172458256.07 + 17.2BFOSC2.974000–8800
SN2018bek201805232458262.23 + 23.3BFOSC2.974000–8800
SN2018bek201806022458272.09 + 33.2BFOSC2.974000–8800
SN2018bek201806042458274.22 + 35.3BFOSC2.974000–8800
SN2018gk201801232458142.35 + 11.7BFOSC2.974000–8800
SN2018gk201802122458162.32 + 31.7BFOSC2.974000–8800
SN2018gk201802222458172.33 + 41.7BFOSC2.974000–8800
SN2018kpo201812262458479.21 + 2.9YFOSC2.934000–8800
SN2018lab201812292458482.23 + 1.1YFOSC2.933500–8800
SN2018lab201812302458483.19 + 2.1YFOSC2.933500–8800
SN2018lcd201901042458487.99 + 6.7BFOSC2.974000–8700
SN2018pn201802062458156.18 + 18.9YFOSC2.933800–9000
SN2018rz201802122458162.36 + 25.1BFOSC2.974000–8800
SN2018yo201802282458178.33 + 39.7YFOSC2.933800–9000
SNObs. dateJDPhasea (d)InstrumentResolution (Å |$\ \rm pix^{-1}$|⁠)Wavelength range (Å)
ASASSN-14kg201411232456985.18 + 15.2BFOSC4.423800–8800
ASASSN-14ma201412142457006.98 + 12.0dYFOSC2.933500–8900
ASASSN-15fi201503242457106.24>7.2dBFOSC4.423800–8800
Gaia15acw201412142457006.25 + 9.1YFOSC7.913900–8300
iPTF13dkz201310112456576.21 + 27.8BFOSC4.424000–8700
MASTER_J2103201411082456970.98 + 18.5YFOSC2.933500–8900
MASTER_J2333201510132457309.00 + 18.8BFOSC4.423800–8800
MASTER_J2333201511032457330.01 + 39.8BFOSC18.33800–8800
PS15cwo201511112457339.31 + 4.2YFOSC2.933500–8900
PS15cwo201511142457341.18 + 6.1YFOSC2.933500–8900
PS15cwo201511152457343.18 + 8.1YFOSC2.933500–8900
PS15cwo201511202457348.22 + 13.1YFOSC2.933500–8900
PS15cwo201511232457350.17 + 15.1YFOSC2.933500–8400
PS15cwo201511272457355.30 + 20.2YFOSC2.933500–8700
PS15cwo201512082457366.19 + 31.1YFOSC2.933500–8900
PS15cwo201601022457391.16 + 56.1YFOSC2.933500–8900
PS15cwo201601062457395.11 + 60.0YFOSC2.933500–8900
PS15cwo201601132457401.99 + 66.9YFOSC2.933500–8900
PS15cwo201601292457418.14 + 83.0YFOSC2.933500–8900
SN2011az201104032455655.20>16.2OMR4.83500–8900
SN2011az201104082455659.18>20.2OMR4.83500–8900
SN2011az201104222455673.18>34.2BFOSC4.423800–8700
SN2011bi201104082455659.30 + 31OMR4.84000–8900
SN2011bi201105132455695.28 + 67.0BFOSC4.424600–8700
SN2011cj201105132455695.15 + 6.5BFOSC4.423500–8700
SN2011cj201105272455709.50 + 20.9BFOSC4.423900–8700
SN2011eg201109302455834.98>69OMR4.83500–8900
SN2011fd201112232455919.08 + 136.1BFOSC4.423500–8900
SN2011fu201109302455835.13 + 9.9OMR4.83900–8500
SN2011fu201110212455856.21 + 31.0OMR16.24000–8900
SN2011ir201112232455918.30>31.8OMR4.83800–8900
SN2011jy201201272455953.50>28.5dBFOSC18.24000–8700
SN2012A201201272455953.50 + 23.6BFOSC4.423700–8700
SN2012A201202042455963.03 + 33.1YFOSC2.935300–9600
SN2012A201203162456003.07 + 73.1OMR4.83700–8900
SN2012A201204012456018.50 + 88.6YFOSC2.933500–8900
SN2012aw201203202456006.50 + 4YFOSC2.933500–8800
SN2012aw201203312456017.50 + 15YFOSC2.933500–8800
SN2012aw201204012456018.50 + 16YFOSC2.933500–8900
SN2012aw201205222456070.03 + 67.5BFOSC4.423900–8700
SN2012bv201204292456046.02>20.0YFOSC2.934000–8800
SN2012ec201209142456184.25 + 41.3BFOSC4.423600–8700
SN2012ec201210122456213.24 + 70.2OMR4.83600–8900
SN2012ec201301182456310.50 + 167.5BFOSC4.423800–8700
SN2012fc201211092456241.04>51.0BFOSC4.423800–8700
SN2012fs201210122456213.10 + 13.6OMR4.84000–8500
SN2012fs201211092456241.11 + 41.6BFOSC4.424000–8700
SN2012gn201211162456248.32>5.3OMR4.84200–8900
SN2012gq201211162456248.23>2.2OMR4.84500–8000
SN2012ho201212072456268.98 + 6.7YFOSC2.933500–8800
SN2012ho201212102456271.00 + 8.8YFOSC2.933500–8900
SN2012ho201212122456273.50 + 11.3YFOSC2.933500–8900
SN2013ab201302252456347.36 + 7.4YFOSC2.933500–8800
SN2013ab201305032456416.23 + 76.2BFOSC2.933500–8800
SN2013ac201302162456339.46>0.5YFOSC2.933800–8800
SN2013af201303022456354.07 + 48.1YFOSC2.934200–8900
SN2013bi201304052456388.14>12.1BFOSC4.424100–8700
SN2013ca201505032456416.07 + 12.8BFOSC4.423900–8700
SN2013fl201309252456560.97 + 23.4OMR4.84000–8900
SN2013fs201310112456577.06 + 5.4BFOSC4.423800–8700
SN2013fv201310142456579.20>2.2BFOSC4.423800–8700
SN2013gd201311292456626.14 + 22.3BFOSC4.423800–8700
SN2013gd201312062456633.14 + 29.3BFOSC4.423800–8700
SN2013gd201401072456666.10 + 62.3YFOSC2.933500–8900
SN2013gm201311212456618.41>1.4YFOSC2.933500–8900
SN2013gu201312062456633.09>2.1BFOSC4.423800–8700
SN2014A201401022456660.42 + 48.9YFOSC2.933500–8900
SN2014A201404232456771.23 + 159.7YFOSC7.913900–9100
SN2014B201401042456662.38 + 49.4BFOSC4.423800–8700
SN2014bf201405242456802.17>2.1BFOSC4.423800–8700
SN2014bf201405242456802.31>2.3YFOSC7.913500–9200
SN2014bu201409182456919.27>94.3OMR9.63500–8800
SN2014ce201410032456934.02 + 56.0YFOSC2.933500–8900
SN2014cn201404242456772.22 + 4.5YFOSC7.913900–9000
SN2014cw201409182456919.07>20.1OMR4.83500–8800
SN2014dq201410192456949.98 + 3.9YFOSC2.933500–8800
SN2014dq201410242456956.00 + 9.9YFOSC2.933500–8900
SN2014dq201410302456962.08 + 16.0YFOSC2.934000–8900
SN2014dq201411162456977.99 + 31.9YFOSC2.933500–8900
SN2014dq201412022456993.99 + 47.9YFOSC2.933500–9100
SN2014G201401272456684.26 + 14.3BFOSC4.423800–8800
SN2014G201402062456695.40 + 25.4YFOSC2.933500–8900
SN2014G201403072456724.18 + 54.2OMR4.83900–9200
SN2014G201403212456738.24 + 68.2BFOSC4.424200–8700
SN2014G201404112456759.21 + 89.2YFOSC2.933500–8900
SN2014G201405222456800.05 + 130.1BFOSC4.423800–8700
SN2015aq201512042457361.39 + 122.4BFOSC4.423800–8800
SN2015aq201512172457374.33 + 135.3BFOSC2.973700–8500
SN2015as201606022457542.05>200.1BFOSC5.883600–8800
SN2015ay201510132457309.23 + 17.6BFOSC4.423800–8800
SN2015O201506232457197.21 + 2.0YFOSC2.933500–8900
SN2015O201506262457200.19 + 5.0YFOSC2.933500–8900
SN2015V201504062457120.28 + 7.3YFOSC2.933500–8900
SN2015V201505112457154.18 + 41.2BFOSC4.423900–8800
SN2015V201505252457168.27 + 55.3BFOSC273600–8700
SN2015W201502132457067.01 + 46.0BFOSC4.423800–8800
SN2016afa201602132457432.46 + 4.1YFOSC2.933500–8900
SN2016afa201602142457433.44 + 5.0YFOSC2.933500–8900
SN2016aip201602172457437.04 + 46.4YFOSC2.933500–8900
SN2016ak201601182457406.33 + 18.2YFOSC7.914000–8700
SN2016aqp201602262457446.02 + 17.6YFOSC2.933500–8900
SN2016aqw201603032457451.36 + 5.0YFOSC2.933500–8900
SN2016B201601042457392.36 + 6.4YFOSC2.933500–8900
SN2016B201601082457396.28 + 10.3BFOSC4.423800–8800
SN2016B201603112457459.13 + 73.1BFOSC4.423800–8800
SN2016B201604042457483.13 + 97.1BFOSC4.424200–8800
SN2016B201605072457516.08 + 130.1OMR2.43900–9100
SN2016bkx201603252457474.11>10.5YFOSC2.933500–8900
SN2016bla201603302457478.12>29.5YFOSC2.933500–8900
SN2016blb201604042457483.16 + 11.3BFOSC4.424200–8800
SN2016ccf201605062457515.03>10.3BFOSC2.974300–9000
SN2016ccm201605062457515.24>16.3BFOSC2.974200–9000
SN2016cok201605282457537.12 + 2.3YFOSC2.933500–8900
SN2016cok201605292457538.06 + 3.3BFOSC6.633700–8800
SN2016cok201605302457540.15 + 5.4YFOSC2.933500–8900
SN2016cok201606012457542.17 + 7.4YFOSC2.933500–8900
SN2016cok201606042457544.16 + 9.4YFOSC2.933400–8900
SN2016cok201606082457548.02 + 13.2BFOSC6.634000–8000
SN2016cok201606102457550.04 + 15.2BFOSC6.634000–8000
SN2016esw201608092457610.02 + 1.7BFOSC2.973800–8800
SN2016fmt201608302457631.31 + 10.6BFOSC2.973800–8800
SN2016fnb201608302457631.25 + 17.5BFOSC2.973900–8800
SN2016hbd201610282457690.26>25.3BFOSC2.974000–8800
SN2016hgm201610282457690.17 + 13.2BFOSC2.974000–8800
SN2016hjg201611182457712.18>30.2YFOSC7.914000–8300
SN2016hvu201611082457700.96>2.4BFOSC2.973700–8800
SN2016hvu201611162457710.16>11.6YFOSC2.933500–8900
SN2016hvu201611232457715.95>17.4BFOSC2.973800–8800
SN2016hvu201612022457724.98>26.4BFOSC2.973700–8800
SN2016I201601132457401.43 + 21.1YFOSC2.933500–8900
SN2016iog201612022457725.39 + 9.3BFOSC2.973700–8800
SN2016iyz201612222457745.23 + 3.3YFOSC2.933500–8700
SN2016jby201612282457751.31 + 6.6BFOSC2.973900–8800
SN2016jby201702052457790.35 + 45.6YFOSC2.933500–8900
SN2016jft201612312457755.23 + 6.6YFOSC2.933500–8900
SN2016jft201701062457761.33 + 12.7YFOSC2.933500–8900
SN2016jft201701192457773.23 + 24.6YFOSC2.933500–8900
SN2016jft201702132457798.34 + 49.7YFOSC2.933500–8900
SN2016jfu201612312457754.38 + 7.5BFOSC2.973700–8800
SN2016jfu201701022457756.38 + 9.6BFOSC2.973700–8800
SN2016jfu201701042457758.35 + 11.5BFOSC6.633700–8800
SN2016jfu201701202457774.28 + 27.5BFOSC11.83800–8800
SN2016jfu201701312457785.35 + 38.5BFOSC2.973800–8800
SN2016jfu201702122457797.24 + 50.4YFOSC2.933500–8900
SN2016N201601182457406.08 + 9.8BFOSC18.24200–8800
SN2017aub201702172457802.11 + 8.7BFOSC2.974000–8800
SN2017aub201702222457807.03 + 13.6BFOSC2.974000–8800
SN2017aub201702252457809.95 + 16.6BFOSC6.633700–8800
SN2017aub201703032457815.95 + 22.6BFOSC2.973700–8800
SN2017aub201703082457820.97 + 27.6BFOSC2.973700–8800
SN2017aub201703172457829.99 + 36.6BFOSC2.973700–8800
SN2017aub201703282457840.98 + 47.6BFOSC2.973700–8800
SN2017auf201702172457802.06 + 5.4BFOSC2.974000–8800
SN2017auu201702162457801.01 + 21.0YFOSC7.914000–8100
SN2017cfa201703172457830.06 + 8.4BFOSC2.974000–8800
SN2017cff201703192457832.24 + 12.0YFOSC2.933500–8900
SN2017cff201704082457852.23 + 32.0YFOSC2.933500–9200
SN2017cjb201703282457841.22 + 5.9YFOSC2.933500–8700
SN2017dka201705022457876.31 + 8.3YFOSC7.914000–8300
SN2017gtd201709202458017.31 + 8.3BFOSC2.973700–8800
SN2017gww201709272458024.21 + 1.1BFOSC2.973700–8800
SN2017gww201710012458028.15 + 5.1YFOSC2.933500–8900
SN2017gww201712302458117.99 + 94.9YFOSC2.933500–8900
SN2017hk201701202457774.37 + 16.2YFOSC2.933500–8900
SN2017hk201702062457791.41 + 33.2YFOSC2.933500–8900
SN2017hxu201711122458070.20 + 15.7YFOSC2.933500–8800
SN2017hxu201711142458072.19 + 17.7YFOSC2.933500–8800
SN2017hxu201711202458078.07 + 23.6YFOSC2.933500–8800
SN2017hxz201711152458073.22>19.3YFOSC2.933500–8800
SN2017imr201711282458086.18 + 19.1YFOSC2.933500–8900
SN2017iub201712102458098.26 + 8.8BFOSC2.974600–7100
SN2017ivu201802122458162.27 + 85.0BFOSC8.84000–8800
SN2017ivu201802202458170.39 + 93.2YFOSC2.933500–9000
SN2017ivu201803012458179.42 + 102.2YFOSC2.933500–9000
SN2017ivu201803132458191.35 + 114.1YFOSC2.933500–9000
SN2017jbj201712302458118.02>17.4YFOSC2.933500–8900
SN2018afm201803232458200.97 + 12.7BFOSC2.974000–8800
SN2018aoq201804082458217.20 + 8.7BFOSC2.974000–8800
SN2018aoq201804102458219.12 + 10.6BFOSC2.974000–8800
SN2018aoq201804202458229.04 + 20.5OMR9.63500–8800
SN2018aoq201804242458233.13 + 24.6BFOSC2.974000–8800
SN2018aoq201804262458235.22 + 26.7BFOSC2.974000–8800
SN2018aoq201804282458237.13 + 28.6BFOSC2.974000–8800
SN2018aoq201805072458246.13 + 37.6BFOSC2.974000–8800
SN2018aoq201806042458274.11 + 65.6BFOSC2.974000–8800
SN2018aoq201806122458282.05 + 73.5BFOSC2.974000–8800
SN2018aoq201806232458293.04 + 84.5BFOSC2.974000–8800
SN2018aql201805142458253.20 + 55.1YFOSC2.933500–9000
SN2018aql201805152458254.32 + 56.2YFOSC2.933500–9000
SN2018bek201805062458245.27 + 6.4BFOSC2.974000–8800
SN2018bek201805072458246.17 + 7.3BFOSC2.974000–8800
SN2018bek201805082458247.22 + 8.3BFOSC2.974000–8800
SN2018bek201805172458256.07 + 17.2BFOSC2.974000–8800
SN2018bek201805232458262.23 + 23.3BFOSC2.974000–8800
SN2018bek201806022458272.09 + 33.2BFOSC2.974000–8800
SN2018bek201806042458274.22 + 35.3BFOSC2.974000–8800
SN2018gk201801232458142.35 + 11.7BFOSC2.974000–8800
SN2018gk201802122458162.32 + 31.7BFOSC2.974000–8800
SN2018gk201802222458172.33 + 41.7BFOSC2.974000–8800
SN2018kpo201812262458479.21 + 2.9YFOSC2.934000–8800
SN2018lab201812292458482.23 + 1.1YFOSC2.933500–8800
SN2018lab201812302458483.19 + 2.1YFOSC2.933500–8800
SN2018lcd201901042458487.99 + 6.7BFOSC2.974000–8700
SN2018pn201802062458156.18 + 18.9YFOSC2.933800–9000
SN2018rz201802122458162.36 + 25.1BFOSC2.974000–8800
SN2018yo201802282458178.33 + 39.7YFOSC2.933800–9000

Note. aPhase relative to the estimated explosion date estimated in Section 2. All the spectra can also be found at https://thusn.phys.tsinghua.edu.cn/static/files/THUSN_SNII_spectra_20240110.zip, WISeREP (https://www.wiserep.org) and Zenodo (https://doi.org/10.5281/zenodo.10466160).

Table A2.

Journal of spectroscopic observations of our SN II sample.

SNObs. dateJDPhasea (d)InstrumentResolution (Å |$\ \rm pix^{-1}$|⁠)Wavelength range (Å)
ASASSN-14kg201411232456985.18 + 15.2BFOSC4.423800–8800
ASASSN-14ma201412142457006.98 + 12.0dYFOSC2.933500–8900
ASASSN-15fi201503242457106.24>7.2dBFOSC4.423800–8800
Gaia15acw201412142457006.25 + 9.1YFOSC7.913900–8300
iPTF13dkz201310112456576.21 + 27.8BFOSC4.424000–8700
MASTER_J2103201411082456970.98 + 18.5YFOSC2.933500–8900
MASTER_J2333201510132457309.00 + 18.8BFOSC4.423800–8800
MASTER_J2333201511032457330.01 + 39.8BFOSC18.33800–8800
PS15cwo201511112457339.31 + 4.2YFOSC2.933500–8900
PS15cwo201511142457341.18 + 6.1YFOSC2.933500–8900
PS15cwo201511152457343.18 + 8.1YFOSC2.933500–8900
PS15cwo201511202457348.22 + 13.1YFOSC2.933500–8900
PS15cwo201511232457350.17 + 15.1YFOSC2.933500–8400
PS15cwo201511272457355.30 + 20.2YFOSC2.933500–8700
PS15cwo201512082457366.19 + 31.1YFOSC2.933500–8900
PS15cwo201601022457391.16 + 56.1YFOSC2.933500–8900
PS15cwo201601062457395.11 + 60.0YFOSC2.933500–8900
PS15cwo201601132457401.99 + 66.9YFOSC2.933500–8900
PS15cwo201601292457418.14 + 83.0YFOSC2.933500–8900
SN2011az201104032455655.20>16.2OMR4.83500–8900
SN2011az201104082455659.18>20.2OMR4.83500–8900
SN2011az201104222455673.18>34.2BFOSC4.423800–8700
SN2011bi201104082455659.30 + 31OMR4.84000–8900
SN2011bi201105132455695.28 + 67.0BFOSC4.424600–8700
SN2011cj201105132455695.15 + 6.5BFOSC4.423500–8700
SN2011cj201105272455709.50 + 20.9BFOSC4.423900–8700
SN2011eg201109302455834.98>69OMR4.83500–8900
SN2011fd201112232455919.08 + 136.1BFOSC4.423500–8900
SN2011fu201109302455835.13 + 9.9OMR4.83900–8500
SN2011fu201110212455856.21 + 31.0OMR16.24000–8900
SN2011ir201112232455918.30>31.8OMR4.83800–8900
SN2011jy201201272455953.50>28.5dBFOSC18.24000–8700
SN2012A201201272455953.50 + 23.6BFOSC4.423700–8700
SN2012A201202042455963.03 + 33.1YFOSC2.935300–9600
SN2012A201203162456003.07 + 73.1OMR4.83700–8900
SN2012A201204012456018.50 + 88.6YFOSC2.933500–8900
SN2012aw201203202456006.50 + 4YFOSC2.933500–8800
SN2012aw201203312456017.50 + 15YFOSC2.933500–8800
SN2012aw201204012456018.50 + 16YFOSC2.933500–8900
SN2012aw201205222456070.03 + 67.5BFOSC4.423900–8700
SN2012bv201204292456046.02>20.0YFOSC2.934000–8800
SN2012ec201209142456184.25 + 41.3BFOSC4.423600–8700
SN2012ec201210122456213.24 + 70.2OMR4.83600–8900
SN2012ec201301182456310.50 + 167.5BFOSC4.423800–8700
SN2012fc201211092456241.04>51.0BFOSC4.423800–8700
SN2012fs201210122456213.10 + 13.6OMR4.84000–8500
SN2012fs201211092456241.11 + 41.6BFOSC4.424000–8700
SN2012gn201211162456248.32>5.3OMR4.84200–8900
SN2012gq201211162456248.23>2.2OMR4.84500–8000
SN2012ho201212072456268.98 + 6.7YFOSC2.933500–8800
SN2012ho201212102456271.00 + 8.8YFOSC2.933500–8900
SN2012ho201212122456273.50 + 11.3YFOSC2.933500–8900
SN2013ab201302252456347.36 + 7.4YFOSC2.933500–8800
SN2013ab201305032456416.23 + 76.2BFOSC2.933500–8800
SN2013ac201302162456339.46>0.5YFOSC2.933800–8800
SN2013af201303022456354.07 + 48.1YFOSC2.934200–8900
SN2013bi201304052456388.14>12.1BFOSC4.424100–8700
SN2013ca201505032456416.07 + 12.8BFOSC4.423900–8700
SN2013fl201309252456560.97 + 23.4OMR4.84000–8900
SN2013fs201310112456577.06 + 5.4BFOSC4.423800–8700
SN2013fv201310142456579.20>2.2BFOSC4.423800–8700
SN2013gd201311292456626.14 + 22.3BFOSC4.423800–8700
SN2013gd201312062456633.14 + 29.3BFOSC4.423800–8700
SN2013gd201401072456666.10 + 62.3YFOSC2.933500–8900
SN2013gm201311212456618.41>1.4YFOSC2.933500–8900
SN2013gu201312062456633.09>2.1BFOSC4.423800–8700
SN2014A201401022456660.42 + 48.9YFOSC2.933500–8900
SN2014A201404232456771.23 + 159.7YFOSC7.913900–9100
SN2014B201401042456662.38 + 49.4BFOSC4.423800–8700
SN2014bf201405242456802.17>2.1BFOSC4.423800–8700
SN2014bf201405242456802.31>2.3YFOSC7.913500–9200
SN2014bu201409182456919.27>94.3OMR9.63500–8800
SN2014ce201410032456934.02 + 56.0YFOSC2.933500–8900
SN2014cn201404242456772.22 + 4.5YFOSC7.913900–9000
SN2014cw201409182456919.07>20.1OMR4.83500–8800
SN2014dq201410192456949.98 + 3.9YFOSC2.933500–8800
SN2014dq201410242456956.00 + 9.9YFOSC2.933500–8900
SN2014dq201410302456962.08 + 16.0YFOSC2.934000–8900
SN2014dq201411162456977.99 + 31.9YFOSC2.933500–8900
SN2014dq201412022456993.99 + 47.9YFOSC2.933500–9100
SN2014G201401272456684.26 + 14.3BFOSC4.423800–8800
SN2014G201402062456695.40 + 25.4YFOSC2.933500–8900
SN2014G201403072456724.18 + 54.2OMR4.83900–9200
SN2014G201403212456738.24 + 68.2BFOSC4.424200–8700
SN2014G201404112456759.21 + 89.2YFOSC2.933500–8900
SN2014G201405222456800.05 + 130.1BFOSC4.423800–8700
SN2015aq201512042457361.39 + 122.4BFOSC4.423800–8800
SN2015aq201512172457374.33 + 135.3BFOSC2.973700–8500
SN2015as201606022457542.05>200.1BFOSC5.883600–8800
SN2015ay201510132457309.23 + 17.6BFOSC4.423800–8800
SN2015O201506232457197.21 + 2.0YFOSC2.933500–8900
SN2015O201506262457200.19 + 5.0YFOSC2.933500–8900
SN2015V201504062457120.28 + 7.3YFOSC2.933500–8900
SN2015V201505112457154.18 + 41.2BFOSC4.423900–8800
SN2015V201505252457168.27 + 55.3BFOSC273600–8700
SN2015W201502132457067.01 + 46.0BFOSC4.423800–8800
SN2016afa201602132457432.46 + 4.1YFOSC2.933500–8900
SN2016afa201602142457433.44 + 5.0YFOSC2.933500–8900
SN2016aip201602172457437.04 + 46.4YFOSC2.933500–8900
SN2016ak201601182457406.33 + 18.2YFOSC7.914000–8700
SN2016aqp201602262457446.02 + 17.6YFOSC2.933500–8900
SN2016aqw201603032457451.36 + 5.0YFOSC2.933500–8900
SN2016B201601042457392.36 + 6.4YFOSC2.933500–8900
SN2016B201601082457396.28 + 10.3BFOSC4.423800–8800
SN2016B201603112457459.13 + 73.1BFOSC4.423800–8800
SN2016B201604042457483.13 + 97.1BFOSC4.424200–8800
SN2016B201605072457516.08 + 130.1OMR2.43900–9100
SN2016bkx201603252457474.11>10.5YFOSC2.933500–8900
SN2016bla201603302457478.12>29.5YFOSC2.933500–8900
SN2016blb201604042457483.16 + 11.3BFOSC4.424200–8800
SN2016ccf201605062457515.03>10.3BFOSC2.974300–9000
SN2016ccm201605062457515.24>16.3BFOSC2.974200–9000
SN2016cok201605282457537.12 + 2.3YFOSC2.933500–8900
SN2016cok201605292457538.06 + 3.3BFOSC6.633700–8800
SN2016cok201605302457540.15 + 5.4YFOSC2.933500–8900
SN2016cok201606012457542.17 + 7.4YFOSC2.933500–8900
SN2016cok201606042457544.16 + 9.4YFOSC2.933400–8900
SN2016cok201606082457548.02 + 13.2BFOSC6.634000–8000
SN2016cok201606102457550.04 + 15.2BFOSC6.634000–8000
SN2016esw201608092457610.02 + 1.7BFOSC2.973800–8800
SN2016fmt201608302457631.31 + 10.6BFOSC2.973800–8800
SN2016fnb201608302457631.25 + 17.5BFOSC2.973900–8800
SN2016hbd201610282457690.26>25.3BFOSC2.974000–8800
SN2016hgm201610282457690.17 + 13.2BFOSC2.974000–8800
SN2016hjg201611182457712.18>30.2YFOSC7.914000–8300
SN2016hvu201611082457700.96>2.4BFOSC2.973700–8800
SN2016hvu201611162457710.16>11.6YFOSC2.933500–8900
SN2016hvu201611232457715.95>17.4BFOSC2.973800–8800
SN2016hvu201612022457724.98>26.4BFOSC2.973700–8800
SN2016I201601132457401.43 + 21.1YFOSC2.933500–8900
SN2016iog201612022457725.39 + 9.3BFOSC2.973700–8800
SN2016iyz201612222457745.23 + 3.3YFOSC2.933500–8700
SN2016jby201612282457751.31 + 6.6BFOSC2.973900–8800
SN2016jby201702052457790.35 + 45.6YFOSC2.933500–8900
SN2016jft201612312457755.23 + 6.6YFOSC2.933500–8900
SN2016jft201701062457761.33 + 12.7YFOSC2.933500–8900
SN2016jft201701192457773.23 + 24.6YFOSC2.933500–8900
SN2016jft201702132457798.34 + 49.7YFOSC2.933500–8900
SN2016jfu201612312457754.38 + 7.5BFOSC2.973700–8800
SN2016jfu201701022457756.38 + 9.6BFOSC2.973700–8800
SN2016jfu201701042457758.35 + 11.5BFOSC6.633700–8800
SN2016jfu201701202457774.28 + 27.5BFOSC11.83800–8800
SN2016jfu201701312457785.35 + 38.5BFOSC2.973800–8800
SN2016jfu201702122457797.24 + 50.4YFOSC2.933500–8900
SN2016N201601182457406.08 + 9.8BFOSC18.24200–8800
SN2017aub201702172457802.11 + 8.7BFOSC2.974000–8800
SN2017aub201702222457807.03 + 13.6BFOSC2.974000–8800
SN2017aub201702252457809.95 + 16.6BFOSC6.633700–8800
SN2017aub201703032457815.95 + 22.6BFOSC2.973700–8800
SN2017aub201703082457820.97 + 27.6BFOSC2.973700–8800
SN2017aub201703172457829.99 + 36.6BFOSC2.973700–8800
SN2017aub201703282457840.98 + 47.6BFOSC2.973700–8800
SN2017auf201702172457802.06 + 5.4BFOSC2.974000–8800
SN2017auu201702162457801.01 + 21.0YFOSC7.914000–8100
SN2017cfa201703172457830.06 + 8.4BFOSC2.974000–8800
SN2017cff201703192457832.24 + 12.0YFOSC2.933500–8900
SN2017cff201704082457852.23 + 32.0YFOSC2.933500–9200
SN2017cjb201703282457841.22 + 5.9YFOSC2.933500–8700
SN2017dka201705022457876.31 + 8.3YFOSC7.914000–8300
SN2017gtd201709202458017.31 + 8.3BFOSC2.973700–8800
SN2017gww201709272458024.21 + 1.1BFOSC2.973700–8800
SN2017gww201710012458028.15 + 5.1YFOSC2.933500–8900
SN2017gww201712302458117.99 + 94.9YFOSC2.933500–8900
SN2017hk201701202457774.37 + 16.2YFOSC2.933500–8900
SN2017hk201702062457791.41 + 33.2YFOSC2.933500–8900
SN2017hxu201711122458070.20 + 15.7YFOSC2.933500–8800
SN2017hxu201711142458072.19 + 17.7YFOSC2.933500–8800
SN2017hxu201711202458078.07 + 23.6YFOSC2.933500–8800
SN2017hxz201711152458073.22>19.3YFOSC2.933500–8800
SN2017imr201711282458086.18 + 19.1YFOSC2.933500–8900
SN2017iub201712102458098.26 + 8.8BFOSC2.974600–7100
SN2017ivu201802122458162.27 + 85.0BFOSC8.84000–8800
SN2017ivu201802202458170.39 + 93.2YFOSC2.933500–9000
SN2017ivu201803012458179.42 + 102.2YFOSC2.933500–9000
SN2017ivu201803132458191.35 + 114.1YFOSC2.933500–9000
SN2017jbj201712302458118.02>17.4YFOSC2.933500–8900
SN2018afm201803232458200.97 + 12.7BFOSC2.974000–8800
SN2018aoq201804082458217.20 + 8.7BFOSC2.974000–8800
SN2018aoq201804102458219.12 + 10.6BFOSC2.974000–8800
SN2018aoq201804202458229.04 + 20.5OMR9.63500–8800
SN2018aoq201804242458233.13 + 24.6BFOSC2.974000–8800
SN2018aoq201804262458235.22 + 26.7BFOSC2.974000–8800
SN2018aoq201804282458237.13 + 28.6BFOSC2.974000–8800
SN2018aoq201805072458246.13 + 37.6BFOSC2.974000–8800
SN2018aoq201806042458274.11 + 65.6BFOSC2.974000–8800
SN2018aoq201806122458282.05 + 73.5BFOSC2.974000–8800
SN2018aoq201806232458293.04 + 84.5BFOSC2.974000–8800
SN2018aql201805142458253.20 + 55.1YFOSC2.933500–9000
SN2018aql201805152458254.32 + 56.2YFOSC2.933500–9000
SN2018bek201805062458245.27 + 6.4BFOSC2.974000–8800
SN2018bek201805072458246.17 + 7.3BFOSC2.974000–8800
SN2018bek201805082458247.22 + 8.3BFOSC2.974000–8800
SN2018bek201805172458256.07 + 17.2BFOSC2.974000–8800
SN2018bek201805232458262.23 + 23.3BFOSC2.974000–8800
SN2018bek201806022458272.09 + 33.2BFOSC2.974000–8800
SN2018bek201806042458274.22 + 35.3BFOSC2.974000–8800
SN2018gk201801232458142.35 + 11.7BFOSC2.974000–8800
SN2018gk201802122458162.32 + 31.7BFOSC2.974000–8800
SN2018gk201802222458172.33 + 41.7BFOSC2.974000–8800
SN2018kpo201812262458479.21 + 2.9YFOSC2.934000–8800
SN2018lab201812292458482.23 + 1.1YFOSC2.933500–8800
SN2018lab201812302458483.19 + 2.1YFOSC2.933500–8800
SN2018lcd201901042458487.99 + 6.7BFOSC2.974000–8700
SN2018pn201802062458156.18 + 18.9YFOSC2.933800–9000
SN2018rz201802122458162.36 + 25.1BFOSC2.974000–8800
SN2018yo201802282458178.33 + 39.7YFOSC2.933800–9000
SNObs. dateJDPhasea (d)InstrumentResolution (Å |$\ \rm pix^{-1}$|⁠)Wavelength range (Å)
ASASSN-14kg201411232456985.18 + 15.2BFOSC4.423800–8800
ASASSN-14ma201412142457006.98 + 12.0dYFOSC2.933500–8900
ASASSN-15fi201503242457106.24>7.2dBFOSC4.423800–8800
Gaia15acw201412142457006.25 + 9.1YFOSC7.913900–8300
iPTF13dkz201310112456576.21 + 27.8BFOSC4.424000–8700
MASTER_J2103201411082456970.98 + 18.5YFOSC2.933500–8900
MASTER_J2333201510132457309.00 + 18.8BFOSC4.423800–8800
MASTER_J2333201511032457330.01 + 39.8BFOSC18.33800–8800
PS15cwo201511112457339.31 + 4.2YFOSC2.933500–8900
PS15cwo201511142457341.18 + 6.1YFOSC2.933500–8900
PS15cwo201511152457343.18 + 8.1YFOSC2.933500–8900
PS15cwo201511202457348.22 + 13.1YFOSC2.933500–8900
PS15cwo201511232457350.17 + 15.1YFOSC2.933500–8400
PS15cwo201511272457355.30 + 20.2YFOSC2.933500–8700
PS15cwo201512082457366.19 + 31.1YFOSC2.933500–8900
PS15cwo201601022457391.16 + 56.1YFOSC2.933500–8900
PS15cwo201601062457395.11 + 60.0YFOSC2.933500–8900
PS15cwo201601132457401.99 + 66.9YFOSC2.933500–8900
PS15cwo201601292457418.14 + 83.0YFOSC2.933500–8900
SN2011az201104032455655.20>16.2OMR4.83500–8900
SN2011az201104082455659.18>20.2OMR4.83500–8900
SN2011az201104222455673.18>34.2BFOSC4.423800–8700
SN2011bi201104082455659.30 + 31OMR4.84000–8900
SN2011bi201105132455695.28 + 67.0BFOSC4.424600–8700
SN2011cj201105132455695.15 + 6.5BFOSC4.423500–8700
SN2011cj201105272455709.50 + 20.9BFOSC4.423900–8700
SN2011eg201109302455834.98>69OMR4.83500–8900
SN2011fd201112232455919.08 + 136.1BFOSC4.423500–8900
SN2011fu201109302455835.13 + 9.9OMR4.83900–8500
SN2011fu201110212455856.21 + 31.0OMR16.24000–8900
SN2011ir201112232455918.30>31.8OMR4.83800–8900
SN2011jy201201272455953.50>28.5dBFOSC18.24000–8700
SN2012A201201272455953.50 + 23.6BFOSC4.423700–8700
SN2012A201202042455963.03 + 33.1YFOSC2.935300–9600
SN2012A201203162456003.07 + 73.1OMR4.83700–8900
SN2012A201204012456018.50 + 88.6YFOSC2.933500–8900
SN2012aw201203202456006.50 + 4YFOSC2.933500–8800
SN2012aw201203312456017.50 + 15YFOSC2.933500–8800
SN2012aw201204012456018.50 + 16YFOSC2.933500–8900
SN2012aw201205222456070.03 + 67.5BFOSC4.423900–8700
SN2012bv201204292456046.02>20.0YFOSC2.934000–8800
SN2012ec201209142456184.25 + 41.3BFOSC4.423600–8700
SN2012ec201210122456213.24 + 70.2OMR4.83600–8900
SN2012ec201301182456310.50 + 167.5BFOSC4.423800–8700
SN2012fc201211092456241.04>51.0BFOSC4.423800–8700
SN2012fs201210122456213.10 + 13.6OMR4.84000–8500
SN2012fs201211092456241.11 + 41.6BFOSC4.424000–8700
SN2012gn201211162456248.32>5.3OMR4.84200–8900
SN2012gq201211162456248.23>2.2OMR4.84500–8000
SN2012ho201212072456268.98 + 6.7YFOSC2.933500–8800
SN2012ho201212102456271.00 + 8.8YFOSC2.933500–8900
SN2012ho201212122456273.50 + 11.3YFOSC2.933500–8900
SN2013ab201302252456347.36 + 7.4YFOSC2.933500–8800
SN2013ab201305032456416.23 + 76.2BFOSC2.933500–8800
SN2013ac201302162456339.46>0.5YFOSC2.933800–8800
SN2013af201303022456354.07 + 48.1YFOSC2.934200–8900
SN2013bi201304052456388.14>12.1BFOSC4.424100–8700
SN2013ca201505032456416.07 + 12.8BFOSC4.423900–8700
SN2013fl201309252456560.97 + 23.4OMR4.84000–8900
SN2013fs201310112456577.06 + 5.4BFOSC4.423800–8700
SN2013fv201310142456579.20>2.2BFOSC4.423800–8700
SN2013gd201311292456626.14 + 22.3BFOSC4.423800–8700
SN2013gd201312062456633.14 + 29.3BFOSC4.423800–8700
SN2013gd201401072456666.10 + 62.3YFOSC2.933500–8900
SN2013gm201311212456618.41>1.4YFOSC2.933500–8900
SN2013gu201312062456633.09>2.1BFOSC4.423800–8700
SN2014A201401022456660.42 + 48.9YFOSC2.933500–8900
SN2014A201404232456771.23 + 159.7YFOSC7.913900–9100
SN2014B201401042456662.38 + 49.4BFOSC4.423800–8700
SN2014bf201405242456802.17>2.1BFOSC4.423800–8700
SN2014bf201405242456802.31>2.3YFOSC7.913500–9200
SN2014bu201409182456919.27>94.3OMR9.63500–8800
SN2014ce201410032456934.02 + 56.0YFOSC2.933500–8900
SN2014cn201404242456772.22 + 4.5YFOSC7.913900–9000
SN2014cw201409182456919.07>20.1OMR4.83500–8800
SN2014dq201410192456949.98 + 3.9YFOSC2.933500–8800
SN2014dq201410242456956.00 + 9.9YFOSC2.933500–8900
SN2014dq201410302456962.08 + 16.0YFOSC2.934000–8900
SN2014dq201411162456977.99 + 31.9YFOSC2.933500–8900
SN2014dq201412022456993.99 + 47.9YFOSC2.933500–9100
SN2014G201401272456684.26 + 14.3BFOSC4.423800–8800
SN2014G201402062456695.40 + 25.4YFOSC2.933500–8900
SN2014G201403072456724.18 + 54.2OMR4.83900–9200
SN2014G201403212456738.24 + 68.2BFOSC4.424200–8700
SN2014G201404112456759.21 + 89.2YFOSC2.933500–8900
SN2014G201405222456800.05 + 130.1BFOSC4.423800–8700
SN2015aq201512042457361.39 + 122.4BFOSC4.423800–8800
SN2015aq201512172457374.33 + 135.3BFOSC2.973700–8500
SN2015as201606022457542.05>200.1BFOSC5.883600–8800
SN2015ay201510132457309.23 + 17.6BFOSC4.423800–8800
SN2015O201506232457197.21 + 2.0YFOSC2.933500–8900
SN2015O201506262457200.19 + 5.0YFOSC2.933500–8900
SN2015V201504062457120.28 + 7.3YFOSC2.933500–8900
SN2015V201505112457154.18 + 41.2BFOSC4.423900–8800
SN2015V201505252457168.27 + 55.3BFOSC273600–8700
SN2015W201502132457067.01 + 46.0BFOSC4.423800–8800
SN2016afa201602132457432.46 + 4.1YFOSC2.933500–8900
SN2016afa201602142457433.44 + 5.0YFOSC2.933500–8900
SN2016aip201602172457437.04 + 46.4YFOSC2.933500–8900
SN2016ak201601182457406.33 + 18.2YFOSC7.914000–8700
SN2016aqp201602262457446.02 + 17.6YFOSC2.933500–8900
SN2016aqw201603032457451.36 + 5.0YFOSC2.933500–8900
SN2016B201601042457392.36 + 6.4YFOSC2.933500–8900
SN2016B201601082457396.28 + 10.3BFOSC4.423800–8800
SN2016B201603112457459.13 + 73.1BFOSC4.423800–8800
SN2016B201604042457483.13 + 97.1BFOSC4.424200–8800
SN2016B201605072457516.08 + 130.1OMR2.43900–9100
SN2016bkx201603252457474.11>10.5YFOSC2.933500–8900
SN2016bla201603302457478.12>29.5YFOSC2.933500–8900
SN2016blb201604042457483.16 + 11.3BFOSC4.424200–8800
SN2016ccf201605062457515.03>10.3BFOSC2.974300–9000
SN2016ccm201605062457515.24>16.3BFOSC2.974200–9000
SN2016cok201605282457537.12 + 2.3YFOSC2.933500–8900
SN2016cok201605292457538.06 + 3.3BFOSC6.633700–8800
SN2016cok201605302457540.15 + 5.4YFOSC2.933500–8900
SN2016cok201606012457542.17 + 7.4YFOSC2.933500–8900
SN2016cok201606042457544.16 + 9.4YFOSC2.933400–8900
SN2016cok201606082457548.02 + 13.2BFOSC6.634000–8000
SN2016cok201606102457550.04 + 15.2BFOSC6.634000–8000
SN2016esw201608092457610.02 + 1.7BFOSC2.973800–8800
SN2016fmt201608302457631.31 + 10.6BFOSC2.973800–8800
SN2016fnb201608302457631.25 + 17.5BFOSC2.973900–8800
SN2016hbd201610282457690.26>25.3BFOSC2.974000–8800
SN2016hgm201610282457690.17 + 13.2BFOSC2.974000–8800
SN2016hjg201611182457712.18>30.2YFOSC7.914000–8300
SN2016hvu201611082457700.96>2.4BFOSC2.973700–8800
SN2016hvu201611162457710.16>11.6YFOSC2.933500–8900
SN2016hvu201611232457715.95>17.4BFOSC2.973800–8800
SN2016hvu201612022457724.98>26.4BFOSC2.973700–8800
SN2016I201601132457401.43 + 21.1YFOSC2.933500–8900
SN2016iog201612022457725.39 + 9.3BFOSC2.973700–8800
SN2016iyz201612222457745.23 + 3.3YFOSC2.933500–8700
SN2016jby201612282457751.31 + 6.6BFOSC2.973900–8800
SN2016jby201702052457790.35 + 45.6YFOSC2.933500–8900
SN2016jft201612312457755.23 + 6.6YFOSC2.933500–8900
SN2016jft201701062457761.33 + 12.7YFOSC2.933500–8900
SN2016jft201701192457773.23 + 24.6YFOSC2.933500–8900
SN2016jft201702132457798.34 + 49.7YFOSC2.933500–8900
SN2016jfu201612312457754.38 + 7.5BFOSC2.973700–8800
SN2016jfu201701022457756.38 + 9.6BFOSC2.973700–8800
SN2016jfu201701042457758.35 + 11.5BFOSC6.633700–8800
SN2016jfu201701202457774.28 + 27.5BFOSC11.83800–8800
SN2016jfu201701312457785.35 + 38.5BFOSC2.973800–8800
SN2016jfu201702122457797.24 + 50.4YFOSC2.933500–8900
SN2016N201601182457406.08 + 9.8BFOSC18.24200–8800
SN2017aub201702172457802.11 + 8.7BFOSC2.974000–8800
SN2017aub201702222457807.03 + 13.6BFOSC2.974000–8800
SN2017aub201702252457809.95 + 16.6BFOSC6.633700–8800
SN2017aub201703032457815.95 + 22.6BFOSC2.973700–8800
SN2017aub201703082457820.97 + 27.6BFOSC2.973700–8800
SN2017aub201703172457829.99 + 36.6BFOSC2.973700–8800
SN2017aub201703282457840.98 + 47.6BFOSC2.973700–8800
SN2017auf201702172457802.06 + 5.4BFOSC2.974000–8800
SN2017auu201702162457801.01 + 21.0YFOSC7.914000–8100
SN2017cfa201703172457830.06 + 8.4BFOSC2.974000–8800
SN2017cff201703192457832.24 + 12.0YFOSC2.933500–8900
SN2017cff201704082457852.23 + 32.0YFOSC2.933500–9200
SN2017cjb201703282457841.22 + 5.9YFOSC2.933500–8700
SN2017dka201705022457876.31 + 8.3YFOSC7.914000–8300
SN2017gtd201709202458017.31 + 8.3BFOSC2.973700–8800
SN2017gww201709272458024.21 + 1.1BFOSC2.973700–8800
SN2017gww201710012458028.15 + 5.1YFOSC2.933500–8900
SN2017gww201712302458117.99 + 94.9YFOSC2.933500–8900
SN2017hk201701202457774.37 + 16.2YFOSC2.933500–8900
SN2017hk201702062457791.41 + 33.2YFOSC2.933500–8900
SN2017hxu201711122458070.20 + 15.7YFOSC2.933500–8800
SN2017hxu201711142458072.19 + 17.7YFOSC2.933500–8800
SN2017hxu201711202458078.07 + 23.6YFOSC2.933500–8800
SN2017hxz201711152458073.22>19.3YFOSC2.933500–8800
SN2017imr201711282458086.18 + 19.1YFOSC2.933500–8900
SN2017iub201712102458098.26 + 8.8BFOSC2.974600–7100
SN2017ivu201802122458162.27 + 85.0BFOSC8.84000–8800
SN2017ivu201802202458170.39 + 93.2YFOSC2.933500–9000
SN2017ivu201803012458179.42 + 102.2YFOSC2.933500–9000
SN2017ivu201803132458191.35 + 114.1YFOSC2.933500–9000
SN2017jbj201712302458118.02>17.4YFOSC2.933500–8900
SN2018afm201803232458200.97 + 12.7BFOSC2.974000–8800
SN2018aoq201804082458217.20 + 8.7BFOSC2.974000–8800
SN2018aoq201804102458219.12 + 10.6BFOSC2.974000–8800
SN2018aoq201804202458229.04 + 20.5OMR9.63500–8800
SN2018aoq201804242458233.13 + 24.6BFOSC2.974000–8800
SN2018aoq201804262458235.22 + 26.7BFOSC2.974000–8800
SN2018aoq201804282458237.13 + 28.6BFOSC2.974000–8800
SN2018aoq201805072458246.13 + 37.6BFOSC2.974000–8800
SN2018aoq201806042458274.11 + 65.6BFOSC2.974000–8800
SN2018aoq201806122458282.05 + 73.5BFOSC2.974000–8800
SN2018aoq201806232458293.04 + 84.5BFOSC2.974000–8800
SN2018aql201805142458253.20 + 55.1YFOSC2.933500–9000
SN2018aql201805152458254.32 + 56.2YFOSC2.933500–9000
SN2018bek201805062458245.27 + 6.4BFOSC2.974000–8800
SN2018bek201805072458246.17 + 7.3BFOSC2.974000–8800
SN2018bek201805082458247.22 + 8.3BFOSC2.974000–8800
SN2018bek201805172458256.07 + 17.2BFOSC2.974000–8800
SN2018bek201805232458262.23 + 23.3BFOSC2.974000–8800
SN2018bek201806022458272.09 + 33.2BFOSC2.974000–8800
SN2018bek201806042458274.22 + 35.3BFOSC2.974000–8800
SN2018gk201801232458142.35 + 11.7BFOSC2.974000–8800
SN2018gk201802122458162.32 + 31.7BFOSC2.974000–8800
SN2018gk201802222458172.33 + 41.7BFOSC2.974000–8800
SN2018kpo201812262458479.21 + 2.9YFOSC2.934000–8800
SN2018lab201812292458482.23 + 1.1YFOSC2.933500–8800
SN2018lab201812302458483.19 + 2.1YFOSC2.933500–8800
SN2018lcd201901042458487.99 + 6.7BFOSC2.974000–8700
SN2018pn201802062458156.18 + 18.9YFOSC2.933800–9000
SN2018rz201802122458162.36 + 25.1BFOSC2.974000–8800
SN2018yo201802282458178.33 + 39.7YFOSC2.933800–9000

Note. aPhase relative to the estimated explosion date estimated in Section 2. All the spectra can also be found at https://thusn.phys.tsinghua.edu.cn/static/files/THUSN_SNII_spectra_20240110.zip, WISeREP (https://www.wiserep.org) and Zenodo (https://doi.org/10.5281/zenodo.10466160).

Table A3.

Line velocities and pEWs of H α, H β, and Fe ii 5169.

SNPhasevH α(σ)avH β(σ)vFe ii5169(σ)|$\rm pew_{obs}^{H\alpha }(\sigma)$|||$\rm pew_{emi}^{H\alpha }(\sigma)$|||$\rm pew_{obs}^{H\beta }(\sigma)$||$\rm pew_{obs}^{Fe II 5169}(\sigma)$|
ASASSN-14kg + 15.214062(612)⋅⋅⋅⋅⋅⋅3.88(0.46)96.24(0.09)3.71(0.05)⋅⋅⋅
ASASSN-14ma + 12.09942(377)8166(790)⋅⋅⋅22.58(1.54)175.33(0.97)44.27(1.10)⋅⋅⋅
Gaia15acw + 9.110176(589)⋅⋅⋅⋅⋅⋅0.26(0.16)60.39(0.27)⋅⋅⋅⋅⋅⋅
iPTF13dkz + 27.89596(876)6919(470)5788(757)50.93(0.40)227.31(0.15)55.8(0.01)18.14(0.65)
MASTER_J2103 + 18.58747(458)7844(665)⋅⋅⋅3.13(0.06)96.48(0.58)24.83(0.45)⋅⋅⋅
MASTER_J2333 + 18.811839(349)10155(583)5030(1609)1.45(0.14)177.32(0.06)22.64(0.23)14.16(0.02)
MASTER_J2333 + 39.814958(1343)⋅⋅⋅⋅⋅⋅2.41(0.78)284.73(1.03)⋅⋅⋅⋅⋅⋅
PS15cwo + 13.1⋅⋅⋅9662(2023)⋅⋅⋅⋅⋅⋅⋅⋅⋅16.85(0.01)⋅⋅⋅
PS15cwo + 15.1⋅⋅⋅9013(795)⋅⋅⋅⋅⋅⋅⋅⋅⋅16.98(0.70)⋅⋅⋅
PS15cwo + 20.2⋅⋅⋅9144(971)⋅⋅⋅⋅⋅⋅⋅⋅⋅36.23(0.04)⋅⋅⋅
PS15cwo + 31.19661(525)8727(676)5896(893)15.58(0.16)169.91(0.39)49.55(0.03)28.04(0.65)
PS15cwo + 56.19022(463)8076(970)4594(1314)38.45(0.03)235.70(0.08)65.66(0.09)46.03(0.24)
PS15cwo + 60.08404(493)7164(1109)5162(978)37.26(0.38)279.05(0.25)69.94(0.05)48.79(0.64)
PS15cwo + 66.98317(216)7183(979)⋅⋅⋅55.7(0.24)182.89(0.33)78.8(0.36)⋅⋅⋅
PS15cwo + 83.07748(400)7179(402)⋅⋅⋅45.57(0.45)231.51(0.09)54(0.50)⋅⋅⋅
SN2011az>16.2⋅⋅⋅8800(650)⋅⋅⋅⋅⋅⋅⋅⋅⋅30.53(0.05)⋅⋅⋅
SN2011az>20.2⋅⋅⋅7446(595)⋅⋅⋅⋅⋅⋅⋅⋅⋅42.84(0.77)⋅⋅⋅
SN2011az>34.27709(702)5914(1261)4812(1023)26.57(1.82)203.29(1.44)41.95(0.38)7.86(1.43)
SN2011bi + 319241(893)8846(985)6143(757)33.95(2.07)122.81(0.47)46.71(0.17)55.56(0.50)
SN2011bi + 67.07917(352)5957(1051)5048(554)48.08(0.11)243.62(0.24)73.32(0.20)61.76(0.66)
SN2011cj + 20.910565(848)8289(1004)7546(449)52.96(0.67)271.69(0.70)49.7(0.10)17.84(1.18)
SN2011eg>697526(382)6506(515)⋅⋅⋅4.19(0.07)183.54(1.11)28.4(0.02)⋅⋅⋅
SN2011fu + 9.9⋅⋅⋅9465(615)⋅⋅⋅⋅⋅⋅⋅⋅⋅41.44(0.09)⋅⋅⋅
SN2011fu + 31.09567(550)7743(1183)4686(1207)10.31(0.33)214.22(0.08)45.98(0.20)44.1(1.27)
SN2011ir>31.810255(767)9902(839)5834(394)1.79(0.44)106.84(0.96)15.44(0.01)25.27(0.45)
SN2012A + 23.66881(407)6294(476)4427(517)57.53(0.01)128.13(0.18)48.12(0.07)34.64(0.48)
SN2012A + 33.16307(196)⋅⋅⋅⋅⋅⋅37.65(0.10)182.93(0.12)⋅⋅⋅⋅⋅⋅
SN2012A + 73.15186(316)4034(493)2346(401)54.73(0.09)233.83(0.36)71.1(0.09)57.55(5.65)
SN2012A + 88.64799(255)3500(299)1934(280)62.42(0.10)245.92(0.06)71.04(0.41)38.32(0.02)
SN2012aw + 1510428(334)9132(369)7523(478)31.96(0.15)193.32(0.05)42.01(0.01)18.34(0.23)
SN2012aw + 1611225(1212)8368(298)6899(668)32.14(0.01)215.16(0.59)48.84(0.07)18.87(0.26)
SN2012aw + 67.55927(353)4534(590)3438(448)66.4(0.01)157.48(0.58)28.6(0.19)41.31(0.70)
SN2012bv>20.06981(443)6680(673)⋅⋅⋅14.67(0.51)144.14(0.10)15.34(0.78)⋅⋅⋅
SN2012ec + 41.36627(347)4903(468)4162(440)58.66(1.14)164.24(0.58)37.28(0.02)29.46(0.16)
SN2012ec + 70.25586(364)⋅⋅⋅3269(496)59.57(1.28)143.19(1.15)⋅⋅⋅40.29(0.70)
SN2012fc>51.08322(400)6134(682)3792(439)54.95(0.25)327.85(0.67)84.73(0.09)32.91(0.19)
SN2012fs + 13.6⋅⋅⋅9648(421)⋅⋅⋅⋅⋅⋅⋅⋅⋅41.74(1.56)⋅⋅⋅
SN2012fs + 41.66149(349)4773(471)3428(956)49.28(0.07)131.2(0.13)15.96(0.10)29.81(0.56)
SN2012gn>5.3⋅⋅⋅8475(422)⋅⋅⋅⋅⋅⋅⋅⋅⋅21.41(0.08)⋅⋅⋅
SN2012ho + 8.8⋅⋅⋅9413(861)⋅⋅⋅⋅⋅⋅⋅⋅⋅7.08(0.01)⋅⋅⋅
SN2012ho + 11.3⋅⋅⋅10201(963)⋅⋅⋅⋅⋅⋅⋅⋅⋅16.16(0.04)⋅⋅⋅
SN2013ab + 7.410752(582)10544(553)⋅⋅⋅10.72(0.34)68.98(0.07)18.25(0.15)⋅⋅⋅
SN2013ab + 76.25934(406)3433(476)3038(447)78.76(0.16)220.89(0.15)46.15(0.01)42.4(0.49)
SN2013af + 48.18524(1294)5786(874)⋅⋅⋅97.99(0.04)178.25(0.39)58.16(0.23)⋅⋅⋅
SN2013fl + 23.48862(652)7934(891)5395(991)25.79(3.47)246.74(4.72)47.78(0.28)22.33(0.02)
SN2013gd + 22.37969(610)7437(626)5738(867)10.65(0.06)278.92(0.56)64.26(1.22)28.07(0.29)
SN2013gd + 29.37863(464)5559(472)4775(562)28.72(0.01)230.94(0.01)46.63(0.07)31.53(0.99)
SN2013gd + 62.36076(794)⋅⋅⋅3239(277)22.11(0.01)45.33(0.07)⋅⋅⋅13.07(0.32)
SN2013gu> + 2.1⋅⋅⋅9125(595)⋅⋅⋅⋅⋅⋅⋅⋅⋅2.1(0.17)⋅⋅⋅
SN2014A + 48.94987(694)3566(420)3090(674)57.56(0.29)96.20(0.12)17.09(0.39)32.32(0.69)
SN2014B + 49.47237(931)5864(842)4655(652)44.88(1.14)224.62(0.24)51.59(0.37)18.23(0.15)
SN2014bf>2.3⋅⋅⋅5350(800)⋅⋅⋅⋅⋅⋅⋅⋅⋅7.07(0.18)⋅⋅⋅
SN2014cw>20.18893(573)7815(538)5320(557)26.68(0.10)259.77(0.38)52.43(0.01)17.02(0.32)
SN2014cx + 18.210867(315)9535(425)⋅⋅⋅19.39(0.07)246.67(0.16)31.47(0.23)⋅⋅⋅
SN2014cx + 46.17934(550)6589(640)4437(514)72.57(0.21)183.46(0.68)48.8(0.13)21.74(0.43)
SN2014cx + 129.95895(408)4153(747)2504(449)47.09(0.01)507.75(0.06)59.9(0.25)31.67(0.98)
SN2014cy + 19.16056(364)5566(426)4836(400)11.8(0.05)150.73(0.28)33.49(0.01)19(0.02)
SN2014cy + 47.15017(304)3756(343)2607(363)31.01(0.07)82.63(0.02)33.23(0.11)26.47(1.16)
SN2014dq + 9.98060(220)7646(568)⋅⋅⋅6.62(0.01)126.96(0.10)39.38(0.15)⋅⋅⋅
SN2014dq + 16.07382(535)6378(478)⋅⋅⋅19.94(0.05)144.82(1.22)27.97(0.14)⋅⋅⋅
SN2014dq + 31.96242(339)5045(419)3424(279)38.74(0.13)222.89(0.80)47(0.81)12.81(0.06)
SN2014dq + 47.95573(379)4312(452)2696(373)52.89(0.23)184.36(0.21)52.07(0.05)17.38(0.01)
SN2014G + 25.48898(323)8465(344)7420(489)1.66(0.08)63.97(0.08)20.12(0.05)23.22(0.17)
SN2014G + 54.28109(390)6927(634)5406(1308)21.87(1.22)205.86(0.34)59.08(0.02)41.7(0.03)
SN2014G + 68.27362(357)5661(821)4062(523)21.11(0.49)269.46(0.12)60.39(0.15)41.33(1.87)
SN2014G + 89.2⋅⋅⋅5419(1264)3103(1220)⋅⋅⋅⋅⋅⋅57.4(0.01)33.9(0.16)
SN2015aq + 122.47455(617)5980(931)3636(813)51.03(0.58)575.27(0.16)59.41(0.01)47.42(0.49)
SN2015aq + 135.36783(503)5706(663)4198(408)41.12(0.07)791.64(2.60)63.65(1.91)21.67(0.97)
SN2015ay + 17.613796(404)11601(1115)6949(603)2.55(0.03)213.22(0.04)22.15(0.01)18.76(0.25)
SN2015cz + 17.29257(1282)8470(627)5715(1493)1.43(0.01)151.86(0.40)22.47(0.70)6.73(0.02)
SN2015cz + 38.16593(587)6336(1076)4109(720)30.22(0.02)138.93(1.15)42.74(0.31)23.54(0.73)
SN2015cz + 82.14931(243)5126(1500)2022(456)39.05(0.01)133.28(0.03)33.77(1.55)23.6(0.31)
SN2015V + 7.3⋅⋅⋅9640(880)⋅⋅⋅⋅⋅⋅⋅⋅⋅16.85(0.13)⋅⋅⋅
SN2015V + 41.26823(438)5928(591)4083(450)65.25(0.48)213.83(0.74)48.6(0.04)30(0.29)
SN2015V + 55.36310(351)4414(547)3025(446)68.29(0.24)168.67(0.04)53.99(0.74)30.64(0.27)
SN2015W + 46.09956(703)9751(1561)5309(987)47.55(0.13)226.44(0.76)60.47(0.35)63.76(1.14)
SN2016aip + 46.45637(1150)6042(1604)⋅⋅⋅60.6(1.76)200.19(2.16)84.17(4.18)⋅⋅⋅
SN2016ak + 18.2⋅⋅⋅8806(864)5062(1079)⋅⋅⋅⋅⋅⋅33.92(0.44)13.05(1.26)
SN2016aqp + 17.69011(617)8840(784)⋅⋅⋅9.45(0.20)200.37(1.28)30.17(0.67)⋅⋅⋅
SN2016aqw + 5.0⋅⋅⋅5384(1517)⋅⋅⋅⋅⋅⋅⋅⋅⋅19.49(0.22)⋅⋅⋅
SN2016B + 6.4⋅⋅⋅8402(853)⋅⋅⋅⋅⋅⋅⋅⋅⋅6.27(0.1)⋅⋅⋅
SN2016B + 10.3⋅⋅⋅8633(590)⋅⋅⋅⋅⋅⋅⋅⋅⋅6.2(0.23)⋅⋅⋅
SN2016B + 73.15956(440)2005(479)1810(450)43.69(0.26)251.87(0.85)53.99(0.15)45.28(0.84)
SN2016B + 97.14975(358)3660(484)2669(455)49.09(0.07)266.61(0.20)65.03(0.35)45.73(0.07)
SN2016B + 130.14687(213)3857(883)1811(334)49.11(3.45)306.77(0.30)61.79(1.83)40.32(0.40)
SN2016bkx>10.59395(807)8430(906)⋅⋅⋅60.14(0.10)105.69(0.94)76.34(0.05)⋅⋅⋅
SN2016bla>29.58297(964)6527(1215)3990(792)43.22(0.03)261.14(0.15)68.68(0.07)38.07(0.01)
SN2016blb + 11.3⋅⋅⋅10886(1087)⋅⋅⋅⋅⋅⋅⋅⋅⋅24.45(0.02)⋅⋅⋅
SN2016cok + 2.310760(683)7879(1516)⋅⋅⋅14.25(0.02)106.16(0.20)15.22(0.11)⋅⋅⋅
SN2016cok + 3.37109(1507)7457(1757)⋅⋅⋅16.49(0.22)108.33(0.08)15.67(0.03)⋅⋅⋅
SN2016cok + 5.47114(457)6491(470)⋅⋅⋅16.54(0.55)144.51(0.87)23.19(0.53)⋅⋅⋅
SN2016cok + 7.46985(435)6081(454)⋅⋅⋅13.56(0.36)159.18(0.01)22.85(0.05)⋅⋅⋅
SN2016cok + 9.46468(395)6050(391)4960(327)18(0.02)176.64(0.14)40.14(0.05)16.98(0.02)
SN2016cok + 13.24021(422)4325(1037)2018(536)37.54(0.85)186.96(0.24)42.48(0.13)23.22(0.01)
SN2016cok + 15.26510(565)6148.5(778.2)3121(1086)31.88(0.10)108.22(1.57)⋅⋅⋅⋅⋅⋅
SN2016fnb + 17.5⋅⋅⋅11435(283)4650(932)⋅⋅⋅⋅⋅⋅40.14(2.95)30.29(1.58)
SN2016hbd>25.39600(443)8754(832)7222(844)20.28(0.66)224.66(0.09)34.41(0.93)45.51(2.20)
SN2016hgm + 13.211308(378)9947(1399)⋅⋅⋅9.5(0.72)179.56(0.23)33.04(1.25)⋅⋅⋅
SN2016hjg>30.29123(589)8118(1006)5945(864)28.06(0.01)112.54(0.44)38.76(0.24)16.28(0.17)
SN2016hvu>11.6⋅⋅⋅9044(708)⋅⋅⋅⋅⋅⋅⋅⋅⋅17.42(0.05)⋅⋅⋅
SN2016hvu>17.410820(708)8854(285)⋅⋅⋅9.65(0.19)279.34(5.54)11.85(0.02)⋅⋅⋅
SN2016hvu>26.48176(267)7452(571)5235(400)33.64(0.50)224.92(1.51)38.28(0.02)14.77(0.07)
SN2016I + 21.18504(252)7747(295)6145(707)16.91(0.07)162.18(0.16)41.57(0.62)22.47(0.08)
SN2016jby + 45.67042(385)5946(590)4656(413)21.19(0.06)123.93(0.18)36.65(0.03)23.1(0.26)
SN2016jft + 12.7⋅⋅⋅9320(906)⋅⋅⋅⋅⋅⋅⋅⋅⋅9.7(0.15)⋅⋅⋅
SN2016jft + 24.69122(421)8461(501)6450(619)8.44(0.55)127.81(0.16)31.45(0.15)18.18(0.08)
SN2016jft + 49.77795(414)6231(1417)4344(705)29.55(0.19)178.35(0.03)54.24(0.88)32.65(1.33)
SN2016jfu + 11.510835(627)7909(333)⋅⋅⋅10.34(0.01)37.90(0.03)9.14(0.33)⋅⋅⋅
SN2016jfu + 27.58100(513)⋅⋅⋅7043(226)17.49(0.54)173.19(3.06)⋅⋅⋅44.65(1.41)
SN2016jfu + 38.57063(480)5662.6(810)5494(1077)33.57(0.11)159.13(0.77)32.15(0.84)29.34(0.33)
SN2016jfu + 50.47203(509)5493.9(1077)3798(757)41.56(0.15)127.64(0.91)28.86(0.19)31.47(2.26)
SN2017aub + 8.7⋅⋅⋅8323(285)⋅⋅⋅⋅⋅⋅⋅⋅⋅9.35(1.04)⋅⋅⋅
SN2017aub + 13.6⋅⋅⋅10329(380)6260(269)⋅⋅⋅⋅⋅⋅18.3(3.24)40.61(2.11)
SN2017aub + 16.6⋅⋅⋅6509(702)⋅⋅⋅⋅⋅⋅⋅⋅⋅28.61(0.05)⋅⋅⋅
SN2017aub + 22.66174(332)4848(330)4474(601)9.01(0.26)129.14(1.95)16.98(0.70)18.7(0.34)
SN2017aub + 36.65394(984)4508(652)3531(613)30.71(0.08)135.71(0.48)15.76(1.21)25.77(0.12)
SN2017aub + 47.64920(320)4008(544)2673(526)41.9(0.63)112.56(0.25)40.7(0.84)43.39(1.57)
SN2017auu + 21.010243(1187)⋅⋅⋅⋅⋅⋅112.56(0.15)21.87(0.33)⋅⋅⋅⋅⋅⋅
SN2017cff + 12.0⋅⋅⋅9218(513)⋅⋅⋅⋅⋅⋅⋅⋅⋅33.59(0.15)⋅⋅⋅
SN2017cff + 32.07374(451)6875(434)4128(476)29.12(0.08)205.63(0.29)45.09(0.03)18.05(0.08)
SN2017cjb + 5.910837(389)10453(488)⋅⋅⋅15.36(0.22)78.86(0.07)21.34(0.07)⋅⋅⋅
SN2017gtd + 8.3⋅⋅⋅8492(286)⋅⋅⋅⋅⋅⋅⋅⋅⋅12.15(0.70)⋅⋅⋅
SN2017hk + 16.2⋅⋅⋅10526(1077)⋅⋅⋅⋅⋅⋅⋅⋅⋅10.6(0.26)⋅⋅⋅
SN2017hk + 33.29000(1090)8876(1618)7519(266)13.94(0.47)133.92(2.24)45.02(2.93)32.63(2.29)
SN2017hxu + 15.7⋅⋅⋅9630(1554)⋅⋅⋅⋅⋅⋅⋅⋅⋅22.11(0.80)⋅⋅⋅
SN2017hxu + 17.7⋅⋅⋅9252(1168)⋅⋅⋅⋅⋅⋅⋅⋅⋅22.78(1.24)⋅⋅⋅
SN2017hxu + 23.610721(395)7449(947)7477(857)11.77(0.19)114.34(0.86)21.94(0.91)16.8(1.29)
SN2017imr + 19.1⋅⋅⋅11681(1485)⋅⋅⋅⋅⋅⋅⋅⋅⋅22.43(4.02)⋅⋅⋅
SN2017iub + 8.812296(451)⋅⋅⋅⋅⋅⋅33.25(1.28)177.70(0.01)⋅⋅⋅⋅⋅⋅
SN2017ivu + 85.07376(492)6054(448)3949(585)71.68(0.14)204.36(0.20)54.52(0.15)65.25(1.97)
SN2017ivu + 93.26789(329)5874(592)3775(641)59.28(0.36)139.00(0.31)30.63(0.33)52.67(3.07)
SN2017ivu + 102.26743(376)5869(650)3603(346)65.82(0.06)155.37(0.29)35.02(0.71)58.17(1.90)
SN2017ivu + 114.16347(386)4929(395)3511(424)63.56(0.15)173.46(1.00)36.96(0.00)57.91(0.03)
SN2017jbj> + 17.411381(219)10704(838)⋅⋅⋅3.96(0.21)157.08(1.10)37.42(0.60)⋅⋅⋅
SN2018afm + 12.7⋅⋅⋅9728.3(979.4)⋅⋅⋅⋅⋅⋅⋅⋅⋅15.54(1.00)⋅⋅⋅
SN2018aoq + 8.78118.2(481.6)7240.2(437.6)⋅⋅⋅4.8(0.02)136.52(0.43)25.8(0.44)⋅⋅⋅
SN2018aoq + 10.67639.5(216.5)6606.6(292.3)⋅⋅⋅7.17(0.01)178.28(0.34)26.97(0.60)⋅⋅⋅
SN2018aoq + 20.56113.3(670.3)5668.5(557.4)4262.8(359.0)25.27(0.21)186.04(0.16)64.18(0.86)28.68(0.91)
SN2018aoq + 24.66778.3(281.1)5260.3(292.3)4152.4(274.9)35.63(0.02)185.54(0.15)43.41(0.46)20.21(0.07)
SN2018aoq + 26.76530.2(286.8)4777.5(291.7)3575.5(274.3)42.66(0.15)168.85(0.21)44.8(1.29)17.6(0.14)
SN2018aoq + 28.65576.1(435.6)3992.5(388.0)3387(364.9)44.15(0.71)157.64(0.74)37.2(0.81)29.52(1.58)
SN2018aoq + 37.65434.2(340.5)3600.7(292.2)2921.7(274.8)57.76(0.02)136.95(0.36)51.57(0.18)28.42(0.13)
SN2018aoq + 65.64454.5(216.3)⋅⋅⋅1928.3(274.6)65.28(0.78)88.72(0.17)30.16(0.07)44.29(0.05)
SN2018aoq + 73.54480.8(273.8)⋅⋅⋅1875.7(347.7)64.21(0.26)80.97(0.06)15.19(1.66)40.32(1.33)
SN2018aoq + 84.54237.2(216.5)⋅⋅⋅1563.5(274.9)58.98(0.17)70.52(0.01)20.11(1.49)44.62(0.58)
SN2018aql + 56.2⋅⋅⋅⋅⋅⋅3007.9(217.2)⋅⋅⋅⋅⋅⋅⋅⋅⋅14.54(0.04)
SN2018bek + 17.2⋅⋅⋅9769.9(599.5)⋅⋅⋅⋅⋅⋅⋅⋅⋅14.02(0.88)⋅⋅⋅
SN2018bek + 23.36471(599.5)6633.9(1401.8)⋅⋅⋅2.98(0.30)60.86(0.66)10.99(0.13)⋅⋅⋅
SN2018bek + 33.26408.1(945.3)4749.5(331)3951.5(678.5)0.25(0.04)94.20(1.47)26.09(1.48)12.02(0.11)
SN2018gk + 31.711102.4(442.6)8926.9(589.2)⋅⋅⋅6.88(0.23)112.05(0.04)24.75(0.11)⋅⋅⋅
SN2018gk + 41.711101.7(757.6)9923.3(1464.4)6451(943.7)14.41(0.07)181.46(0.04)50.8(0.24)11.36(0.10)
SN2018pn + 18.95795.6(212)4217.1(544.9)3520.9(357.5)30.78(0.05)229.42(0.01)30.07(0.01)23.99(0.40)
SN2018rz + 25.110263.7(653.9)8525.9(1324.3)7602.1(268.9)17.82(3.52)161.81(0.19)44.84(0.22)17.45(0.13)
SN2018yo + 39.711293.1(218.4)7806.7(514.9)5214.8(277.4)102.73(0.02)206.57(1.50)66.58(0.01)35.45(0.84)
SNPhasevH α(σ)avH β(σ)vFe ii5169(σ)|$\rm pew_{obs}^{H\alpha }(\sigma)$|||$\rm pew_{emi}^{H\alpha }(\sigma)$|||$\rm pew_{obs}^{H\beta }(\sigma)$||$\rm pew_{obs}^{Fe II 5169}(\sigma)$|
ASASSN-14kg + 15.214062(612)⋅⋅⋅⋅⋅⋅3.88(0.46)96.24(0.09)3.71(0.05)⋅⋅⋅
ASASSN-14ma + 12.09942(377)8166(790)⋅⋅⋅22.58(1.54)175.33(0.97)44.27(1.10)⋅⋅⋅
Gaia15acw + 9.110176(589)⋅⋅⋅⋅⋅⋅0.26(0.16)60.39(0.27)⋅⋅⋅⋅⋅⋅
iPTF13dkz + 27.89596(876)6919(470)5788(757)50.93(0.40)227.31(0.15)55.8(0.01)18.14(0.65)
MASTER_J2103 + 18.58747(458)7844(665)⋅⋅⋅3.13(0.06)96.48(0.58)24.83(0.45)⋅⋅⋅
MASTER_J2333 + 18.811839(349)10155(583)5030(1609)1.45(0.14)177.32(0.06)22.64(0.23)14.16(0.02)
MASTER_J2333 + 39.814958(1343)⋅⋅⋅⋅⋅⋅2.41(0.78)284.73(1.03)⋅⋅⋅⋅⋅⋅
PS15cwo + 13.1⋅⋅⋅9662(2023)⋅⋅⋅⋅⋅⋅⋅⋅⋅16.85(0.01)⋅⋅⋅
PS15cwo + 15.1⋅⋅⋅9013(795)⋅⋅⋅⋅⋅⋅⋅⋅⋅16.98(0.70)⋅⋅⋅
PS15cwo + 20.2⋅⋅⋅9144(971)⋅⋅⋅⋅⋅⋅⋅⋅⋅36.23(0.04)⋅⋅⋅
PS15cwo + 31.19661(525)8727(676)5896(893)15.58(0.16)169.91(0.39)49.55(0.03)28.04(0.65)
PS15cwo + 56.19022(463)8076(970)4594(1314)38.45(0.03)235.70(0.08)65.66(0.09)46.03(0.24)
PS15cwo + 60.08404(493)7164(1109)5162(978)37.26(0.38)279.05(0.25)69.94(0.05)48.79(0.64)
PS15cwo + 66.98317(216)7183(979)⋅⋅⋅55.7(0.24)182.89(0.33)78.8(0.36)⋅⋅⋅
PS15cwo + 83.07748(400)7179(402)⋅⋅⋅45.57(0.45)231.51(0.09)54(0.50)⋅⋅⋅
SN2011az>16.2⋅⋅⋅8800(650)⋅⋅⋅⋅⋅⋅⋅⋅⋅30.53(0.05)⋅⋅⋅
SN2011az>20.2⋅⋅⋅7446(595)⋅⋅⋅⋅⋅⋅⋅⋅⋅42.84(0.77)⋅⋅⋅
SN2011az>34.27709(702)5914(1261)4812(1023)26.57(1.82)203.29(1.44)41.95(0.38)7.86(1.43)
SN2011bi + 319241(893)8846(985)6143(757)33.95(2.07)122.81(0.47)46.71(0.17)55.56(0.50)
SN2011bi + 67.07917(352)5957(1051)5048(554)48.08(0.11)243.62(0.24)73.32(0.20)61.76(0.66)
SN2011cj + 20.910565(848)8289(1004)7546(449)52.96(0.67)271.69(0.70)49.7(0.10)17.84(1.18)
SN2011eg>697526(382)6506(515)⋅⋅⋅4.19(0.07)183.54(1.11)28.4(0.02)⋅⋅⋅
SN2011fu + 9.9⋅⋅⋅9465(615)⋅⋅⋅⋅⋅⋅⋅⋅⋅41.44(0.09)⋅⋅⋅
SN2011fu + 31.09567(550)7743(1183)4686(1207)10.31(0.33)214.22(0.08)45.98(0.20)44.1(1.27)
SN2011ir>31.810255(767)9902(839)5834(394)1.79(0.44)106.84(0.96)15.44(0.01)25.27(0.45)
SN2012A + 23.66881(407)6294(476)4427(517)57.53(0.01)128.13(0.18)48.12(0.07)34.64(0.48)
SN2012A + 33.16307(196)⋅⋅⋅⋅⋅⋅37.65(0.10)182.93(0.12)⋅⋅⋅⋅⋅⋅
SN2012A + 73.15186(316)4034(493)2346(401)54.73(0.09)233.83(0.36)71.1(0.09)57.55(5.65)
SN2012A + 88.64799(255)3500(299)1934(280)62.42(0.10)245.92(0.06)71.04(0.41)38.32(0.02)
SN2012aw + 1510428(334)9132(369)7523(478)31.96(0.15)193.32(0.05)42.01(0.01)18.34(0.23)
SN2012aw + 1611225(1212)8368(298)6899(668)32.14(0.01)215.16(0.59)48.84(0.07)18.87(0.26)
SN2012aw + 67.55927(353)4534(590)3438(448)66.4(0.01)157.48(0.58)28.6(0.19)41.31(0.70)
SN2012bv>20.06981(443)6680(673)⋅⋅⋅14.67(0.51)144.14(0.10)15.34(0.78)⋅⋅⋅
SN2012ec + 41.36627(347)4903(468)4162(440)58.66(1.14)164.24(0.58)37.28(0.02)29.46(0.16)
SN2012ec + 70.25586(364)⋅⋅⋅3269(496)59.57(1.28)143.19(1.15)⋅⋅⋅40.29(0.70)
SN2012fc>51.08322(400)6134(682)3792(439)54.95(0.25)327.85(0.67)84.73(0.09)32.91(0.19)
SN2012fs + 13.6⋅⋅⋅9648(421)⋅⋅⋅⋅⋅⋅⋅⋅⋅41.74(1.56)⋅⋅⋅
SN2012fs + 41.66149(349)4773(471)3428(956)49.28(0.07)131.2(0.13)15.96(0.10)29.81(0.56)
SN2012gn>5.3⋅⋅⋅8475(422)⋅⋅⋅⋅⋅⋅⋅⋅⋅21.41(0.08)⋅⋅⋅
SN2012ho + 8.8⋅⋅⋅9413(861)⋅⋅⋅⋅⋅⋅⋅⋅⋅7.08(0.01)⋅⋅⋅
SN2012ho + 11.3⋅⋅⋅10201(963)⋅⋅⋅⋅⋅⋅⋅⋅⋅16.16(0.04)⋅⋅⋅
SN2013ab + 7.410752(582)10544(553)⋅⋅⋅10.72(0.34)68.98(0.07)18.25(0.15)⋅⋅⋅
SN2013ab + 76.25934(406)3433(476)3038(447)78.76(0.16)220.89(0.15)46.15(0.01)42.4(0.49)
SN2013af + 48.18524(1294)5786(874)⋅⋅⋅97.99(0.04)178.25(0.39)58.16(0.23)⋅⋅⋅
SN2013fl + 23.48862(652)7934(891)5395(991)25.79(3.47)246.74(4.72)47.78(0.28)22.33(0.02)
SN2013gd + 22.37969(610)7437(626)5738(867)10.65(0.06)278.92(0.56)64.26(1.22)28.07(0.29)
SN2013gd + 29.37863(464)5559(472)4775(562)28.72(0.01)230.94(0.01)46.63(0.07)31.53(0.99)
SN2013gd + 62.36076(794)⋅⋅⋅3239(277)22.11(0.01)45.33(0.07)⋅⋅⋅13.07(0.32)
SN2013gu> + 2.1⋅⋅⋅9125(595)⋅⋅⋅⋅⋅⋅⋅⋅⋅2.1(0.17)⋅⋅⋅
SN2014A + 48.94987(694)3566(420)3090(674)57.56(0.29)96.20(0.12)17.09(0.39)32.32(0.69)
SN2014B + 49.47237(931)5864(842)4655(652)44.88(1.14)224.62(0.24)51.59(0.37)18.23(0.15)
SN2014bf>2.3⋅⋅⋅5350(800)⋅⋅⋅⋅⋅⋅⋅⋅⋅7.07(0.18)⋅⋅⋅
SN2014cw>20.18893(573)7815(538)5320(557)26.68(0.10)259.77(0.38)52.43(0.01)17.02(0.32)
SN2014cx + 18.210867(315)9535(425)⋅⋅⋅19.39(0.07)246.67(0.16)31.47(0.23)⋅⋅⋅
SN2014cx + 46.17934(550)6589(640)4437(514)72.57(0.21)183.46(0.68)48.8(0.13)21.74(0.43)
SN2014cx + 129.95895(408)4153(747)2504(449)47.09(0.01)507.75(0.06)59.9(0.25)31.67(0.98)
SN2014cy + 19.16056(364)5566(426)4836(400)11.8(0.05)150.73(0.28)33.49(0.01)19(0.02)
SN2014cy + 47.15017(304)3756(343)2607(363)31.01(0.07)82.63(0.02)33.23(0.11)26.47(1.16)
SN2014dq + 9.98060(220)7646(568)⋅⋅⋅6.62(0.01)126.96(0.10)39.38(0.15)⋅⋅⋅
SN2014dq + 16.07382(535)6378(478)⋅⋅⋅19.94(0.05)144.82(1.22)27.97(0.14)⋅⋅⋅
SN2014dq + 31.96242(339)5045(419)3424(279)38.74(0.13)222.89(0.80)47(0.81)12.81(0.06)
SN2014dq + 47.95573(379)4312(452)2696(373)52.89(0.23)184.36(0.21)52.07(0.05)17.38(0.01)
SN2014G + 25.48898(323)8465(344)7420(489)1.66(0.08)63.97(0.08)20.12(0.05)23.22(0.17)
SN2014G + 54.28109(390)6927(634)5406(1308)21.87(1.22)205.86(0.34)59.08(0.02)41.7(0.03)
SN2014G + 68.27362(357)5661(821)4062(523)21.11(0.49)269.46(0.12)60.39(0.15)41.33(1.87)
SN2014G + 89.2⋅⋅⋅5419(1264)3103(1220)⋅⋅⋅⋅⋅⋅57.4(0.01)33.9(0.16)
SN2015aq + 122.47455(617)5980(931)3636(813)51.03(0.58)575.27(0.16)59.41(0.01)47.42(0.49)
SN2015aq + 135.36783(503)5706(663)4198(408)41.12(0.07)791.64(2.60)63.65(1.91)21.67(0.97)
SN2015ay + 17.613796(404)11601(1115)6949(603)2.55(0.03)213.22(0.04)22.15(0.01)18.76(0.25)
SN2015cz + 17.29257(1282)8470(627)5715(1493)1.43(0.01)151.86(0.40)22.47(0.70)6.73(0.02)
SN2015cz + 38.16593(587)6336(1076)4109(720)30.22(0.02)138.93(1.15)42.74(0.31)23.54(0.73)
SN2015cz + 82.14931(243)5126(1500)2022(456)39.05(0.01)133.28(0.03)33.77(1.55)23.6(0.31)
SN2015V + 7.3⋅⋅⋅9640(880)⋅⋅⋅⋅⋅⋅⋅⋅⋅16.85(0.13)⋅⋅⋅
SN2015V + 41.26823(438)5928(591)4083(450)65.25(0.48)213.83(0.74)48.6(0.04)30(0.29)
SN2015V + 55.36310(351)4414(547)3025(446)68.29(0.24)168.67(0.04)53.99(0.74)30.64(0.27)
SN2015W + 46.09956(703)9751(1561)5309(987)47.55(0.13)226.44(0.76)60.47(0.35)63.76(1.14)
SN2016aip + 46.45637(1150)6042(1604)⋅⋅⋅60.6(1.76)200.19(2.16)84.17(4.18)⋅⋅⋅
SN2016ak + 18.2⋅⋅⋅8806(864)5062(1079)⋅⋅⋅⋅⋅⋅33.92(0.44)13.05(1.26)
SN2016aqp + 17.69011(617)8840(784)⋅⋅⋅9.45(0.20)200.37(1.28)30.17(0.67)⋅⋅⋅
SN2016aqw + 5.0⋅⋅⋅5384(1517)⋅⋅⋅⋅⋅⋅⋅⋅⋅19.49(0.22)⋅⋅⋅
SN2016B + 6.4⋅⋅⋅8402(853)⋅⋅⋅⋅⋅⋅⋅⋅⋅6.27(0.1)⋅⋅⋅
SN2016B + 10.3⋅⋅⋅8633(590)⋅⋅⋅⋅⋅⋅⋅⋅⋅6.2(0.23)⋅⋅⋅
SN2016B + 73.15956(440)2005(479)1810(450)43.69(0.26)251.87(0.85)53.99(0.15)45.28(0.84)
SN2016B + 97.14975(358)3660(484)2669(455)49.09(0.07)266.61(0.20)65.03(0.35)45.73(0.07)
SN2016B + 130.14687(213)3857(883)1811(334)49.11(3.45)306.77(0.30)61.79(1.83)40.32(0.40)
SN2016bkx>10.59395(807)8430(906)⋅⋅⋅60.14(0.10)105.69(0.94)76.34(0.05)⋅⋅⋅
SN2016bla>29.58297(964)6527(1215)3990(792)43.22(0.03)261.14(0.15)68.68(0.07)38.07(0.01)
SN2016blb + 11.3⋅⋅⋅10886(1087)⋅⋅⋅⋅⋅⋅⋅⋅⋅24.45(0.02)⋅⋅⋅
SN2016cok + 2.310760(683)7879(1516)⋅⋅⋅14.25(0.02)106.16(0.20)15.22(0.11)⋅⋅⋅
SN2016cok + 3.37109(1507)7457(1757)⋅⋅⋅16.49(0.22)108.33(0.08)15.67(0.03)⋅⋅⋅
SN2016cok + 5.47114(457)6491(470)⋅⋅⋅16.54(0.55)144.51(0.87)23.19(0.53)⋅⋅⋅
SN2016cok + 7.46985(435)6081(454)⋅⋅⋅13.56(0.36)159.18(0.01)22.85(0.05)⋅⋅⋅
SN2016cok + 9.46468(395)6050(391)4960(327)18(0.02)176.64(0.14)40.14(0.05)16.98(0.02)
SN2016cok + 13.24021(422)4325(1037)2018(536)37.54(0.85)186.96(0.24)42.48(0.13)23.22(0.01)
SN2016cok + 15.26510(565)6148.5(778.2)3121(1086)31.88(0.10)108.22(1.57)⋅⋅⋅⋅⋅⋅
SN2016fnb + 17.5⋅⋅⋅11435(283)4650(932)⋅⋅⋅⋅⋅⋅40.14(2.95)30.29(1.58)
SN2016hbd>25.39600(443)8754(832)7222(844)20.28(0.66)224.66(0.09)34.41(0.93)45.51(2.20)
SN2016hgm + 13.211308(378)9947(1399)⋅⋅⋅9.5(0.72)179.56(0.23)33.04(1.25)⋅⋅⋅
SN2016hjg>30.29123(589)8118(1006)5945(864)28.06(0.01)112.54(0.44)38.76(0.24)16.28(0.17)
SN2016hvu>11.6⋅⋅⋅9044(708)⋅⋅⋅⋅⋅⋅⋅⋅⋅17.42(0.05)⋅⋅⋅
SN2016hvu>17.410820(708)8854(285)⋅⋅⋅9.65(0.19)279.34(5.54)11.85(0.02)⋅⋅⋅
SN2016hvu>26.48176(267)7452(571)5235(400)33.64(0.50)224.92(1.51)38.28(0.02)14.77(0.07)
SN2016I + 21.18504(252)7747(295)6145(707)16.91(0.07)162.18(0.16)41.57(0.62)22.47(0.08)
SN2016jby + 45.67042(385)5946(590)4656(413)21.19(0.06)123.93(0.18)36.65(0.03)23.1(0.26)
SN2016jft + 12.7⋅⋅⋅9320(906)⋅⋅⋅⋅⋅⋅⋅⋅⋅9.7(0.15)⋅⋅⋅
SN2016jft + 24.69122(421)8461(501)6450(619)8.44(0.55)127.81(0.16)31.45(0.15)18.18(0.08)
SN2016jft + 49.77795(414)6231(1417)4344(705)29.55(0.19)178.35(0.03)54.24(0.88)32.65(1.33)
SN2016jfu + 11.510835(627)7909(333)⋅⋅⋅10.34(0.01)37.90(0.03)9.14(0.33)⋅⋅⋅
SN2016jfu + 27.58100(513)⋅⋅⋅7043(226)17.49(0.54)173.19(3.06)⋅⋅⋅44.65(1.41)
SN2016jfu + 38.57063(480)5662.6(810)5494(1077)33.57(0.11)159.13(0.77)32.15(0.84)29.34(0.33)
SN2016jfu + 50.47203(509)5493.9(1077)3798(757)41.56(0.15)127.64(0.91)28.86(0.19)31.47(2.26)
SN2017aub + 8.7⋅⋅⋅8323(285)⋅⋅⋅⋅⋅⋅⋅⋅⋅9.35(1.04)⋅⋅⋅
SN2017aub + 13.6⋅⋅⋅10329(380)6260(269)⋅⋅⋅⋅⋅⋅18.3(3.24)40.61(2.11)
SN2017aub + 16.6⋅⋅⋅6509(702)⋅⋅⋅⋅⋅⋅⋅⋅⋅28.61(0.05)⋅⋅⋅
SN2017aub + 22.66174(332)4848(330)4474(601)9.01(0.26)129.14(1.95)16.98(0.70)18.7(0.34)
SN2017aub + 36.65394(984)4508(652)3531(613)30.71(0.08)135.71(0.48)15.76(1.21)25.77(0.12)
SN2017aub + 47.64920(320)4008(544)2673(526)41.9(0.63)112.56(0.25)40.7(0.84)43.39(1.57)
SN2017auu + 21.010243(1187)⋅⋅⋅⋅⋅⋅112.56(0.15)21.87(0.33)⋅⋅⋅⋅⋅⋅
SN2017cff + 12.0⋅⋅⋅9218(513)⋅⋅⋅⋅⋅⋅⋅⋅⋅33.59(0.15)⋅⋅⋅
SN2017cff + 32.07374(451)6875(434)4128(476)29.12(0.08)205.63(0.29)45.09(0.03)18.05(0.08)
SN2017cjb + 5.910837(389)10453(488)⋅⋅⋅15.36(0.22)78.86(0.07)21.34(0.07)⋅⋅⋅
SN2017gtd + 8.3⋅⋅⋅8492(286)⋅⋅⋅⋅⋅⋅⋅⋅⋅12.15(0.70)⋅⋅⋅
SN2017hk + 16.2⋅⋅⋅10526(1077)⋅⋅⋅⋅⋅⋅⋅⋅⋅10.6(0.26)⋅⋅⋅
SN2017hk + 33.29000(1090)8876(1618)7519(266)13.94(0.47)133.92(2.24)45.02(2.93)32.63(2.29)
SN2017hxu + 15.7⋅⋅⋅9630(1554)⋅⋅⋅⋅⋅⋅⋅⋅⋅22.11(0.80)⋅⋅⋅
SN2017hxu + 17.7⋅⋅⋅9252(1168)⋅⋅⋅⋅⋅⋅⋅⋅⋅22.78(1.24)⋅⋅⋅
SN2017hxu + 23.610721(395)7449(947)7477(857)11.77(0.19)114.34(0.86)21.94(0.91)16.8(1.29)
SN2017imr + 19.1⋅⋅⋅11681(1485)⋅⋅⋅⋅⋅⋅⋅⋅⋅22.43(4.02)⋅⋅⋅
SN2017iub + 8.812296(451)⋅⋅⋅⋅⋅⋅33.25(1.28)177.70(0.01)⋅⋅⋅⋅⋅⋅
SN2017ivu + 85.07376(492)6054(448)3949(585)71.68(0.14)204.36(0.20)54.52(0.15)65.25(1.97)
SN2017ivu + 93.26789(329)5874(592)3775(641)59.28(0.36)139.00(0.31)30.63(0.33)52.67(3.07)
SN2017ivu + 102.26743(376)5869(650)3603(346)65.82(0.06)155.37(0.29)35.02(0.71)58.17(1.90)
SN2017ivu + 114.16347(386)4929(395)3511(424)63.56(0.15)173.46(1.00)36.96(0.00)57.91(0.03)
SN2017jbj> + 17.411381(219)10704(838)⋅⋅⋅3.96(0.21)157.08(1.10)37.42(0.60)⋅⋅⋅
SN2018afm + 12.7⋅⋅⋅9728.3(979.4)⋅⋅⋅⋅⋅⋅⋅⋅⋅15.54(1.00)⋅⋅⋅
SN2018aoq + 8.78118.2(481.6)7240.2(437.6)⋅⋅⋅4.8(0.02)136.52(0.43)25.8(0.44)⋅⋅⋅
SN2018aoq + 10.67639.5(216.5)6606.6(292.3)⋅⋅⋅7.17(0.01)178.28(0.34)26.97(0.60)⋅⋅⋅
SN2018aoq + 20.56113.3(670.3)5668.5(557.4)4262.8(359.0)25.27(0.21)186.04(0.16)64.18(0.86)28.68(0.91)
SN2018aoq + 24.66778.3(281.1)5260.3(292.3)4152.4(274.9)35.63(0.02)185.54(0.15)43.41(0.46)20.21(0.07)
SN2018aoq + 26.76530.2(286.8)4777.5(291.7)3575.5(274.3)42.66(0.15)168.85(0.21)44.8(1.29)17.6(0.14)
SN2018aoq + 28.65576.1(435.6)3992.5(388.0)3387(364.9)44.15(0.71)157.64(0.74)37.2(0.81)29.52(1.58)
SN2018aoq + 37.65434.2(340.5)3600.7(292.2)2921.7(274.8)57.76(0.02)136.95(0.36)51.57(0.18)28.42(0.13)
SN2018aoq + 65.64454.5(216.3)⋅⋅⋅1928.3(274.6)65.28(0.78)88.72(0.17)30.16(0.07)44.29(0.05)
SN2018aoq + 73.54480.8(273.8)⋅⋅⋅1875.7(347.7)64.21(0.26)80.97(0.06)15.19(1.66)40.32(1.33)
SN2018aoq + 84.54237.2(216.5)⋅⋅⋅1563.5(274.9)58.98(0.17)70.52(0.01)20.11(1.49)44.62(0.58)
SN2018aql + 56.2⋅⋅⋅⋅⋅⋅3007.9(217.2)⋅⋅⋅⋅⋅⋅⋅⋅⋅14.54(0.04)
SN2018bek + 17.2⋅⋅⋅9769.9(599.5)⋅⋅⋅⋅⋅⋅⋅⋅⋅14.02(0.88)⋅⋅⋅
SN2018bek + 23.36471(599.5)6633.9(1401.8)⋅⋅⋅2.98(0.30)60.86(0.66)10.99(0.13)⋅⋅⋅
SN2018bek + 33.26408.1(945.3)4749.5(331)3951.5(678.5)0.25(0.04)94.20(1.47)26.09(1.48)12.02(0.11)
SN2018gk + 31.711102.4(442.6)8926.9(589.2)⋅⋅⋅6.88(0.23)112.05(0.04)24.75(0.11)⋅⋅⋅
SN2018gk + 41.711101.7(757.6)9923.3(1464.4)6451(943.7)14.41(0.07)181.46(0.04)50.8(0.24)11.36(0.10)
SN2018pn + 18.95795.6(212)4217.1(544.9)3520.9(357.5)30.78(0.05)229.42(0.01)30.07(0.01)23.99(0.40)
SN2018rz + 25.110263.7(653.9)8525.9(1324.3)7602.1(268.9)17.82(3.52)161.81(0.19)44.84(0.22)17.45(0.13)
SN2018yo + 39.711293.1(218.4)7806.7(514.9)5214.8(277.4)102.73(0.02)206.57(1.50)66.58(0.01)35.45(0.84)

Note. The unit of velocities is |$\rm km\ s^{-1}$| and the unit of pew is Å

Table A3.

Line velocities and pEWs of H α, H β, and Fe ii 5169.

SNPhasevH α(σ)avH β(σ)vFe ii5169(σ)|$\rm pew_{obs}^{H\alpha }(\sigma)$|||$\rm pew_{emi}^{H\alpha }(\sigma)$|||$\rm pew_{obs}^{H\beta }(\sigma)$||$\rm pew_{obs}^{Fe II 5169}(\sigma)$|
ASASSN-14kg + 15.214062(612)⋅⋅⋅⋅⋅⋅3.88(0.46)96.24(0.09)3.71(0.05)⋅⋅⋅
ASASSN-14ma + 12.09942(377)8166(790)⋅⋅⋅22.58(1.54)175.33(0.97)44.27(1.10)⋅⋅⋅
Gaia15acw + 9.110176(589)⋅⋅⋅⋅⋅⋅0.26(0.16)60.39(0.27)⋅⋅⋅⋅⋅⋅
iPTF13dkz + 27.89596(876)6919(470)5788(757)50.93(0.40)227.31(0.15)55.8(0.01)18.14(0.65)
MASTER_J2103 + 18.58747(458)7844(665)⋅⋅⋅3.13(0.06)96.48(0.58)24.83(0.45)⋅⋅⋅
MASTER_J2333 + 18.811839(349)10155(583)5030(1609)1.45(0.14)177.32(0.06)22.64(0.23)14.16(0.02)
MASTER_J2333 + 39.814958(1343)⋅⋅⋅⋅⋅⋅2.41(0.78)284.73(1.03)⋅⋅⋅⋅⋅⋅
PS15cwo + 13.1⋅⋅⋅9662(2023)⋅⋅⋅⋅⋅⋅⋅⋅⋅16.85(0.01)⋅⋅⋅
PS15cwo + 15.1⋅⋅⋅9013(795)⋅⋅⋅⋅⋅⋅⋅⋅⋅16.98(0.70)⋅⋅⋅
PS15cwo + 20.2⋅⋅⋅9144(971)⋅⋅⋅⋅⋅⋅⋅⋅⋅36.23(0.04)⋅⋅⋅
PS15cwo + 31.19661(525)8727(676)5896(893)15.58(0.16)169.91(0.39)49.55(0.03)28.04(0.65)
PS15cwo + 56.19022(463)8076(970)4594(1314)38.45(0.03)235.70(0.08)65.66(0.09)46.03(0.24)
PS15cwo + 60.08404(493)7164(1109)5162(978)37.26(0.38)279.05(0.25)69.94(0.05)48.79(0.64)
PS15cwo + 66.98317(216)7183(979)⋅⋅⋅55.7(0.24)182.89(0.33)78.8(0.36)⋅⋅⋅
PS15cwo + 83.07748(400)7179(402)⋅⋅⋅45.57(0.45)231.51(0.09)54(0.50)⋅⋅⋅
SN2011az>16.2⋅⋅⋅8800(650)⋅⋅⋅⋅⋅⋅⋅⋅⋅30.53(0.05)⋅⋅⋅
SN2011az>20.2⋅⋅⋅7446(595)⋅⋅⋅⋅⋅⋅⋅⋅⋅42.84(0.77)⋅⋅⋅
SN2011az>34.27709(702)5914(1261)4812(1023)26.57(1.82)203.29(1.44)41.95(0.38)7.86(1.43)
SN2011bi + 319241(893)8846(985)6143(757)33.95(2.07)122.81(0.47)46.71(0.17)55.56(0.50)
SN2011bi + 67.07917(352)5957(1051)5048(554)48.08(0.11)243.62(0.24)73.32(0.20)61.76(0.66)
SN2011cj + 20.910565(848)8289(1004)7546(449)52.96(0.67)271.69(0.70)49.7(0.10)17.84(1.18)
SN2011eg>697526(382)6506(515)⋅⋅⋅4.19(0.07)183.54(1.11)28.4(0.02)⋅⋅⋅
SN2011fu + 9.9⋅⋅⋅9465(615)⋅⋅⋅⋅⋅⋅⋅⋅⋅41.44(0.09)⋅⋅⋅
SN2011fu + 31.09567(550)7743(1183)4686(1207)10.31(0.33)214.22(0.08)45.98(0.20)44.1(1.27)
SN2011ir>31.810255(767)9902(839)5834(394)1.79(0.44)106.84(0.96)15.44(0.01)25.27(0.45)
SN2012A + 23.66881(407)6294(476)4427(517)57.53(0.01)128.13(0.18)48.12(0.07)34.64(0.48)
SN2012A + 33.16307(196)⋅⋅⋅⋅⋅⋅37.65(0.10)182.93(0.12)⋅⋅⋅⋅⋅⋅
SN2012A + 73.15186(316)4034(493)2346(401)54.73(0.09)233.83(0.36)71.1(0.09)57.55(5.65)
SN2012A + 88.64799(255)3500(299)1934(280)62.42(0.10)245.92(0.06)71.04(0.41)38.32(0.02)
SN2012aw + 1510428(334)9132(369)7523(478)31.96(0.15)193.32(0.05)42.01(0.01)18.34(0.23)
SN2012aw + 1611225(1212)8368(298)6899(668)32.14(0.01)215.16(0.59)48.84(0.07)18.87(0.26)
SN2012aw + 67.55927(353)4534(590)3438(448)66.4(0.01)157.48(0.58)28.6(0.19)41.31(0.70)
SN2012bv>20.06981(443)6680(673)⋅⋅⋅14.67(0.51)144.14(0.10)15.34(0.78)⋅⋅⋅
SN2012ec + 41.36627(347)4903(468)4162(440)58.66(1.14)164.24(0.58)37.28(0.02)29.46(0.16)
SN2012ec + 70.25586(364)⋅⋅⋅3269(496)59.57(1.28)143.19(1.15)⋅⋅⋅40.29(0.70)
SN2012fc>51.08322(400)6134(682)3792(439)54.95(0.25)327.85(0.67)84.73(0.09)32.91(0.19)
SN2012fs + 13.6⋅⋅⋅9648(421)⋅⋅⋅⋅⋅⋅⋅⋅⋅41.74(1.56)⋅⋅⋅
SN2012fs + 41.66149(349)4773(471)3428(956)49.28(0.07)131.2(0.13)15.96(0.10)29.81(0.56)
SN2012gn>5.3⋅⋅⋅8475(422)⋅⋅⋅⋅⋅⋅⋅⋅⋅21.41(0.08)⋅⋅⋅
SN2012ho + 8.8⋅⋅⋅9413(861)⋅⋅⋅⋅⋅⋅⋅⋅⋅7.08(0.01)⋅⋅⋅
SN2012ho + 11.3⋅⋅⋅10201(963)⋅⋅⋅⋅⋅⋅⋅⋅⋅16.16(0.04)⋅⋅⋅
SN2013ab + 7.410752(582)10544(553)⋅⋅⋅10.72(0.34)68.98(0.07)18.25(0.15)⋅⋅⋅
SN2013ab + 76.25934(406)3433(476)3038(447)78.76(0.16)220.89(0.15)46.15(0.01)42.4(0.49)
SN2013af + 48.18524(1294)5786(874)⋅⋅⋅97.99(0.04)178.25(0.39)58.16(0.23)⋅⋅⋅
SN2013fl + 23.48862(652)7934(891)5395(991)25.79(3.47)246.74(4.72)47.78(0.28)22.33(0.02)
SN2013gd + 22.37969(610)7437(626)5738(867)10.65(0.06)278.92(0.56)64.26(1.22)28.07(0.29)
SN2013gd + 29.37863(464)5559(472)4775(562)28.72(0.01)230.94(0.01)46.63(0.07)31.53(0.99)
SN2013gd + 62.36076(794)⋅⋅⋅3239(277)22.11(0.01)45.33(0.07)⋅⋅⋅13.07(0.32)
SN2013gu> + 2.1⋅⋅⋅9125(595)⋅⋅⋅⋅⋅⋅⋅⋅⋅2.1(0.17)⋅⋅⋅
SN2014A + 48.94987(694)3566(420)3090(674)57.56(0.29)96.20(0.12)17.09(0.39)32.32(0.69)
SN2014B + 49.47237(931)5864(842)4655(652)44.88(1.14)224.62(0.24)51.59(0.37)18.23(0.15)
SN2014bf>2.3⋅⋅⋅5350(800)⋅⋅⋅⋅⋅⋅⋅⋅⋅7.07(0.18)⋅⋅⋅
SN2014cw>20.18893(573)7815(538)5320(557)26.68(0.10)259.77(0.38)52.43(0.01)17.02(0.32)
SN2014cx + 18.210867(315)9535(425)⋅⋅⋅19.39(0.07)246.67(0.16)31.47(0.23)⋅⋅⋅
SN2014cx + 46.17934(550)6589(640)4437(514)72.57(0.21)183.46(0.68)48.8(0.13)21.74(0.43)
SN2014cx + 129.95895(408)4153(747)2504(449)47.09(0.01)507.75(0.06)59.9(0.25)31.67(0.98)
SN2014cy + 19.16056(364)5566(426)4836(400)11.8(0.05)150.73(0.28)33.49(0.01)19(0.02)
SN2014cy + 47.15017(304)3756(343)2607(363)31.01(0.07)82.63(0.02)33.23(0.11)26.47(1.16)
SN2014dq + 9.98060(220)7646(568)⋅⋅⋅6.62(0.01)126.96(0.10)39.38(0.15)⋅⋅⋅
SN2014dq + 16.07382(535)6378(478)⋅⋅⋅19.94(0.05)144.82(1.22)27.97(0.14)⋅⋅⋅
SN2014dq + 31.96242(339)5045(419)3424(279)38.74(0.13)222.89(0.80)47(0.81)12.81(0.06)
SN2014dq + 47.95573(379)4312(452)2696(373)52.89(0.23)184.36(0.21)52.07(0.05)17.38(0.01)
SN2014G + 25.48898(323)8465(344)7420(489)1.66(0.08)63.97(0.08)20.12(0.05)23.22(0.17)
SN2014G + 54.28109(390)6927(634)5406(1308)21.87(1.22)205.86(0.34)59.08(0.02)41.7(0.03)
SN2014G + 68.27362(357)5661(821)4062(523)21.11(0.49)269.46(0.12)60.39(0.15)41.33(1.87)
SN2014G + 89.2⋅⋅⋅5419(1264)3103(1220)⋅⋅⋅⋅⋅⋅57.4(0.01)33.9(0.16)
SN2015aq + 122.47455(617)5980(931)3636(813)51.03(0.58)575.27(0.16)59.41(0.01)47.42(0.49)
SN2015aq + 135.36783(503)5706(663)4198(408)41.12(0.07)791.64(2.60)63.65(1.91)21.67(0.97)
SN2015ay + 17.613796(404)11601(1115)6949(603)2.55(0.03)213.22(0.04)22.15(0.01)18.76(0.25)
SN2015cz + 17.29257(1282)8470(627)5715(1493)1.43(0.01)151.86(0.40)22.47(0.70)6.73(0.02)
SN2015cz + 38.16593(587)6336(1076)4109(720)30.22(0.02)138.93(1.15)42.74(0.31)23.54(0.73)
SN2015cz + 82.14931(243)5126(1500)2022(456)39.05(0.01)133.28(0.03)33.77(1.55)23.6(0.31)
SN2015V + 7.3⋅⋅⋅9640(880)⋅⋅⋅⋅⋅⋅⋅⋅⋅16.85(0.13)⋅⋅⋅
SN2015V + 41.26823(438)5928(591)4083(450)65.25(0.48)213.83(0.74)48.6(0.04)30(0.29)
SN2015V + 55.36310(351)4414(547)3025(446)68.29(0.24)168.67(0.04)53.99(0.74)30.64(0.27)
SN2015W + 46.09956(703)9751(1561)5309(987)47.55(0.13)226.44(0.76)60.47(0.35)63.76(1.14)
SN2016aip + 46.45637(1150)6042(1604)⋅⋅⋅60.6(1.76)200.19(2.16)84.17(4.18)⋅⋅⋅
SN2016ak + 18.2⋅⋅⋅8806(864)5062(1079)⋅⋅⋅⋅⋅⋅33.92(0.44)13.05(1.26)
SN2016aqp + 17.69011(617)8840(784)⋅⋅⋅9.45(0.20)200.37(1.28)30.17(0.67)⋅⋅⋅
SN2016aqw + 5.0⋅⋅⋅5384(1517)⋅⋅⋅⋅⋅⋅⋅⋅⋅19.49(0.22)⋅⋅⋅
SN2016B + 6.4⋅⋅⋅8402(853)⋅⋅⋅⋅⋅⋅⋅⋅⋅6.27(0.1)⋅⋅⋅
SN2016B + 10.3⋅⋅⋅8633(590)⋅⋅⋅⋅⋅⋅⋅⋅⋅6.2(0.23)⋅⋅⋅
SN2016B + 73.15956(440)2005(479)1810(450)43.69(0.26)251.87(0.85)53.99(0.15)45.28(0.84)
SN2016B + 97.14975(358)3660(484)2669(455)49.09(0.07)266.61(0.20)65.03(0.35)45.73(0.07)
SN2016B + 130.14687(213)3857(883)1811(334)49.11(3.45)306.77(0.30)61.79(1.83)40.32(0.40)
SN2016bkx>10.59395(807)8430(906)⋅⋅⋅60.14(0.10)105.69(0.94)76.34(0.05)⋅⋅⋅
SN2016bla>29.58297(964)6527(1215)3990(792)43.22(0.03)261.14(0.15)68.68(0.07)38.07(0.01)
SN2016blb + 11.3⋅⋅⋅10886(1087)⋅⋅⋅⋅⋅⋅⋅⋅⋅24.45(0.02)⋅⋅⋅
SN2016cok + 2.310760(683)7879(1516)⋅⋅⋅14.25(0.02)106.16(0.20)15.22(0.11)⋅⋅⋅
SN2016cok + 3.37109(1507)7457(1757)⋅⋅⋅16.49(0.22)108.33(0.08)15.67(0.03)⋅⋅⋅
SN2016cok + 5.47114(457)6491(470)⋅⋅⋅16.54(0.55)144.51(0.87)23.19(0.53)⋅⋅⋅
SN2016cok + 7.46985(435)6081(454)⋅⋅⋅13.56(0.36)159.18(0.01)22.85(0.05)⋅⋅⋅
SN2016cok + 9.46468(395)6050(391)4960(327)18(0.02)176.64(0.14)40.14(0.05)16.98(0.02)
SN2016cok + 13.24021(422)4325(1037)2018(536)37.54(0.85)186.96(0.24)42.48(0.13)23.22(0.01)
SN2016cok + 15.26510(565)6148.5(778.2)3121(1086)31.88(0.10)108.22(1.57)⋅⋅⋅⋅⋅⋅
SN2016fnb + 17.5⋅⋅⋅11435(283)4650(932)⋅⋅⋅⋅⋅⋅40.14(2.95)30.29(1.58)
SN2016hbd>25.39600(443)8754(832)7222(844)20.28(0.66)224.66(0.09)34.41(0.93)45.51(2.20)
SN2016hgm + 13.211308(378)9947(1399)⋅⋅⋅9.5(0.72)179.56(0.23)33.04(1.25)⋅⋅⋅
SN2016hjg>30.29123(589)8118(1006)5945(864)28.06(0.01)112.54(0.44)38.76(0.24)16.28(0.17)
SN2016hvu>11.6⋅⋅⋅9044(708)⋅⋅⋅⋅⋅⋅⋅⋅⋅17.42(0.05)⋅⋅⋅
SN2016hvu>17.410820(708)8854(285)⋅⋅⋅9.65(0.19)279.34(5.54)11.85(0.02)⋅⋅⋅
SN2016hvu>26.48176(267)7452(571)5235(400)33.64(0.50)224.92(1.51)38.28(0.02)14.77(0.07)
SN2016I + 21.18504(252)7747(295)6145(707)16.91(0.07)162.18(0.16)41.57(0.62)22.47(0.08)
SN2016jby + 45.67042(385)5946(590)4656(413)21.19(0.06)123.93(0.18)36.65(0.03)23.1(0.26)
SN2016jft + 12.7⋅⋅⋅9320(906)⋅⋅⋅⋅⋅⋅⋅⋅⋅9.7(0.15)⋅⋅⋅
SN2016jft + 24.69122(421)8461(501)6450(619)8.44(0.55)127.81(0.16)31.45(0.15)18.18(0.08)
SN2016jft + 49.77795(414)6231(1417)4344(705)29.55(0.19)178.35(0.03)54.24(0.88)32.65(1.33)
SN2016jfu + 11.510835(627)7909(333)⋅⋅⋅10.34(0.01)37.90(0.03)9.14(0.33)⋅⋅⋅
SN2016jfu + 27.58100(513)⋅⋅⋅7043(226)17.49(0.54)173.19(3.06)⋅⋅⋅44.65(1.41)
SN2016jfu + 38.57063(480)5662.6(810)5494(1077)33.57(0.11)159.13(0.77)32.15(0.84)29.34(0.33)
SN2016jfu + 50.47203(509)5493.9(1077)3798(757)41.56(0.15)127.64(0.91)28.86(0.19)31.47(2.26)
SN2017aub + 8.7⋅⋅⋅8323(285)⋅⋅⋅⋅⋅⋅⋅⋅⋅9.35(1.04)⋅⋅⋅
SN2017aub + 13.6⋅⋅⋅10329(380)6260(269)⋅⋅⋅⋅⋅⋅18.3(3.24)40.61(2.11)
SN2017aub + 16.6⋅⋅⋅6509(702)⋅⋅⋅⋅⋅⋅⋅⋅⋅28.61(0.05)⋅⋅⋅
SN2017aub + 22.66174(332)4848(330)4474(601)9.01(0.26)129.14(1.95)16.98(0.70)18.7(0.34)
SN2017aub + 36.65394(984)4508(652)3531(613)30.71(0.08)135.71(0.48)15.76(1.21)25.77(0.12)
SN2017aub + 47.64920(320)4008(544)2673(526)41.9(0.63)112.56(0.25)40.7(0.84)43.39(1.57)
SN2017auu + 21.010243(1187)⋅⋅⋅⋅⋅⋅112.56(0.15)21.87(0.33)⋅⋅⋅⋅⋅⋅
SN2017cff + 12.0⋅⋅⋅9218(513)⋅⋅⋅⋅⋅⋅⋅⋅⋅33.59(0.15)⋅⋅⋅
SN2017cff + 32.07374(451)6875(434)4128(476)29.12(0.08)205.63(0.29)45.09(0.03)18.05(0.08)
SN2017cjb + 5.910837(389)10453(488)⋅⋅⋅15.36(0.22)78.86(0.07)21.34(0.07)⋅⋅⋅
SN2017gtd + 8.3⋅⋅⋅8492(286)⋅⋅⋅⋅⋅⋅⋅⋅⋅12.15(0.70)⋅⋅⋅
SN2017hk + 16.2⋅⋅⋅10526(1077)⋅⋅⋅⋅⋅⋅⋅⋅⋅10.6(0.26)⋅⋅⋅
SN2017hk + 33.29000(1090)8876(1618)7519(266)13.94(0.47)133.92(2.24)45.02(2.93)32.63(2.29)
SN2017hxu + 15.7⋅⋅⋅9630(1554)⋅⋅⋅⋅⋅⋅⋅⋅⋅22.11(0.80)⋅⋅⋅
SN2017hxu + 17.7⋅⋅⋅9252(1168)⋅⋅⋅⋅⋅⋅⋅⋅⋅22.78(1.24)⋅⋅⋅
SN2017hxu + 23.610721(395)7449(947)7477(857)11.77(0.19)114.34(0.86)21.94(0.91)16.8(1.29)
SN2017imr + 19.1⋅⋅⋅11681(1485)⋅⋅⋅⋅⋅⋅⋅⋅⋅22.43(4.02)⋅⋅⋅
SN2017iub + 8.812296(451)⋅⋅⋅⋅⋅⋅33.25(1.28)177.70(0.01)⋅⋅⋅⋅⋅⋅
SN2017ivu + 85.07376(492)6054(448)3949(585)71.68(0.14)204.36(0.20)54.52(0.15)65.25(1.97)
SN2017ivu + 93.26789(329)5874(592)3775(641)59.28(0.36)139.00(0.31)30.63(0.33)52.67(3.07)
SN2017ivu + 102.26743(376)5869(650)3603(346)65.82(0.06)155.37(0.29)35.02(0.71)58.17(1.90)
SN2017ivu + 114.16347(386)4929(395)3511(424)63.56(0.15)173.46(1.00)36.96(0.00)57.91(0.03)
SN2017jbj> + 17.411381(219)10704(838)⋅⋅⋅3.96(0.21)157.08(1.10)37.42(0.60)⋅⋅⋅
SN2018afm + 12.7⋅⋅⋅9728.3(979.4)⋅⋅⋅⋅⋅⋅⋅⋅⋅15.54(1.00)⋅⋅⋅
SN2018aoq + 8.78118.2(481.6)7240.2(437.6)⋅⋅⋅4.8(0.02)136.52(0.43)25.8(0.44)⋅⋅⋅
SN2018aoq + 10.67639.5(216.5)6606.6(292.3)⋅⋅⋅7.17(0.01)178.28(0.34)26.97(0.60)⋅⋅⋅
SN2018aoq + 20.56113.3(670.3)5668.5(557.4)4262.8(359.0)25.27(0.21)186.04(0.16)64.18(0.86)28.68(0.91)
SN2018aoq + 24.66778.3(281.1)5260.3(292.3)4152.4(274.9)35.63(0.02)185.54(0.15)43.41(0.46)20.21(0.07)
SN2018aoq + 26.76530.2(286.8)4777.5(291.7)3575.5(274.3)42.66(0.15)168.85(0.21)44.8(1.29)17.6(0.14)
SN2018aoq + 28.65576.1(435.6)3992.5(388.0)3387(364.9)44.15(0.71)157.64(0.74)37.2(0.81)29.52(1.58)
SN2018aoq + 37.65434.2(340.5)3600.7(292.2)2921.7(274.8)57.76(0.02)136.95(0.36)51.57(0.18)28.42(0.13)
SN2018aoq + 65.64454.5(216.3)⋅⋅⋅1928.3(274.6)65.28(0.78)88.72(0.17)30.16(0.07)44.29(0.05)
SN2018aoq + 73.54480.8(273.8)⋅⋅⋅1875.7(347.7)64.21(0.26)80.97(0.06)15.19(1.66)40.32(1.33)
SN2018aoq + 84.54237.2(216.5)⋅⋅⋅1563.5(274.9)58.98(0.17)70.52(0.01)20.11(1.49)44.62(0.58)
SN2018aql + 56.2⋅⋅⋅⋅⋅⋅3007.9(217.2)⋅⋅⋅⋅⋅⋅⋅⋅⋅14.54(0.04)
SN2018bek + 17.2⋅⋅⋅9769.9(599.5)⋅⋅⋅⋅⋅⋅⋅⋅⋅14.02(0.88)⋅⋅⋅
SN2018bek + 23.36471(599.5)6633.9(1401.8)⋅⋅⋅2.98(0.30)60.86(0.66)10.99(0.13)⋅⋅⋅
SN2018bek + 33.26408.1(945.3)4749.5(331)3951.5(678.5)0.25(0.04)94.20(1.47)26.09(1.48)12.02(0.11)
SN2018gk + 31.711102.4(442.6)8926.9(589.2)⋅⋅⋅6.88(0.23)112.05(0.04)24.75(0.11)⋅⋅⋅
SN2018gk + 41.711101.7(757.6)9923.3(1464.4)6451(943.7)14.41(0.07)181.46(0.04)50.8(0.24)11.36(0.10)
SN2018pn + 18.95795.6(212)4217.1(544.9)3520.9(357.5)30.78(0.05)229.42(0.01)30.07(0.01)23.99(0.40)
SN2018rz + 25.110263.7(653.9)8525.9(1324.3)7602.1(268.9)17.82(3.52)161.81(0.19)44.84(0.22)17.45(0.13)
SN2018yo + 39.711293.1(218.4)7806.7(514.9)5214.8(277.4)102.73(0.02)206.57(1.50)66.58(0.01)35.45(0.84)
SNPhasevH α(σ)avH β(σ)vFe ii5169(σ)|$\rm pew_{obs}^{H\alpha }(\sigma)$|||$\rm pew_{emi}^{H\alpha }(\sigma)$|||$\rm pew_{obs}^{H\beta }(\sigma)$||$\rm pew_{obs}^{Fe II 5169}(\sigma)$|
ASASSN-14kg + 15.214062(612)⋅⋅⋅⋅⋅⋅3.88(0.46)96.24(0.09)3.71(0.05)⋅⋅⋅
ASASSN-14ma + 12.09942(377)8166(790)⋅⋅⋅22.58(1.54)175.33(0.97)44.27(1.10)⋅⋅⋅
Gaia15acw + 9.110176(589)⋅⋅⋅⋅⋅⋅0.26(0.16)60.39(0.27)⋅⋅⋅⋅⋅⋅
iPTF13dkz + 27.89596(876)6919(470)5788(757)50.93(0.40)227.31(0.15)55.8(0.01)18.14(0.65)
MASTER_J2103 + 18.58747(458)7844(665)⋅⋅⋅3.13(0.06)96.48(0.58)24.83(0.45)⋅⋅⋅
MASTER_J2333 + 18.811839(349)10155(583)5030(1609)1.45(0.14)177.32(0.06)22.64(0.23)14.16(0.02)
MASTER_J2333 + 39.814958(1343)⋅⋅⋅⋅⋅⋅2.41(0.78)284.73(1.03)⋅⋅⋅⋅⋅⋅
PS15cwo + 13.1⋅⋅⋅9662(2023)⋅⋅⋅⋅⋅⋅⋅⋅⋅16.85(0.01)⋅⋅⋅
PS15cwo + 15.1⋅⋅⋅9013(795)⋅⋅⋅⋅⋅⋅⋅⋅⋅16.98(0.70)⋅⋅⋅
PS15cwo + 20.2⋅⋅⋅9144(971)⋅⋅⋅⋅⋅⋅⋅⋅⋅36.23(0.04)⋅⋅⋅
PS15cwo + 31.19661(525)8727(676)5896(893)15.58(0.16)169.91(0.39)49.55(0.03)28.04(0.65)
PS15cwo + 56.19022(463)8076(970)4594(1314)38.45(0.03)235.70(0.08)65.66(0.09)46.03(0.24)
PS15cwo + 60.08404(493)7164(1109)5162(978)37.26(0.38)279.05(0.25)69.94(0.05)48.79(0.64)
PS15cwo + 66.98317(216)7183(979)⋅⋅⋅55.7(0.24)182.89(0.33)78.8(0.36)⋅⋅⋅
PS15cwo + 83.07748(400)7179(402)⋅⋅⋅45.57(0.45)231.51(0.09)54(0.50)⋅⋅⋅
SN2011az>16.2⋅⋅⋅8800(650)⋅⋅⋅⋅⋅⋅⋅⋅⋅30.53(0.05)⋅⋅⋅
SN2011az>20.2⋅⋅⋅7446(595)⋅⋅⋅⋅⋅⋅⋅⋅⋅42.84(0.77)⋅⋅⋅
SN2011az>34.27709(702)5914(1261)4812(1023)26.57(1.82)203.29(1.44)41.95(0.38)7.86(1.43)
SN2011bi + 319241(893)8846(985)6143(757)33.95(2.07)122.81(0.47)46.71(0.17)55.56(0.50)
SN2011bi + 67.07917(352)5957(1051)5048(554)48.08(0.11)243.62(0.24)73.32(0.20)61.76(0.66)
SN2011cj + 20.910565(848)8289(1004)7546(449)52.96(0.67)271.69(0.70)49.7(0.10)17.84(1.18)
SN2011eg>697526(382)6506(515)⋅⋅⋅4.19(0.07)183.54(1.11)28.4(0.02)⋅⋅⋅
SN2011fu + 9.9⋅⋅⋅9465(615)⋅⋅⋅⋅⋅⋅⋅⋅⋅41.44(0.09)⋅⋅⋅
SN2011fu + 31.09567(550)7743(1183)4686(1207)10.31(0.33)214.22(0.08)45.98(0.20)44.1(1.27)
SN2011ir>31.810255(767)9902(839)5834(394)1.79(0.44)106.84(0.96)15.44(0.01)25.27(0.45)
SN2012A + 23.66881(407)6294(476)4427(517)57.53(0.01)128.13(0.18)48.12(0.07)34.64(0.48)
SN2012A + 33.16307(196)⋅⋅⋅⋅⋅⋅37.65(0.10)182.93(0.12)⋅⋅⋅⋅⋅⋅
SN2012A + 73.15186(316)4034(493)2346(401)54.73(0.09)233.83(0.36)71.1(0.09)57.55(5.65)
SN2012A + 88.64799(255)3500(299)1934(280)62.42(0.10)245.92(0.06)71.04(0.41)38.32(0.02)
SN2012aw + 1510428(334)9132(369)7523(478)31.96(0.15)193.32(0.05)42.01(0.01)18.34(0.23)
SN2012aw + 1611225(1212)8368(298)6899(668)32.14(0.01)215.16(0.59)48.84(0.07)18.87(0.26)
SN2012aw + 67.55927(353)4534(590)3438(448)66.4(0.01)157.48(0.58)28.6(0.19)41.31(0.70)
SN2012bv>20.06981(443)6680(673)⋅⋅⋅14.67(0.51)144.14(0.10)15.34(0.78)⋅⋅⋅
SN2012ec + 41.36627(347)4903(468)4162(440)58.66(1.14)164.24(0.58)37.28(0.02)29.46(0.16)
SN2012ec + 70.25586(364)⋅⋅⋅3269(496)59.57(1.28)143.19(1.15)⋅⋅⋅40.29(0.70)
SN2012fc>51.08322(400)6134(682)3792(439)54.95(0.25)327.85(0.67)84.73(0.09)32.91(0.19)
SN2012fs + 13.6⋅⋅⋅9648(421)⋅⋅⋅⋅⋅⋅⋅⋅⋅41.74(1.56)⋅⋅⋅
SN2012fs + 41.66149(349)4773(471)3428(956)49.28(0.07)131.2(0.13)15.96(0.10)29.81(0.56)
SN2012gn>5.3⋅⋅⋅8475(422)⋅⋅⋅⋅⋅⋅⋅⋅⋅21.41(0.08)⋅⋅⋅
SN2012ho + 8.8⋅⋅⋅9413(861)⋅⋅⋅⋅⋅⋅⋅⋅⋅7.08(0.01)⋅⋅⋅
SN2012ho + 11.3⋅⋅⋅10201(963)⋅⋅⋅⋅⋅⋅⋅⋅⋅16.16(0.04)⋅⋅⋅
SN2013ab + 7.410752(582)10544(553)⋅⋅⋅10.72(0.34)68.98(0.07)18.25(0.15)⋅⋅⋅
SN2013ab + 76.25934(406)3433(476)3038(447)78.76(0.16)220.89(0.15)46.15(0.01)42.4(0.49)
SN2013af + 48.18524(1294)5786(874)⋅⋅⋅97.99(0.04)178.25(0.39)58.16(0.23)⋅⋅⋅
SN2013fl + 23.48862(652)7934(891)5395(991)25.79(3.47)246.74(4.72)47.78(0.28)22.33(0.02)
SN2013gd + 22.37969(610)7437(626)5738(867)10.65(0.06)278.92(0.56)64.26(1.22)28.07(0.29)
SN2013gd + 29.37863(464)5559(472)4775(562)28.72(0.01)230.94(0.01)46.63(0.07)31.53(0.99)
SN2013gd + 62.36076(794)⋅⋅⋅3239(277)22.11(0.01)45.33(0.07)⋅⋅⋅13.07(0.32)
SN2013gu> + 2.1⋅⋅⋅9125(595)⋅⋅⋅⋅⋅⋅⋅⋅⋅2.1(0.17)⋅⋅⋅
SN2014A + 48.94987(694)3566(420)3090(674)57.56(0.29)96.20(0.12)17.09(0.39)32.32(0.69)
SN2014B + 49.47237(931)5864(842)4655(652)44.88(1.14)224.62(0.24)51.59(0.37)18.23(0.15)
SN2014bf>2.3⋅⋅⋅5350(800)⋅⋅⋅⋅⋅⋅⋅⋅⋅7.07(0.18)⋅⋅⋅
SN2014cw>20.18893(573)7815(538)5320(557)26.68(0.10)259.77(0.38)52.43(0.01)17.02(0.32)
SN2014cx + 18.210867(315)9535(425)⋅⋅⋅19.39(0.07)246.67(0.16)31.47(0.23)⋅⋅⋅
SN2014cx + 46.17934(550)6589(640)4437(514)72.57(0.21)183.46(0.68)48.8(0.13)21.74(0.43)
SN2014cx + 129.95895(408)4153(747)2504(449)47.09(0.01)507.75(0.06)59.9(0.25)31.67(0.98)
SN2014cy + 19.16056(364)5566(426)4836(400)11.8(0.05)150.73(0.28)33.49(0.01)19(0.02)
SN2014cy + 47.15017(304)3756(343)2607(363)31.01(0.07)82.63(0.02)33.23(0.11)26.47(1.16)
SN2014dq + 9.98060(220)7646(568)⋅⋅⋅6.62(0.01)126.96(0.10)39.38(0.15)⋅⋅⋅
SN2014dq + 16.07382(535)6378(478)⋅⋅⋅19.94(0.05)144.82(1.22)27.97(0.14)⋅⋅⋅
SN2014dq + 31.96242(339)5045(419)3424(279)38.74(0.13)222.89(0.80)47(0.81)12.81(0.06)
SN2014dq + 47.95573(379)4312(452)2696(373)52.89(0.23)184.36(0.21)52.07(0.05)17.38(0.01)
SN2014G + 25.48898(323)8465(344)7420(489)1.66(0.08)63.97(0.08)20.12(0.05)23.22(0.17)
SN2014G + 54.28109(390)6927(634)5406(1308)21.87(1.22)205.86(0.34)59.08(0.02)41.7(0.03)
SN2014G + 68.27362(357)5661(821)4062(523)21.11(0.49)269.46(0.12)60.39(0.15)41.33(1.87)
SN2014G + 89.2⋅⋅⋅5419(1264)3103(1220)⋅⋅⋅⋅⋅⋅57.4(0.01)33.9(0.16)
SN2015aq + 122.47455(617)5980(931)3636(813)51.03(0.58)575.27(0.16)59.41(0.01)47.42(0.49)
SN2015aq + 135.36783(503)5706(663)4198(408)41.12(0.07)791.64(2.60)63.65(1.91)21.67(0.97)
SN2015ay + 17.613796(404)11601(1115)6949(603)2.55(0.03)213.22(0.04)22.15(0.01)18.76(0.25)
SN2015cz + 17.29257(1282)8470(627)5715(1493)1.43(0.01)151.86(0.40)22.47(0.70)6.73(0.02)
SN2015cz + 38.16593(587)6336(1076)4109(720)30.22(0.02)138.93(1.15)42.74(0.31)23.54(0.73)
SN2015cz + 82.14931(243)5126(1500)2022(456)39.05(0.01)133.28(0.03)33.77(1.55)23.6(0.31)
SN2015V + 7.3⋅⋅⋅9640(880)⋅⋅⋅⋅⋅⋅⋅⋅⋅16.85(0.13)⋅⋅⋅
SN2015V + 41.26823(438)5928(591)4083(450)65.25(0.48)213.83(0.74)48.6(0.04)30(0.29)
SN2015V + 55.36310(351)4414(547)3025(446)68.29(0.24)168.67(0.04)53.99(0.74)30.64(0.27)
SN2015W + 46.09956(703)9751(1561)5309(987)47.55(0.13)226.44(0.76)60.47(0.35)63.76(1.14)
SN2016aip + 46.45637(1150)6042(1604)⋅⋅⋅60.6(1.76)200.19(2.16)84.17(4.18)⋅⋅⋅
SN2016ak + 18.2⋅⋅⋅8806(864)5062(1079)⋅⋅⋅⋅⋅⋅33.92(0.44)13.05(1.26)
SN2016aqp + 17.69011(617)8840(784)⋅⋅⋅9.45(0.20)200.37(1.28)30.17(0.67)⋅⋅⋅
SN2016aqw + 5.0⋅⋅⋅5384(1517)⋅⋅⋅⋅⋅⋅⋅⋅⋅19.49(0.22)⋅⋅⋅
SN2016B + 6.4⋅⋅⋅8402(853)⋅⋅⋅⋅⋅⋅⋅⋅⋅6.27(0.1)⋅⋅⋅
SN2016B + 10.3⋅⋅⋅8633(590)⋅⋅⋅⋅⋅⋅⋅⋅⋅6.2(0.23)⋅⋅⋅
SN2016B + 73.15956(440)2005(479)1810(450)43.69(0.26)251.87(0.85)53.99(0.15)45.28(0.84)
SN2016B + 97.14975(358)3660(484)2669(455)49.09(0.07)266.61(0.20)65.03(0.35)45.73(0.07)
SN2016B + 130.14687(213)3857(883)1811(334)49.11(3.45)306.77(0.30)61.79(1.83)40.32(0.40)
SN2016bkx>10.59395(807)8430(906)⋅⋅⋅60.14(0.10)105.69(0.94)76.34(0.05)⋅⋅⋅
SN2016bla>29.58297(964)6527(1215)3990(792)43.22(0.03)261.14(0.15)68.68(0.07)38.07(0.01)
SN2016blb + 11.3⋅⋅⋅10886(1087)⋅⋅⋅⋅⋅⋅⋅⋅⋅24.45(0.02)⋅⋅⋅
SN2016cok + 2.310760(683)7879(1516)⋅⋅⋅14.25(0.02)106.16(0.20)15.22(0.11)⋅⋅⋅
SN2016cok + 3.37109(1507)7457(1757)⋅⋅⋅16.49(0.22)108.33(0.08)15.67(0.03)⋅⋅⋅
SN2016cok + 5.47114(457)6491(470)⋅⋅⋅16.54(0.55)144.51(0.87)23.19(0.53)⋅⋅⋅
SN2016cok + 7.46985(435)6081(454)⋅⋅⋅13.56(0.36)159.18(0.01)22.85(0.05)⋅⋅⋅
SN2016cok + 9.46468(395)6050(391)4960(327)18(0.02)176.64(0.14)40.14(0.05)16.98(0.02)
SN2016cok + 13.24021(422)4325(1037)2018(536)37.54(0.85)186.96(0.24)42.48(0.13)23.22(0.01)
SN2016cok + 15.26510(565)6148.5(778.2)3121(1086)31.88(0.10)108.22(1.57)⋅⋅⋅⋅⋅⋅
SN2016fnb + 17.5⋅⋅⋅11435(283)4650(932)⋅⋅⋅⋅⋅⋅40.14(2.95)30.29(1.58)
SN2016hbd>25.39600(443)8754(832)7222(844)20.28(0.66)224.66(0.09)34.41(0.93)45.51(2.20)
SN2016hgm + 13.211308(378)9947(1399)⋅⋅⋅9.5(0.72)179.56(0.23)33.04(1.25)⋅⋅⋅
SN2016hjg>30.29123(589)8118(1006)5945(864)28.06(0.01)112.54(0.44)38.76(0.24)16.28(0.17)
SN2016hvu>11.6⋅⋅⋅9044(708)⋅⋅⋅⋅⋅⋅⋅⋅⋅17.42(0.05)⋅⋅⋅
SN2016hvu>17.410820(708)8854(285)⋅⋅⋅9.65(0.19)279.34(5.54)11.85(0.02)⋅⋅⋅
SN2016hvu>26.48176(267)7452(571)5235(400)33.64(0.50)224.92(1.51)38.28(0.02)14.77(0.07)
SN2016I + 21.18504(252)7747(295)6145(707)16.91(0.07)162.18(0.16)41.57(0.62)22.47(0.08)
SN2016jby + 45.67042(385)5946(590)4656(413)21.19(0.06)123.93(0.18)36.65(0.03)23.1(0.26)
SN2016jft + 12.7⋅⋅⋅9320(906)⋅⋅⋅⋅⋅⋅⋅⋅⋅9.7(0.15)⋅⋅⋅
SN2016jft + 24.69122(421)8461(501)6450(619)8.44(0.55)127.81(0.16)31.45(0.15)18.18(0.08)
SN2016jft + 49.77795(414)6231(1417)4344(705)29.55(0.19)178.35(0.03)54.24(0.88)32.65(1.33)
SN2016jfu + 11.510835(627)7909(333)⋅⋅⋅10.34(0.01)37.90(0.03)9.14(0.33)⋅⋅⋅
SN2016jfu + 27.58100(513)⋅⋅⋅7043(226)17.49(0.54)173.19(3.06)⋅⋅⋅44.65(1.41)
SN2016jfu + 38.57063(480)5662.6(810)5494(1077)33.57(0.11)159.13(0.77)32.15(0.84)29.34(0.33)
SN2016jfu + 50.47203(509)5493.9(1077)3798(757)41.56(0.15)127.64(0.91)28.86(0.19)31.47(2.26)
SN2017aub + 8.7⋅⋅⋅8323(285)⋅⋅⋅⋅⋅⋅⋅⋅⋅9.35(1.04)⋅⋅⋅
SN2017aub + 13.6⋅⋅⋅10329(380)6260(269)⋅⋅⋅⋅⋅⋅18.3(3.24)40.61(2.11)
SN2017aub + 16.6⋅⋅⋅6509(702)⋅⋅⋅⋅⋅⋅⋅⋅⋅28.61(0.05)⋅⋅⋅
SN2017aub + 22.66174(332)4848(330)4474(601)9.01(0.26)129.14(1.95)16.98(0.70)18.7(0.34)
SN2017aub + 36.65394(984)4508(652)3531(613)30.71(0.08)135.71(0.48)15.76(1.21)25.77(0.12)
SN2017aub + 47.64920(320)4008(544)2673(526)41.9(0.63)112.56(0.25)40.7(0.84)43.39(1.57)
SN2017auu + 21.010243(1187)⋅⋅⋅⋅⋅⋅112.56(0.15)21.87(0.33)⋅⋅⋅⋅⋅⋅
SN2017cff + 12.0⋅⋅⋅9218(513)⋅⋅⋅⋅⋅⋅⋅⋅⋅33.59(0.15)⋅⋅⋅
SN2017cff + 32.07374(451)6875(434)4128(476)29.12(0.08)205.63(0.29)45.09(0.03)18.05(0.08)
SN2017cjb + 5.910837(389)10453(488)⋅⋅⋅15.36(0.22)78.86(0.07)21.34(0.07)⋅⋅⋅
SN2017gtd + 8.3⋅⋅⋅8492(286)⋅⋅⋅⋅⋅⋅⋅⋅⋅12.15(0.70)⋅⋅⋅
SN2017hk + 16.2⋅⋅⋅10526(1077)⋅⋅⋅⋅⋅⋅⋅⋅⋅10.6(0.26)⋅⋅⋅
SN2017hk + 33.29000(1090)8876(1618)7519(266)13.94(0.47)133.92(2.24)45.02(2.93)32.63(2.29)
SN2017hxu + 15.7⋅⋅⋅9630(1554)⋅⋅⋅⋅⋅⋅⋅⋅⋅22.11(0.80)⋅⋅⋅
SN2017hxu + 17.7⋅⋅⋅9252(1168)⋅⋅⋅⋅⋅⋅⋅⋅⋅22.78(1.24)⋅⋅⋅
SN2017hxu + 23.610721(395)7449(947)7477(857)11.77(0.19)114.34(0.86)21.94(0.91)16.8(1.29)
SN2017imr + 19.1⋅⋅⋅11681(1485)⋅⋅⋅⋅⋅⋅⋅⋅⋅22.43(4.02)⋅⋅⋅
SN2017iub + 8.812296(451)⋅⋅⋅⋅⋅⋅33.25(1.28)177.70(0.01)⋅⋅⋅⋅⋅⋅
SN2017ivu + 85.07376(492)6054(448)3949(585)71.68(0.14)204.36(0.20)54.52(0.15)65.25(1.97)
SN2017ivu + 93.26789(329)5874(592)3775(641)59.28(0.36)139.00(0.31)30.63(0.33)52.67(3.07)
SN2017ivu + 102.26743(376)5869(650)3603(346)65.82(0.06)155.37(0.29)35.02(0.71)58.17(1.90)
SN2017ivu + 114.16347(386)4929(395)3511(424)63.56(0.15)173.46(1.00)36.96(0.00)57.91(0.03)
SN2017jbj> + 17.411381(219)10704(838)⋅⋅⋅3.96(0.21)157.08(1.10)37.42(0.60)⋅⋅⋅
SN2018afm + 12.7⋅⋅⋅9728.3(979.4)⋅⋅⋅⋅⋅⋅⋅⋅⋅15.54(1.00)⋅⋅⋅
SN2018aoq + 8.78118.2(481.6)7240.2(437.6)⋅⋅⋅4.8(0.02)136.52(0.43)25.8(0.44)⋅⋅⋅
SN2018aoq + 10.67639.5(216.5)6606.6(292.3)⋅⋅⋅7.17(0.01)178.28(0.34)26.97(0.60)⋅⋅⋅
SN2018aoq + 20.56113.3(670.3)5668.5(557.4)4262.8(359.0)25.27(0.21)186.04(0.16)64.18(0.86)28.68(0.91)
SN2018aoq + 24.66778.3(281.1)5260.3(292.3)4152.4(274.9)35.63(0.02)185.54(0.15)43.41(0.46)20.21(0.07)
SN2018aoq + 26.76530.2(286.8)4777.5(291.7)3575.5(274.3)42.66(0.15)168.85(0.21)44.8(1.29)17.6(0.14)
SN2018aoq + 28.65576.1(435.6)3992.5(388.0)3387(364.9)44.15(0.71)157.64(0.74)37.2(0.81)29.52(1.58)
SN2018aoq + 37.65434.2(340.5)3600.7(292.2)2921.7(274.8)57.76(0.02)136.95(0.36)51.57(0.18)28.42(0.13)
SN2018aoq + 65.64454.5(216.3)⋅⋅⋅1928.3(274.6)65.28(0.78)88.72(0.17)30.16(0.07)44.29(0.05)
SN2018aoq + 73.54480.8(273.8)⋅⋅⋅1875.7(347.7)64.21(0.26)80.97(0.06)15.19(1.66)40.32(1.33)
SN2018aoq + 84.54237.2(216.5)⋅⋅⋅1563.5(274.9)58.98(0.17)70.52(0.01)20.11(1.49)44.62(0.58)
SN2018aql + 56.2⋅⋅⋅⋅⋅⋅3007.9(217.2)⋅⋅⋅⋅⋅⋅⋅⋅⋅14.54(0.04)
SN2018bek + 17.2⋅⋅⋅9769.9(599.5)⋅⋅⋅⋅⋅⋅⋅⋅⋅14.02(0.88)⋅⋅⋅
SN2018bek + 23.36471(599.5)6633.9(1401.8)⋅⋅⋅2.98(0.30)60.86(0.66)10.99(0.13)⋅⋅⋅
SN2018bek + 33.26408.1(945.3)4749.5(331)3951.5(678.5)0.25(0.04)94.20(1.47)26.09(1.48)12.02(0.11)
SN2018gk + 31.711102.4(442.6)8926.9(589.2)⋅⋅⋅6.88(0.23)112.05(0.04)24.75(0.11)⋅⋅⋅
SN2018gk + 41.711101.7(757.6)9923.3(1464.4)6451(943.7)14.41(0.07)181.46(0.04)50.8(0.24)11.36(0.10)
SN2018pn + 18.95795.6(212)4217.1(544.9)3520.9(357.5)30.78(0.05)229.42(0.01)30.07(0.01)23.99(0.40)
SN2018rz + 25.110263.7(653.9)8525.9(1324.3)7602.1(268.9)17.82(3.52)161.81(0.19)44.84(0.22)17.45(0.13)
SN2018yo + 39.711293.1(218.4)7806.7(514.9)5214.8(277.4)102.73(0.02)206.57(1.50)66.58(0.01)35.45(0.84)

Note. The unit of velocities is |$\rm km\ s^{-1}$| and the unit of pew is Å

Table A4.

Velocity at 50 d after explosion and power-law exponent of our sample and well-studied sample in literature.

name|$v_{{\rm H}\alpha }^{50}(\sigma)$|nH α(σ)|$v_{{\rm H}\beta }^{50}(\sigma)$|nH β(σ)|$v_{\rm Fe}^{50}(\sigma)$|nFe(σ)
km s−1|$\rm km\ s^{-1}$||$\rm km\ s^{-1}$|
PS15cwo8850(203)−0.218(0.069)7798(269)−0.153(0.049)5185(644)−0.264(0.345)
SN2011az⋅⋅⋅⋅⋅⋅3356(1373)−0.861(0.403)⋅⋅⋅⋅⋅⋅
SN2011bi8396(385)−0.201(0.138)6922(812)−0.513(0.271)5439(449)−0.255(0.214)
SN2011fu⋅⋅⋅⋅⋅⋅7118(1555)−0.176(0.145)⋅⋅⋅⋅⋅⋅
SN2012A5649(137)−0.267(0.048)4558(236)−0.433(0.081)2813(229)−0.608(0.128)
SN2012fs⋅⋅⋅⋅⋅⋅4251(489)−0.629(0.097)⋅⋅⋅⋅⋅⋅
SN2013ab6606(377)−0.255(0.037)4205(479)−0.481(0.064)⋅⋅⋅⋅⋅⋅
SN2013gd6649(589)−0.263(0.143)3144(944)−1.066(0.438)3638(246)−0.539(0.145)
SN2014G8008(203)−0.157(0.051)6755(385)−0.337(0.094)4935(387)−0.606(0.130)
SN2014cx7888(268)−0.315(0.037)6288(440)−0.413(0.076)4242(457)−0.552(0.206)
SN2014cy4955(320)−0.208(0.095)3659(357)−0.436(0.132)2502(371)−0.685(0.179)
SN2014dq5593(282)−0.227(0.037)4264(336)−0.359(0.071)2629(402)−0.587(0.395)
SN2015V6481(276)−0.265(0.289)5031(405)−0.343(0.063)3352(348)−1.019(0.624)
SN2015cz5988(264)−0.395(0.083)5885(891)−0.339(0.157)3044(397)−0.677(0.202)
SN2016B6721(799)−0.387(0.148)⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
SN2016hvu6997(435)−0.267(0.056)6733(912)−0.240(0.126)⋅⋅⋅⋅⋅⋅
SN2016jft7784(417)−0.224(0.100)7063(889)−0.223(0.137)4329(708)−0.562(0.268)
SN2016jfu6822(339)−0.307(0.057)5368(699)−0.264(0.094)3843(668)−1.013(0.297)
SN2017aub4871(301)−0.293(0.077)4141(292)−0.448(0.049)2713(379)−0.642(0.116)
SN2017cff⋅⋅⋅⋅⋅⋅6016(573)−0.299(0.086)⋅⋅⋅⋅⋅⋅
SN2017hk⋅⋅⋅⋅⋅⋅8052(2352)−0.238(0.291)⋅⋅⋅⋅⋅⋅
SN2017hxu⋅⋅⋅⋅⋅⋅4537(2038)−0.668(0.462)⋅⋅⋅⋅⋅⋅
SN2017ivu9116(1772)−0.440(0.285)8784(2110)−0.671(0.355)4850(2135)−0.403(0.623)
SN2018aoq5036(103)−0.284(0.019)3559(193)−0.411(0.045)2358(133)−0.708(0.088)
SN2018bek⋅⋅⋅⋅⋅⋅3022(360)−1.097(0.142)⋅⋅⋅⋅⋅⋅
SN1999em5657(307)−0.327(0.034)4158(321)−0.504(0.102)3369(59)−0.587(0.018)
SN2003gd⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅3567(27)−0.514(0.008)
SN2004dj5593(61)−0.472(0.041)⋅⋅⋅⋅⋅⋅3360(27)−0.514(0.031)
SN2004et6895(34)−0.255(0.013)5844(101)−0.379(0.018)4096(29)−0.592(0.017)
SN2005cs⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅1812(346)−0.755(0.282)
SN2008bk⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅2067(23)−0.403(0.022)
SN2009N4908(104)−0.436(0.049)3028(49)−0.829(0.027)2356(87)−0.840(0.066)
SN2012aw7004(186)−0.327(0.020)5144(252)−0.413(0.035)4203(93)−0.566(0.025)
SN2012ec6813(117)−0.372(0.017)4910(529)−0.522(0.106)3755(33)−0.640(0.017)
SN2013ej7615(102)−0.198(0.011)6133(192)−0.299(0.024)4380(196)−0.611(0.056)
SN2013fs8010(264)−0.204(0.041)6812(192)−0.29(0.033)4109(62)−0.557(0.028)
SN2015bf⋅⋅⋅⋅⋅⋅5209(476)−0.350(0.148)4081(173)−0.532(0.067)
SN2016bkv1576(93)−0.290(0.108)1354(77)−0.400(0.083)1328(76)−0.303(0.087)
SN2017eaw7421(157)−0.297(0.157)5578(197)−0.499(0.02)4741(56)−0.567(0.021)
SN2018zd4346(69)−0.310(0.063)3554(40)−0.593(0.004)3215(34)−0.377(0.041)
name|$v_{{\rm H}\alpha }^{50}(\sigma)$|nH α(σ)|$v_{{\rm H}\beta }^{50}(\sigma)$|nH β(σ)|$v_{\rm Fe}^{50}(\sigma)$|nFe(σ)
km s−1|$\rm km\ s^{-1}$||$\rm km\ s^{-1}$|
PS15cwo8850(203)−0.218(0.069)7798(269)−0.153(0.049)5185(644)−0.264(0.345)
SN2011az⋅⋅⋅⋅⋅⋅3356(1373)−0.861(0.403)⋅⋅⋅⋅⋅⋅
SN2011bi8396(385)−0.201(0.138)6922(812)−0.513(0.271)5439(449)−0.255(0.214)
SN2011fu⋅⋅⋅⋅⋅⋅7118(1555)−0.176(0.145)⋅⋅⋅⋅⋅⋅
SN2012A5649(137)−0.267(0.048)4558(236)−0.433(0.081)2813(229)−0.608(0.128)
SN2012fs⋅⋅⋅⋅⋅⋅4251(489)−0.629(0.097)⋅⋅⋅⋅⋅⋅
SN2013ab6606(377)−0.255(0.037)4205(479)−0.481(0.064)⋅⋅⋅⋅⋅⋅
SN2013gd6649(589)−0.263(0.143)3144(944)−1.066(0.438)3638(246)−0.539(0.145)
SN2014G8008(203)−0.157(0.051)6755(385)−0.337(0.094)4935(387)−0.606(0.130)
SN2014cx7888(268)−0.315(0.037)6288(440)−0.413(0.076)4242(457)−0.552(0.206)
SN2014cy4955(320)−0.208(0.095)3659(357)−0.436(0.132)2502(371)−0.685(0.179)
SN2014dq5593(282)−0.227(0.037)4264(336)−0.359(0.071)2629(402)−0.587(0.395)
SN2015V6481(276)−0.265(0.289)5031(405)−0.343(0.063)3352(348)−1.019(0.624)
SN2015cz5988(264)−0.395(0.083)5885(891)−0.339(0.157)3044(397)−0.677(0.202)
SN2016B6721(799)−0.387(0.148)⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
SN2016hvu6997(435)−0.267(0.056)6733(912)−0.240(0.126)⋅⋅⋅⋅⋅⋅
SN2016jft7784(417)−0.224(0.100)7063(889)−0.223(0.137)4329(708)−0.562(0.268)
SN2016jfu6822(339)−0.307(0.057)5368(699)−0.264(0.094)3843(668)−1.013(0.297)
SN2017aub4871(301)−0.293(0.077)4141(292)−0.448(0.049)2713(379)−0.642(0.116)
SN2017cff⋅⋅⋅⋅⋅⋅6016(573)−0.299(0.086)⋅⋅⋅⋅⋅⋅
SN2017hk⋅⋅⋅⋅⋅⋅8052(2352)−0.238(0.291)⋅⋅⋅⋅⋅⋅
SN2017hxu⋅⋅⋅⋅⋅⋅4537(2038)−0.668(0.462)⋅⋅⋅⋅⋅⋅
SN2017ivu9116(1772)−0.440(0.285)8784(2110)−0.671(0.355)4850(2135)−0.403(0.623)
SN2018aoq5036(103)−0.284(0.019)3559(193)−0.411(0.045)2358(133)−0.708(0.088)
SN2018bek⋅⋅⋅⋅⋅⋅3022(360)−1.097(0.142)⋅⋅⋅⋅⋅⋅
SN1999em5657(307)−0.327(0.034)4158(321)−0.504(0.102)3369(59)−0.587(0.018)
SN2003gd⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅3567(27)−0.514(0.008)
SN2004dj5593(61)−0.472(0.041)⋅⋅⋅⋅⋅⋅3360(27)−0.514(0.031)
SN2004et6895(34)−0.255(0.013)5844(101)−0.379(0.018)4096(29)−0.592(0.017)
SN2005cs⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅1812(346)−0.755(0.282)
SN2008bk⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅2067(23)−0.403(0.022)
SN2009N4908(104)−0.436(0.049)3028(49)−0.829(0.027)2356(87)−0.840(0.066)
SN2012aw7004(186)−0.327(0.020)5144(252)−0.413(0.035)4203(93)−0.566(0.025)
SN2012ec6813(117)−0.372(0.017)4910(529)−0.522(0.106)3755(33)−0.640(0.017)
SN2013ej7615(102)−0.198(0.011)6133(192)−0.299(0.024)4380(196)−0.611(0.056)
SN2013fs8010(264)−0.204(0.041)6812(192)−0.29(0.033)4109(62)−0.557(0.028)
SN2015bf⋅⋅⋅⋅⋅⋅5209(476)−0.350(0.148)4081(173)−0.532(0.067)
SN2016bkv1576(93)−0.290(0.108)1354(77)−0.400(0.083)1328(76)−0.303(0.087)
SN2017eaw7421(157)−0.297(0.157)5578(197)−0.499(0.02)4741(56)−0.567(0.021)
SN2018zd4346(69)−0.310(0.063)3554(40)−0.593(0.004)3215(34)−0.377(0.041)
Table A4.

Velocity at 50 d after explosion and power-law exponent of our sample and well-studied sample in literature.

name|$v_{{\rm H}\alpha }^{50}(\sigma)$|nH α(σ)|$v_{{\rm H}\beta }^{50}(\sigma)$|nH β(σ)|$v_{\rm Fe}^{50}(\sigma)$|nFe(σ)
km s−1|$\rm km\ s^{-1}$||$\rm km\ s^{-1}$|
PS15cwo8850(203)−0.218(0.069)7798(269)−0.153(0.049)5185(644)−0.264(0.345)
SN2011az⋅⋅⋅⋅⋅⋅3356(1373)−0.861(0.403)⋅⋅⋅⋅⋅⋅
SN2011bi8396(385)−0.201(0.138)6922(812)−0.513(0.271)5439(449)−0.255(0.214)
SN2011fu⋅⋅⋅⋅⋅⋅7118(1555)−0.176(0.145)⋅⋅⋅⋅⋅⋅
SN2012A5649(137)−0.267(0.048)4558(236)−0.433(0.081)2813(229)−0.608(0.128)
SN2012fs⋅⋅⋅⋅⋅⋅4251(489)−0.629(0.097)⋅⋅⋅⋅⋅⋅
SN2013ab6606(377)−0.255(0.037)4205(479)−0.481(0.064)⋅⋅⋅⋅⋅⋅
SN2013gd6649(589)−0.263(0.143)3144(944)−1.066(0.438)3638(246)−0.539(0.145)
SN2014G8008(203)−0.157(0.051)6755(385)−0.337(0.094)4935(387)−0.606(0.130)
SN2014cx7888(268)−0.315(0.037)6288(440)−0.413(0.076)4242(457)−0.552(0.206)
SN2014cy4955(320)−0.208(0.095)3659(357)−0.436(0.132)2502(371)−0.685(0.179)
SN2014dq5593(282)−0.227(0.037)4264(336)−0.359(0.071)2629(402)−0.587(0.395)
SN2015V6481(276)−0.265(0.289)5031(405)−0.343(0.063)3352(348)−1.019(0.624)
SN2015cz5988(264)−0.395(0.083)5885(891)−0.339(0.157)3044(397)−0.677(0.202)
SN2016B6721(799)−0.387(0.148)⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
SN2016hvu6997(435)−0.267(0.056)6733(912)−0.240(0.126)⋅⋅⋅⋅⋅⋅
SN2016jft7784(417)−0.224(0.100)7063(889)−0.223(0.137)4329(708)−0.562(0.268)
SN2016jfu6822(339)−0.307(0.057)5368(699)−0.264(0.094)3843(668)−1.013(0.297)
SN2017aub4871(301)−0.293(0.077)4141(292)−0.448(0.049)2713(379)−0.642(0.116)
SN2017cff⋅⋅⋅⋅⋅⋅6016(573)−0.299(0.086)⋅⋅⋅⋅⋅⋅
SN2017hk⋅⋅⋅⋅⋅⋅8052(2352)−0.238(0.291)⋅⋅⋅⋅⋅⋅
SN2017hxu⋅⋅⋅⋅⋅⋅4537(2038)−0.668(0.462)⋅⋅⋅⋅⋅⋅
SN2017ivu9116(1772)−0.440(0.285)8784(2110)−0.671(0.355)4850(2135)−0.403(0.623)
SN2018aoq5036(103)−0.284(0.019)3559(193)−0.411(0.045)2358(133)−0.708(0.088)
SN2018bek⋅⋅⋅⋅⋅⋅3022(360)−1.097(0.142)⋅⋅⋅⋅⋅⋅
SN1999em5657(307)−0.327(0.034)4158(321)−0.504(0.102)3369(59)−0.587(0.018)
SN2003gd⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅3567(27)−0.514(0.008)
SN2004dj5593(61)−0.472(0.041)⋅⋅⋅⋅⋅⋅3360(27)−0.514(0.031)
SN2004et6895(34)−0.255(0.013)5844(101)−0.379(0.018)4096(29)−0.592(0.017)
SN2005cs⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅1812(346)−0.755(0.282)
SN2008bk⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅2067(23)−0.403(0.022)
SN2009N4908(104)−0.436(0.049)3028(49)−0.829(0.027)2356(87)−0.840(0.066)
SN2012aw7004(186)−0.327(0.020)5144(252)−0.413(0.035)4203(93)−0.566(0.025)
SN2012ec6813(117)−0.372(0.017)4910(529)−0.522(0.106)3755(33)−0.640(0.017)
SN2013ej7615(102)−0.198(0.011)6133(192)−0.299(0.024)4380(196)−0.611(0.056)
SN2013fs8010(264)−0.204(0.041)6812(192)−0.29(0.033)4109(62)−0.557(0.028)
SN2015bf⋅⋅⋅⋅⋅⋅5209(476)−0.350(0.148)4081(173)−0.532(0.067)
SN2016bkv1576(93)−0.290(0.108)1354(77)−0.400(0.083)1328(76)−0.303(0.087)
SN2017eaw7421(157)−0.297(0.157)5578(197)−0.499(0.02)4741(56)−0.567(0.021)
SN2018zd4346(69)−0.310(0.063)3554(40)−0.593(0.004)3215(34)−0.377(0.041)
name|$v_{{\rm H}\alpha }^{50}(\sigma)$|nH α(σ)|$v_{{\rm H}\beta }^{50}(\sigma)$|nH β(σ)|$v_{\rm Fe}^{50}(\sigma)$|nFe(σ)
km s−1|$\rm km\ s^{-1}$||$\rm km\ s^{-1}$|
PS15cwo8850(203)−0.218(0.069)7798(269)−0.153(0.049)5185(644)−0.264(0.345)
SN2011az⋅⋅⋅⋅⋅⋅3356(1373)−0.861(0.403)⋅⋅⋅⋅⋅⋅
SN2011bi8396(385)−0.201(0.138)6922(812)−0.513(0.271)5439(449)−0.255(0.214)
SN2011fu⋅⋅⋅⋅⋅⋅7118(1555)−0.176(0.145)⋅⋅⋅⋅⋅⋅
SN2012A5649(137)−0.267(0.048)4558(236)−0.433(0.081)2813(229)−0.608(0.128)
SN2012fs⋅⋅⋅⋅⋅⋅4251(489)−0.629(0.097)⋅⋅⋅⋅⋅⋅
SN2013ab6606(377)−0.255(0.037)4205(479)−0.481(0.064)⋅⋅⋅⋅⋅⋅
SN2013gd6649(589)−0.263(0.143)3144(944)−1.066(0.438)3638(246)−0.539(0.145)
SN2014G8008(203)−0.157(0.051)6755(385)−0.337(0.094)4935(387)−0.606(0.130)
SN2014cx7888(268)−0.315(0.037)6288(440)−0.413(0.076)4242(457)−0.552(0.206)
SN2014cy4955(320)−0.208(0.095)3659(357)−0.436(0.132)2502(371)−0.685(0.179)
SN2014dq5593(282)−0.227(0.037)4264(336)−0.359(0.071)2629(402)−0.587(0.395)
SN2015V6481(276)−0.265(0.289)5031(405)−0.343(0.063)3352(348)−1.019(0.624)
SN2015cz5988(264)−0.395(0.083)5885(891)−0.339(0.157)3044(397)−0.677(0.202)
SN2016B6721(799)−0.387(0.148)⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
SN2016hvu6997(435)−0.267(0.056)6733(912)−0.240(0.126)⋅⋅⋅⋅⋅⋅
SN2016jft7784(417)−0.224(0.100)7063(889)−0.223(0.137)4329(708)−0.562(0.268)
SN2016jfu6822(339)−0.307(0.057)5368(699)−0.264(0.094)3843(668)−1.013(0.297)
SN2017aub4871(301)−0.293(0.077)4141(292)−0.448(0.049)2713(379)−0.642(0.116)
SN2017cff⋅⋅⋅⋅⋅⋅6016(573)−0.299(0.086)⋅⋅⋅⋅⋅⋅
SN2017hk⋅⋅⋅⋅⋅⋅8052(2352)−0.238(0.291)⋅⋅⋅⋅⋅⋅
SN2017hxu⋅⋅⋅⋅⋅⋅4537(2038)−0.668(0.462)⋅⋅⋅⋅⋅⋅
SN2017ivu9116(1772)−0.440(0.285)8784(2110)−0.671(0.355)4850(2135)−0.403(0.623)
SN2018aoq5036(103)−0.284(0.019)3559(193)−0.411(0.045)2358(133)−0.708(0.088)
SN2018bek⋅⋅⋅⋅⋅⋅3022(360)−1.097(0.142)⋅⋅⋅⋅⋅⋅
SN1999em5657(307)−0.327(0.034)4158(321)−0.504(0.102)3369(59)−0.587(0.018)
SN2003gd⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅3567(27)−0.514(0.008)
SN2004dj5593(61)−0.472(0.041)⋅⋅⋅⋅⋅⋅3360(27)−0.514(0.031)
SN2004et6895(34)−0.255(0.013)5844(101)−0.379(0.018)4096(29)−0.592(0.017)
SN2005cs⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅1812(346)−0.755(0.282)
SN2008bk⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅2067(23)−0.403(0.022)
SN2009N4908(104)−0.436(0.049)3028(49)−0.829(0.027)2356(87)−0.840(0.066)
SN2012aw7004(186)−0.327(0.020)5144(252)−0.413(0.035)4203(93)−0.566(0.025)
SN2012ec6813(117)−0.372(0.017)4910(529)−0.522(0.106)3755(33)−0.640(0.017)
SN2013ej7615(102)−0.198(0.011)6133(192)−0.299(0.024)4380(196)−0.611(0.056)
SN2013fs8010(264)−0.204(0.041)6812(192)−0.29(0.033)4109(62)−0.557(0.028)
SN2015bf⋅⋅⋅⋅⋅⋅5209(476)−0.350(0.148)4081(173)−0.532(0.067)
SN2016bkv1576(93)−0.290(0.108)1354(77)−0.400(0.083)1328(76)−0.303(0.087)
SN2017eaw7421(157)−0.297(0.157)5578(197)−0.499(0.02)4741(56)−0.567(0.021)
SN2018zd4346(69)−0.310(0.063)3554(40)−0.593(0.004)3215(34)−0.377(0.041)
Table A5.

Velocity at 50 d after explosion and power-law exponent of SNe II in Gutiérrez et al. (2017a).

name|$v_{{\rm H}\alpha }^{50}(\sigma)$|nH α(σ)|$v_{{\rm H}\beta }^{50}(\sigma)$|nH β(σ)|$v_{\rm Fe}^{50}(\sigma)$|nFe(σ)
km s−1|$\rm km\ s^{-1}$||$\rm km\ s^{-1}$|
02fa7663(275)−0.233(0.103)6379(368)−0.278(0.159)4151(373)−0.447(0.231)
02gd4146(214)−0.213(0.096)3430(277)−0.422(0.089)2460(267)−0.476(0.189)
02gw6707(213)−0.425(0.051)5326(260)−0.526(0.076)3647(251)−0.598(0.105)
02hj7948(273)−0.178(0.065)6470(323)−0.378(0.091)4202(324)−0.315(0.141)
02hx8087(228)−0.194(0.058)6464(271)−0.267(0.085)3821(282)−0.288(0.152)
02ig8859(470)−0.083(0.178)7921(1069)−0.232(0.160)⋅⋅⋅⋅⋅⋅
03b6284(238)−0.341(0.087)⋅⋅⋅⋅⋅⋅3522(344)−0.367(0.256)
03bl3998(266)−0.865(0.184)387(484)−0.295(0.082)2122(468)−1.129(0.708)
03bn6918(200)−0.387(0.043)5714(243)−0.421(0.046)3638(247)−0.569(0.093)
03ci7233(299)−0.197(0.058)5930(374)−0.282(0.084)3681(350)−0.215(0.133)
03cn5413(376)−0.138(0.088)4540(474)−0.386(0.097)2719(456)−0.460(0.152)
03cx9020(257)−0.217(0.037)7056(314)−0.279(0.055)4804(462)−0.345(0.224)
03e7378(249)−0.347(0.043)5793(319)−0.468(0.067)4151(309)−0.505(0.090)
03ef7734(317)−0.367(0.136)4298(412)−0.917(0.297)4133(370)−0.406(0.296)
03eg8579(500)−0.256(0.116)6740(627)−0.402(0.179)4757(600)−0.741(0.233)
03ej6917(694)−0.306(0.099)5983(846)−0.287(0.141)4399(875)−0.442(0.248)
03fb7611(318)−0.374(0.072)5863(427)−0.292(0.125)3843(391)−0.601(0.175)
03hd7869(351)−0.270(0.100)6026(378)−0.360(0.061)4042(412)−0.517(0.324)
03hg7680(330)−0.417(0.096)5372(467)−0.529(0.188)4321(385)−0.563(0.206)
03hk6657(433)−0.287(0.227)5709(564)−0.473(0.333)4166(525)−0.777(0.416)
03hl6593(301)−0.321(0.108)4571(356)−0.411(0.191)3840(337)−0.525(0.220)
03hn7036(254)−0.272(0.086)5361(317)−0.499(0.144)3506(311)−0.681(0.219)
03ho8328(277)−0.195(0.093)6097(537)−0.074(0.743)4008(501)−0.431(1.010)
03ib7079(338)−0.168(0.072)5920(402)−0.179(0.062)3742(443)−0.485(0.358)
03ip8643(321)−0.179(0.091)6836(387)−0.343(0.140)4565(376)−0.553(0.209)
03iq7503(311)−0.308(0.036)5506(384)−0.404(0.056)4350(371)−0.503(0.206)
03t6982(272)−0.400(0.059)4060(377)−0.640(0.128)3921(532)−0.721(0.481)
04ej6370(294)−0.264(0.117)5426(364)−0.459(0.185)3308(356)−0.461(0.305)
04er9615(643)−0.171(0.159)7883(430)−0.420(0.129)5265(415)−0.429(0.185)
04fb7728(474)−0.267(0.171)5925(592)−0.279(0.283)4205(549)−0.356(0.382)
04fc6439(278)−0.251(0.055)4120(418)−0.487(0.089)3622(319)−0.605(0.309)
04fx5754(230)−0.379(0.074)4275(279)−0.408(0.119)2821(271)−0.473(0.177)
05an7676(356)−0.248(0.058)5377(395)−0.464(0.081)4033(404)−0.498(0.137)
05dk7935(273)−0.228(0.096)6913(327)−0.452(0.142)4631(309)−0.684(0.233)
05dn9531(299)−0.162(0.079)7634(358)−0.360(0.118)4761(358)−0.626(0.220)
05dz7619(332)−0.293(0.062)5961(397)−0.497(0.092)4137(402)−0.549(0.135)
05j8454(198)−0.283(0.045)6410(238)−0.495(0.072)4256(229)−0.574(0.104)
05z9481(247)−0.237(0.033)7922(299)−0.220(0.037)5216(290)−0.337(0.066)
06ai7500(299)−0.200(0.064)6300(411)−0.284(0.099)4648(409)−0.304(0.133)
06be7472(463)−0.342(0.105)5891(555)−0.400(0.155)3720(533)−0.628(0.224)
06bl2769(1400)−2.192(0.822)6945(5008)−0.332(1.197)4791(4888)−0.278(1.693)
06ee5291(250)−0.831(0.218)⋅⋅⋅⋅⋅⋅3032(278)−0.531(0.380)
06it7211(681)−0.211(0.067)4869(917)−0.427(0.153)3171(904)−0.644(0.265)
06iw7393(382)−0.282(0.045)⋅⋅⋅⋅⋅⋅4170(576)−0.556(0.510)
06ms5007(1538)−0.654(0.571)3711(1780)−0.778(0.888)3075(1894)−0.761(1.151)
06qr6494(235)−0.197(0.067)5121(359)−0.368(0.119)3677(389)−0.493(0.168)
06y9025(315)−0.163(0.137)6982(391)−0.344(0.153)5105(341)−0.522(0.181)
07aa6001(213)−0.434(0.075)4284(266)−0.542(0.129)3164(257)−0.619(0.165)
07ab9769(319)−0.035(0.123)8266(459)−0.759(0.291)4786(442)−0.814(0.487)
07av7240(425)−0.337(0.060)5390(495)−0.431(0.089)3871(605)−0.653(0.361)
07bf5503(678)−0.324(0.102)4133(768)−0.515(0.145)⋅⋅⋅⋅⋅⋅
07hm8209(371)−0.159(0.074)6425(466)−0.195(0.117)4423(430)−0.156(0.164)
07il8074(254)−0.317(0.071)6089(297)−0.430(0.058)4293(303)−0.738(0.152)
07ld7203(950)−0.231(0.246)6049(513)−0.187(0.050)3634(1107)−0.434(0.540)
07oc6793(224)−0.172(0.079)5152(244)−0.408(0.113)3732(271)−0.491(0.149)
07od7143(463)−0.141(0.058)6523(525)−0.162(0.072)3793(577)−0.270(0.187)
07p7928(423)−0.346(0.087)5324(640)−0.876(0.193)4109(641)−0.887(0.252)
07sq8338(347)−0.177(0.094)7375(536)−0.357(0.132)5370(525)−0.608(0.184)
07u8052(394)−0.142(0.043)6920(444)−0.251(0.050)5466(463)−0.413(0.065)
07w4781(278)−0.551(0.089)3220(360)−0.851(0.161)2456(338)−0.808(0.198)
07x8609(231)−0.178(0.026)6701(281)−0.277(0.037)4647(278)−0.563(0.071)
08ag6917(235)−0.434(0.083)4595(265)−0.861(0.151)3948(236)−0.487(0.156)
08aw8374(229)−0.289(0.053)6701(257)−0.488(0.070)4509(253)−0.223(0.109)
08bh7843(403)−0.204(0.137)6311(419)−0.372(0.076)4214(392)−0.602(0.096)
08bk3889(152)−0.536(0.082)2455(192)−0.800(0.152)⋅⋅⋅⋅⋅⋅
08bm1775(360)−0.494(1.265)1391(431)−0.399(1.933)1289(438)−1.028(2.106)
08bp6821(903)−0.398(0.785)7507(1109)−0.143(0.133)⋅⋅⋅⋅⋅⋅
08br4082(490)−0.234(0.142)2499(524)−0.504(0.218)1634(487)−0.601(0.299)
08gi6789(417)−0.206(0.080)6317(511)−0.250(0.106)4216(508)−0.428(0.150)
08gr8843(424)−0.202(0.101)7550(454)−0.141(0.031)5015(487)−0.472(0.188)
08hg5512(2050)−0.441(0.293)4183(2877)−0.528(0.551)⋅⋅⋅⋅⋅⋅
08ho6481(5365)−0.153(1.027)4060(3472)−0.430(1.005)⋅⋅⋅⋅⋅⋅
08if8552(252)−0.262(0.059)7255(250)−0.294(0.033)4803(269)−0.543(0.097)
08il7862(546)−0.182(0.030)5608(677)−0.315(0.047)⋅⋅⋅⋅⋅⋅
08in5462(394)−0.308(0.133)3173(372)−0.421(0.059)2816(371)−0.591(0.215)
08k7651(205)−0.191(0.031)6923(244)−0.227(0.057)5298(254)−0.327(0.117)
08m7009(212)−0.328(0.065)5634(233)−0.522(0.089)3716(227)−0.763(0.124)
08w7043(243)−0.230(0.074)5893(292)−0.438(0.107)3918(297)−0.645(0.161)
09aj3130(250)−0.192(0.320)2719(227)−0.078(0.169)2892(281)−1.287(0.380)
09ao6003(306)−0.267(0.146)5274(376)−0.402(0.197)3621(368)−0.672(0.259)
09au2584(290)−0.257(0.194)1991(353)−0.605(0.456)1485(361)−0.983(0.567)
09bu7483(308)−0.598(0.059)5623(372)−0.754(0.088)4066(368)−0.635(0.179)
09bz8329(480)−0.227(0.052)6168(550)−0.345(0.076)3397(924)−0.834(0.451)
09n4509(249)−0.693(0.099)2845(298)−1.011(0.176)2625(269)−0.719(0.180)
86l7719(243)−0.229(0.071)6743(287)−0.340(0.080)4418(336)−0.495(0.160)
88a7802(2023)−0.179(0.198)6294(2070)−0.232(0.251)4548(2407)−0.323(0.425)
90e8245(791)−0.273(0.078)7415(899)−0.268(0.099)4576(1106)−0.615(0.290)
90k7853(286)−0.137(0.185)6587(355)−0.346(0.295)3971(334)−0.744(0.461)
91al8905(254)−0.136(0.069)7801(293)−0.211(0.094)5010(364)−0.535(0.196)
92af7739(502)−0.045(0.121)6345(558)−0.199(0.173)⋅⋅⋅⋅⋅⋅
92ba6293(327)−0.296(0.050)5116(406)−0.393(0.073)3485(416)−0.585(0.133)
93k7121(352)−0.323(0.180)6359(418)−0.447(0.232)4423(556)−0.772(0.398)
93s7792(315)−0.084(0.099)6911(380)−0.297(0.142)4959(443)−0.320(0.208)
99br3618(435)−0.315(0.147)3203(458)−0.385(0.170)1752(451)−0.776(0.285)
99ca7389(1032)−0.208(0.292)6855(1291)−0.238(0.391)5200(1276)−0.180(0.511)
99cr5973(355)−0.143(0.065)4938(452)−0.233(0.093)3658(462)−0.469(0.213)
99em6065(386)−0.369(0.052)5716(466)−0.308(0.068)3487(482)−0.596(0.146)
name|$v_{{\rm H}\alpha }^{50}(\sigma)$|nH α(σ)|$v_{{\rm H}\beta }^{50}(\sigma)$|nH β(σ)|$v_{\rm Fe}^{50}(\sigma)$|nFe(σ)
km s−1|$\rm km\ s^{-1}$||$\rm km\ s^{-1}$|
02fa7663(275)−0.233(0.103)6379(368)−0.278(0.159)4151(373)−0.447(0.231)
02gd4146(214)−0.213(0.096)3430(277)−0.422(0.089)2460(267)−0.476(0.189)
02gw6707(213)−0.425(0.051)5326(260)−0.526(0.076)3647(251)−0.598(0.105)
02hj7948(273)−0.178(0.065)6470(323)−0.378(0.091)4202(324)−0.315(0.141)
02hx8087(228)−0.194(0.058)6464(271)−0.267(0.085)3821(282)−0.288(0.152)
02ig8859(470)−0.083(0.178)7921(1069)−0.232(0.160)⋅⋅⋅⋅⋅⋅
03b6284(238)−0.341(0.087)⋅⋅⋅⋅⋅⋅3522(344)−0.367(0.256)
03bl3998(266)−0.865(0.184)387(484)−0.295(0.082)2122(468)−1.129(0.708)
03bn6918(200)−0.387(0.043)5714(243)−0.421(0.046)3638(247)−0.569(0.093)
03ci7233(299)−0.197(0.058)5930(374)−0.282(0.084)3681(350)−0.215(0.133)
03cn5413(376)−0.138(0.088)4540(474)−0.386(0.097)2719(456)−0.460(0.152)
03cx9020(257)−0.217(0.037)7056(314)−0.279(0.055)4804(462)−0.345(0.224)
03e7378(249)−0.347(0.043)5793(319)−0.468(0.067)4151(309)−0.505(0.090)
03ef7734(317)−0.367(0.136)4298(412)−0.917(0.297)4133(370)−0.406(0.296)
03eg8579(500)−0.256(0.116)6740(627)−0.402(0.179)4757(600)−0.741(0.233)
03ej6917(694)−0.306(0.099)5983(846)−0.287(0.141)4399(875)−0.442(0.248)
03fb7611(318)−0.374(0.072)5863(427)−0.292(0.125)3843(391)−0.601(0.175)
03hd7869(351)−0.270(0.100)6026(378)−0.360(0.061)4042(412)−0.517(0.324)
03hg7680(330)−0.417(0.096)5372(467)−0.529(0.188)4321(385)−0.563(0.206)
03hk6657(433)−0.287(0.227)5709(564)−0.473(0.333)4166(525)−0.777(0.416)
03hl6593(301)−0.321(0.108)4571(356)−0.411(0.191)3840(337)−0.525(0.220)
03hn7036(254)−0.272(0.086)5361(317)−0.499(0.144)3506(311)−0.681(0.219)
03ho8328(277)−0.195(0.093)6097(537)−0.074(0.743)4008(501)−0.431(1.010)
03ib7079(338)−0.168(0.072)5920(402)−0.179(0.062)3742(443)−0.485(0.358)
03ip8643(321)−0.179(0.091)6836(387)−0.343(0.140)4565(376)−0.553(0.209)
03iq7503(311)−0.308(0.036)5506(384)−0.404(0.056)4350(371)−0.503(0.206)
03t6982(272)−0.400(0.059)4060(377)−0.640(0.128)3921(532)−0.721(0.481)
04ej6370(294)−0.264(0.117)5426(364)−0.459(0.185)3308(356)−0.461(0.305)
04er9615(643)−0.171(0.159)7883(430)−0.420(0.129)5265(415)−0.429(0.185)
04fb7728(474)−0.267(0.171)5925(592)−0.279(0.283)4205(549)−0.356(0.382)
04fc6439(278)−0.251(0.055)4120(418)−0.487(0.089)3622(319)−0.605(0.309)
04fx5754(230)−0.379(0.074)4275(279)−0.408(0.119)2821(271)−0.473(0.177)
05an7676(356)−0.248(0.058)5377(395)−0.464(0.081)4033(404)−0.498(0.137)
05dk7935(273)−0.228(0.096)6913(327)−0.452(0.142)4631(309)−0.684(0.233)
05dn9531(299)−0.162(0.079)7634(358)−0.360(0.118)4761(358)−0.626(0.220)
05dz7619(332)−0.293(0.062)5961(397)−0.497(0.092)4137(402)−0.549(0.135)
05j8454(198)−0.283(0.045)6410(238)−0.495(0.072)4256(229)−0.574(0.104)
05z9481(247)−0.237(0.033)7922(299)−0.220(0.037)5216(290)−0.337(0.066)
06ai7500(299)−0.200(0.064)6300(411)−0.284(0.099)4648(409)−0.304(0.133)
06be7472(463)−0.342(0.105)5891(555)−0.400(0.155)3720(533)−0.628(0.224)
06bl2769(1400)−2.192(0.822)6945(5008)−0.332(1.197)4791(4888)−0.278(1.693)
06ee5291(250)−0.831(0.218)⋅⋅⋅⋅⋅⋅3032(278)−0.531(0.380)
06it7211(681)−0.211(0.067)4869(917)−0.427(0.153)3171(904)−0.644(0.265)
06iw7393(382)−0.282(0.045)⋅⋅⋅⋅⋅⋅4170(576)−0.556(0.510)
06ms5007(1538)−0.654(0.571)3711(1780)−0.778(0.888)3075(1894)−0.761(1.151)
06qr6494(235)−0.197(0.067)5121(359)−0.368(0.119)3677(389)−0.493(0.168)
06y9025(315)−0.163(0.137)6982(391)−0.344(0.153)5105(341)−0.522(0.181)
07aa6001(213)−0.434(0.075)4284(266)−0.542(0.129)3164(257)−0.619(0.165)
07ab9769(319)−0.035(0.123)8266(459)−0.759(0.291)4786(442)−0.814(0.487)
07av7240(425)−0.337(0.060)5390(495)−0.431(0.089)3871(605)−0.653(0.361)
07bf5503(678)−0.324(0.102)4133(768)−0.515(0.145)⋅⋅⋅⋅⋅⋅
07hm8209(371)−0.159(0.074)6425(466)−0.195(0.117)4423(430)−0.156(0.164)
07il8074(254)−0.317(0.071)6089(297)−0.430(0.058)4293(303)−0.738(0.152)
07ld7203(950)−0.231(0.246)6049(513)−0.187(0.050)3634(1107)−0.434(0.540)
07oc6793(224)−0.172(0.079)5152(244)−0.408(0.113)3732(271)−0.491(0.149)
07od7143(463)−0.141(0.058)6523(525)−0.162(0.072)3793(577)−0.270(0.187)
07p7928(423)−0.346(0.087)5324(640)−0.876(0.193)4109(641)−0.887(0.252)
07sq8338(347)−0.177(0.094)7375(536)−0.357(0.132)5370(525)−0.608(0.184)
07u8052(394)−0.142(0.043)6920(444)−0.251(0.050)5466(463)−0.413(0.065)
07w4781(278)−0.551(0.089)3220(360)−0.851(0.161)2456(338)−0.808(0.198)
07x8609(231)−0.178(0.026)6701(281)−0.277(0.037)4647(278)−0.563(0.071)
08ag6917(235)−0.434(0.083)4595(265)−0.861(0.151)3948(236)−0.487(0.156)
08aw8374(229)−0.289(0.053)6701(257)−0.488(0.070)4509(253)−0.223(0.109)
08bh7843(403)−0.204(0.137)6311(419)−0.372(0.076)4214(392)−0.602(0.096)
08bk3889(152)−0.536(0.082)2455(192)−0.800(0.152)⋅⋅⋅⋅⋅⋅
08bm1775(360)−0.494(1.265)1391(431)−0.399(1.933)1289(438)−1.028(2.106)
08bp6821(903)−0.398(0.785)7507(1109)−0.143(0.133)⋅⋅⋅⋅⋅⋅
08br4082(490)−0.234(0.142)2499(524)−0.504(0.218)1634(487)−0.601(0.299)
08gi6789(417)−0.206(0.080)6317(511)−0.250(0.106)4216(508)−0.428(0.150)
08gr8843(424)−0.202(0.101)7550(454)−0.141(0.031)5015(487)−0.472(0.188)
08hg5512(2050)−0.441(0.293)4183(2877)−0.528(0.551)⋅⋅⋅⋅⋅⋅
08ho6481(5365)−0.153(1.027)4060(3472)−0.430(1.005)⋅⋅⋅⋅⋅⋅
08if8552(252)−0.262(0.059)7255(250)−0.294(0.033)4803(269)−0.543(0.097)
08il7862(546)−0.182(0.030)5608(677)−0.315(0.047)⋅⋅⋅⋅⋅⋅
08in5462(394)−0.308(0.133)3173(372)−0.421(0.059)2816(371)−0.591(0.215)
08k7651(205)−0.191(0.031)6923(244)−0.227(0.057)5298(254)−0.327(0.117)
08m7009(212)−0.328(0.065)5634(233)−0.522(0.089)3716(227)−0.763(0.124)
08w7043(243)−0.230(0.074)5893(292)−0.438(0.107)3918(297)−0.645(0.161)
09aj3130(250)−0.192(0.320)2719(227)−0.078(0.169)2892(281)−1.287(0.380)
09ao6003(306)−0.267(0.146)5274(376)−0.402(0.197)3621(368)−0.672(0.259)
09au2584(290)−0.257(0.194)1991(353)−0.605(0.456)1485(361)−0.983(0.567)
09bu7483(308)−0.598(0.059)5623(372)−0.754(0.088)4066(368)−0.635(0.179)
09bz8329(480)−0.227(0.052)6168(550)−0.345(0.076)3397(924)−0.834(0.451)
09n4509(249)−0.693(0.099)2845(298)−1.011(0.176)2625(269)−0.719(0.180)
86l7719(243)−0.229(0.071)6743(287)−0.340(0.080)4418(336)−0.495(0.160)
88a7802(2023)−0.179(0.198)6294(2070)−0.232(0.251)4548(2407)−0.323(0.425)
90e8245(791)−0.273(0.078)7415(899)−0.268(0.099)4576(1106)−0.615(0.290)
90k7853(286)−0.137(0.185)6587(355)−0.346(0.295)3971(334)−0.744(0.461)
91al8905(254)−0.136(0.069)7801(293)−0.211(0.094)5010(364)−0.535(0.196)
92af7739(502)−0.045(0.121)6345(558)−0.199(0.173)⋅⋅⋅⋅⋅⋅
92ba6293(327)−0.296(0.050)5116(406)−0.393(0.073)3485(416)−0.585(0.133)
93k7121(352)−0.323(0.180)6359(418)−0.447(0.232)4423(556)−0.772(0.398)
93s7792(315)−0.084(0.099)6911(380)−0.297(0.142)4959(443)−0.320(0.208)
99br3618(435)−0.315(0.147)3203(458)−0.385(0.170)1752(451)−0.776(0.285)
99ca7389(1032)−0.208(0.292)6855(1291)−0.238(0.391)5200(1276)−0.180(0.511)
99cr5973(355)−0.143(0.065)4938(452)−0.233(0.093)3658(462)−0.469(0.213)
99em6065(386)−0.369(0.052)5716(466)−0.308(0.068)3487(482)−0.596(0.146)
Table A5.

Velocity at 50 d after explosion and power-law exponent of SNe II in Gutiérrez et al. (2017a).

name|$v_{{\rm H}\alpha }^{50}(\sigma)$|nH α(σ)|$v_{{\rm H}\beta }^{50}(\sigma)$|nH β(σ)|$v_{\rm Fe}^{50}(\sigma)$|nFe(σ)
km s−1|$\rm km\ s^{-1}$||$\rm km\ s^{-1}$|
02fa7663(275)−0.233(0.103)6379(368)−0.278(0.159)4151(373)−0.447(0.231)
02gd4146(214)−0.213(0.096)3430(277)−0.422(0.089)2460(267)−0.476(0.189)
02gw6707(213)−0.425(0.051)5326(260)−0.526(0.076)3647(251)−0.598(0.105)
02hj7948(273)−0.178(0.065)6470(323)−0.378(0.091)4202(324)−0.315(0.141)
02hx8087(228)−0.194(0.058)6464(271)−0.267(0.085)3821(282)−0.288(0.152)
02ig8859(470)−0.083(0.178)7921(1069)−0.232(0.160)⋅⋅⋅⋅⋅⋅
03b6284(238)−0.341(0.087)⋅⋅⋅⋅⋅⋅3522(344)−0.367(0.256)
03bl3998(266)−0.865(0.184)387(484)−0.295(0.082)2122(468)−1.129(0.708)
03bn6918(200)−0.387(0.043)5714(243)−0.421(0.046)3638(247)−0.569(0.093)
03ci7233(299)−0.197(0.058)5930(374)−0.282(0.084)3681(350)−0.215(0.133)
03cn5413(376)−0.138(0.088)4540(474)−0.386(0.097)2719(456)−0.460(0.152)
03cx9020(257)−0.217(0.037)7056(314)−0.279(0.055)4804(462)−0.345(0.224)
03e7378(249)−0.347(0.043)5793(319)−0.468(0.067)4151(309)−0.505(0.090)
03ef7734(317)−0.367(0.136)4298(412)−0.917(0.297)4133(370)−0.406(0.296)
03eg8579(500)−0.256(0.116)6740(627)−0.402(0.179)4757(600)−0.741(0.233)
03ej6917(694)−0.306(0.099)5983(846)−0.287(0.141)4399(875)−0.442(0.248)
03fb7611(318)−0.374(0.072)5863(427)−0.292(0.125)3843(391)−0.601(0.175)
03hd7869(351)−0.270(0.100)6026(378)−0.360(0.061)4042(412)−0.517(0.324)
03hg7680(330)−0.417(0.096)5372(467)−0.529(0.188)4321(385)−0.563(0.206)
03hk6657(433)−0.287(0.227)5709(564)−0.473(0.333)4166(525)−0.777(0.416)
03hl6593(301)−0.321(0.108)4571(356)−0.411(0.191)3840(337)−0.525(0.220)
03hn7036(254)−0.272(0.086)5361(317)−0.499(0.144)3506(311)−0.681(0.219)
03ho8328(277)−0.195(0.093)6097(537)−0.074(0.743)4008(501)−0.431(1.010)
03ib7079(338)−0.168(0.072)5920(402)−0.179(0.062)3742(443)−0.485(0.358)
03ip8643(321)−0.179(0.091)6836(387)−0.343(0.140)4565(376)−0.553(0.209)
03iq7503(311)−0.308(0.036)5506(384)−0.404(0.056)4350(371)−0.503(0.206)
03t6982(272)−0.400(0.059)4060(377)−0.640(0.128)3921(532)−0.721(0.481)
04ej6370(294)−0.264(0.117)5426(364)−0.459(0.185)3308(356)−0.461(0.305)
04er9615(643)−0.171(0.159)7883(430)−0.420(0.129)5265(415)−0.429(0.185)
04fb7728(474)−0.267(0.171)5925(592)−0.279(0.283)4205(549)−0.356(0.382)
04fc6439(278)−0.251(0.055)4120(418)−0.487(0.089)3622(319)−0.605(0.309)
04fx5754(230)−0.379(0.074)4275(279)−0.408(0.119)2821(271)−0.473(0.177)
05an7676(356)−0.248(0.058)5377(395)−0.464(0.081)4033(404)−0.498(0.137)
05dk7935(273)−0.228(0.096)6913(327)−0.452(0.142)4631(309)−0.684(0.233)
05dn9531(299)−0.162(0.079)7634(358)−0.360(0.118)4761(358)−0.626(0.220)
05dz7619(332)−0.293(0.062)5961(397)−0.497(0.092)4137(402)−0.549(0.135)
05j8454(198)−0.283(0.045)6410(238)−0.495(0.072)4256(229)−0.574(0.104)
05z9481(247)−0.237(0.033)7922(299)−0.220(0.037)5216(290)−0.337(0.066)
06ai7500(299)−0.200(0.064)6300(411)−0.284(0.099)4648(409)−0.304(0.133)
06be7472(463)−0.342(0.105)5891(555)−0.400(0.155)3720(533)−0.628(0.224)
06bl2769(1400)−2.192(0.822)6945(5008)−0.332(1.197)4791(4888)−0.278(1.693)
06ee5291(250)−0.831(0.218)⋅⋅⋅⋅⋅⋅3032(278)−0.531(0.380)
06it7211(681)−0.211(0.067)4869(917)−0.427(0.153)3171(904)−0.644(0.265)
06iw7393(382)−0.282(0.045)⋅⋅⋅⋅⋅⋅4170(576)−0.556(0.510)
06ms5007(1538)−0.654(0.571)3711(1780)−0.778(0.888)3075(1894)−0.761(1.151)
06qr6494(235)−0.197(0.067)5121(359)−0.368(0.119)3677(389)−0.493(0.168)
06y9025(315)−0.163(0.137)6982(391)−0.344(0.153)5105(341)−0.522(0.181)
07aa6001(213)−0.434(0.075)4284(266)−0.542(0.129)3164(257)−0.619(0.165)
07ab9769(319)−0.035(0.123)8266(459)−0.759(0.291)4786(442)−0.814(0.487)
07av7240(425)−0.337(0.060)5390(495)−0.431(0.089)3871(605)−0.653(0.361)
07bf5503(678)−0.324(0.102)4133(768)−0.515(0.145)⋅⋅⋅⋅⋅⋅
07hm8209(371)−0.159(0.074)6425(466)−0.195(0.117)4423(430)−0.156(0.164)
07il8074(254)−0.317(0.071)6089(297)−0.430(0.058)4293(303)−0.738(0.152)
07ld7203(950)−0.231(0.246)6049(513)−0.187(0.050)3634(1107)−0.434(0.540)
07oc6793(224)−0.172(0.079)5152(244)−0.408(0.113)3732(271)−0.491(0.149)
07od7143(463)−0.141(0.058)6523(525)−0.162(0.072)3793(577)−0.270(0.187)
07p7928(423)−0.346(0.087)5324(640)−0.876(0.193)4109(641)−0.887(0.252)
07sq8338(347)−0.177(0.094)7375(536)−0.357(0.132)5370(525)−0.608(0.184)
07u8052(394)−0.142(0.043)6920(444)−0.251(0.050)5466(463)−0.413(0.065)
07w4781(278)−0.551(0.089)3220(360)−0.851(0.161)2456(338)−0.808(0.198)
07x8609(231)−0.178(0.026)6701(281)−0.277(0.037)4647(278)−0.563(0.071)
08ag6917(235)−0.434(0.083)4595(265)−0.861(0.151)3948(236)−0.487(0.156)
08aw8374(229)−0.289(0.053)6701(257)−0.488(0.070)4509(253)−0.223(0.109)
08bh7843(403)−0.204(0.137)6311(419)−0.372(0.076)4214(392)−0.602(0.096)
08bk3889(152)−0.536(0.082)2455(192)−0.800(0.152)⋅⋅⋅⋅⋅⋅
08bm1775(360)−0.494(1.265)1391(431)−0.399(1.933)1289(438)−1.028(2.106)
08bp6821(903)−0.398(0.785)7507(1109)−0.143(0.133)⋅⋅⋅⋅⋅⋅
08br4082(490)−0.234(0.142)2499(524)−0.504(0.218)1634(487)−0.601(0.299)
08gi6789(417)−0.206(0.080)6317(511)−0.250(0.106)4216(508)−0.428(0.150)
08gr8843(424)−0.202(0.101)7550(454)−0.141(0.031)5015(487)−0.472(0.188)
08hg5512(2050)−0.441(0.293)4183(2877)−0.528(0.551)⋅⋅⋅⋅⋅⋅
08ho6481(5365)−0.153(1.027)4060(3472)−0.430(1.005)⋅⋅⋅⋅⋅⋅
08if8552(252)−0.262(0.059)7255(250)−0.294(0.033)4803(269)−0.543(0.097)
08il7862(546)−0.182(0.030)5608(677)−0.315(0.047)⋅⋅⋅⋅⋅⋅
08in5462(394)−0.308(0.133)3173(372)−0.421(0.059)2816(371)−0.591(0.215)
08k7651(205)−0.191(0.031)6923(244)−0.227(0.057)5298(254)−0.327(0.117)
08m7009(212)−0.328(0.065)5634(233)−0.522(0.089)3716(227)−0.763(0.124)
08w7043(243)−0.230(0.074)5893(292)−0.438(0.107)3918(297)−0.645(0.161)
09aj3130(250)−0.192(0.320)2719(227)−0.078(0.169)2892(281)−1.287(0.380)
09ao6003(306)−0.267(0.146)5274(376)−0.402(0.197)3621(368)−0.672(0.259)
09au2584(290)−0.257(0.194)1991(353)−0.605(0.456)1485(361)−0.983(0.567)
09bu7483(308)−0.598(0.059)5623(372)−0.754(0.088)4066(368)−0.635(0.179)
09bz8329(480)−0.227(0.052)6168(550)−0.345(0.076)3397(924)−0.834(0.451)
09n4509(249)−0.693(0.099)2845(298)−1.011(0.176)2625(269)−0.719(0.180)
86l7719(243)−0.229(0.071)6743(287)−0.340(0.080)4418(336)−0.495(0.160)
88a7802(2023)−0.179(0.198)6294(2070)−0.232(0.251)4548(2407)−0.323(0.425)
90e8245(791)−0.273(0.078)7415(899)−0.268(0.099)4576(1106)−0.615(0.290)
90k7853(286)−0.137(0.185)6587(355)−0.346(0.295)3971(334)−0.744(0.461)
91al8905(254)−0.136(0.069)7801(293)−0.211(0.094)5010(364)−0.535(0.196)
92af7739(502)−0.045(0.121)6345(558)−0.199(0.173)⋅⋅⋅⋅⋅⋅
92ba6293(327)−0.296(0.050)5116(406)−0.393(0.073)3485(416)−0.585(0.133)
93k7121(352)−0.323(0.180)6359(418)−0.447(0.232)4423(556)−0.772(0.398)
93s7792(315)−0.084(0.099)6911(380)−0.297(0.142)4959(443)−0.320(0.208)
99br3618(435)−0.315(0.147)3203(458)−0.385(0.170)1752(451)−0.776(0.285)
99ca7389(1032)−0.208(0.292)6855(1291)−0.238(0.391)5200(1276)−0.180(0.511)
99cr5973(355)−0.143(0.065)4938(452)−0.233(0.093)3658(462)−0.469(0.213)
99em6065(386)−0.369(0.052)5716(466)−0.308(0.068)3487(482)−0.596(0.146)
name|$v_{{\rm H}\alpha }^{50}(\sigma)$|nH α(σ)|$v_{{\rm H}\beta }^{50}(\sigma)$|nH β(σ)|$v_{\rm Fe}^{50}(\sigma)$|nFe(σ)
km s−1|$\rm km\ s^{-1}$||$\rm km\ s^{-1}$|
02fa7663(275)−0.233(0.103)6379(368)−0.278(0.159)4151(373)−0.447(0.231)
02gd4146(214)−0.213(0.096)3430(277)−0.422(0.089)2460(267)−0.476(0.189)
02gw6707(213)−0.425(0.051)5326(260)−0.526(0.076)3647(251)−0.598(0.105)
02hj7948(273)−0.178(0.065)6470(323)−0.378(0.091)4202(324)−0.315(0.141)
02hx8087(228)−0.194(0.058)6464(271)−0.267(0.085)3821(282)−0.288(0.152)
02ig8859(470)−0.083(0.178)7921(1069)−0.232(0.160)⋅⋅⋅⋅⋅⋅
03b6284(238)−0.341(0.087)⋅⋅⋅⋅⋅⋅3522(344)−0.367(0.256)
03bl3998(266)−0.865(0.184)387(484)−0.295(0.082)2122(468)−1.129(0.708)
03bn6918(200)−0.387(0.043)5714(243)−0.421(0.046)3638(247)−0.569(0.093)
03ci7233(299)−0.197(0.058)5930(374)−0.282(0.084)3681(350)−0.215(0.133)
03cn5413(376)−0.138(0.088)4540(474)−0.386(0.097)2719(456)−0.460(0.152)
03cx9020(257)−0.217(0.037)7056(314)−0.279(0.055)4804(462)−0.345(0.224)
03e7378(249)−0.347(0.043)5793(319)−0.468(0.067)4151(309)−0.505(0.090)
03ef7734(317)−0.367(0.136)4298(412)−0.917(0.297)4133(370)−0.406(0.296)
03eg8579(500)−0.256(0.116)6740(627)−0.402(0.179)4757(600)−0.741(0.233)
03ej6917(694)−0.306(0.099)5983(846)−0.287(0.141)4399(875)−0.442(0.248)
03fb7611(318)−0.374(0.072)5863(427)−0.292(0.125)3843(391)−0.601(0.175)
03hd7869(351)−0.270(0.100)6026(378)−0.360(0.061)4042(412)−0.517(0.324)
03hg7680(330)−0.417(0.096)5372(467)−0.529(0.188)4321(385)−0.563(0.206)
03hk6657(433)−0.287(0.227)5709(564)−0.473(0.333)4166(525)−0.777(0.416)
03hl6593(301)−0.321(0.108)4571(356)−0.411(0.191)3840(337)−0.525(0.220)
03hn7036(254)−0.272(0.086)5361(317)−0.499(0.144)3506(311)−0.681(0.219)
03ho8328(277)−0.195(0.093)6097(537)−0.074(0.743)4008(501)−0.431(1.010)
03ib7079(338)−0.168(0.072)5920(402)−0.179(0.062)3742(443)−0.485(0.358)
03ip8643(321)−0.179(0.091)6836(387)−0.343(0.140)4565(376)−0.553(0.209)
03iq7503(311)−0.308(0.036)5506(384)−0.404(0.056)4350(371)−0.503(0.206)
03t6982(272)−0.400(0.059)4060(377)−0.640(0.128)3921(532)−0.721(0.481)
04ej6370(294)−0.264(0.117)5426(364)−0.459(0.185)3308(356)−0.461(0.305)
04er9615(643)−0.171(0.159)7883(430)−0.420(0.129)5265(415)−0.429(0.185)
04fb7728(474)−0.267(0.171)5925(592)−0.279(0.283)4205(549)−0.356(0.382)
04fc6439(278)−0.251(0.055)4120(418)−0.487(0.089)3622(319)−0.605(0.309)
04fx5754(230)−0.379(0.074)4275(279)−0.408(0.119)2821(271)−0.473(0.177)
05an7676(356)−0.248(0.058)5377(395)−0.464(0.081)4033(404)−0.498(0.137)
05dk7935(273)−0.228(0.096)6913(327)−0.452(0.142)4631(309)−0.684(0.233)
05dn9531(299)−0.162(0.079)7634(358)−0.360(0.118)4761(358)−0.626(0.220)
05dz7619(332)−0.293(0.062)5961(397)−0.497(0.092)4137(402)−0.549(0.135)
05j8454(198)−0.283(0.045)6410(238)−0.495(0.072)4256(229)−0.574(0.104)
05z9481(247)−0.237(0.033)7922(299)−0.220(0.037)5216(290)−0.337(0.066)
06ai7500(299)−0.200(0.064)6300(411)−0.284(0.099)4648(409)−0.304(0.133)
06be7472(463)−0.342(0.105)5891(555)−0.400(0.155)3720(533)−0.628(0.224)
06bl2769(1400)−2.192(0.822)6945(5008)−0.332(1.197)4791(4888)−0.278(1.693)
06ee5291(250)−0.831(0.218)⋅⋅⋅⋅⋅⋅3032(278)−0.531(0.380)
06it7211(681)−0.211(0.067)4869(917)−0.427(0.153)3171(904)−0.644(0.265)
06iw7393(382)−0.282(0.045)⋅⋅⋅⋅⋅⋅4170(576)−0.556(0.510)
06ms5007(1538)−0.654(0.571)3711(1780)−0.778(0.888)3075(1894)−0.761(1.151)
06qr6494(235)−0.197(0.067)5121(359)−0.368(0.119)3677(389)−0.493(0.168)
06y9025(315)−0.163(0.137)6982(391)−0.344(0.153)5105(341)−0.522(0.181)
07aa6001(213)−0.434(0.075)4284(266)−0.542(0.129)3164(257)−0.619(0.165)
07ab9769(319)−0.035(0.123)8266(459)−0.759(0.291)4786(442)−0.814(0.487)
07av7240(425)−0.337(0.060)5390(495)−0.431(0.089)3871(605)−0.653(0.361)
07bf5503(678)−0.324(0.102)4133(768)−0.515(0.145)⋅⋅⋅⋅⋅⋅
07hm8209(371)−0.159(0.074)6425(466)−0.195(0.117)4423(430)−0.156(0.164)
07il8074(254)−0.317(0.071)6089(297)−0.430(0.058)4293(303)−0.738(0.152)
07ld7203(950)−0.231(0.246)6049(513)−0.187(0.050)3634(1107)−0.434(0.540)
07oc6793(224)−0.172(0.079)5152(244)−0.408(0.113)3732(271)−0.491(0.149)
07od7143(463)−0.141(0.058)6523(525)−0.162(0.072)3793(577)−0.270(0.187)
07p7928(423)−0.346(0.087)5324(640)−0.876(0.193)4109(641)−0.887(0.252)
07sq8338(347)−0.177(0.094)7375(536)−0.357(0.132)5370(525)−0.608(0.184)
07u8052(394)−0.142(0.043)6920(444)−0.251(0.050)5466(463)−0.413(0.065)
07w4781(278)−0.551(0.089)3220(360)−0.851(0.161)2456(338)−0.808(0.198)
07x8609(231)−0.178(0.026)6701(281)−0.277(0.037)4647(278)−0.563(0.071)
08ag6917(235)−0.434(0.083)4595(265)−0.861(0.151)3948(236)−0.487(0.156)
08aw8374(229)−0.289(0.053)6701(257)−0.488(0.070)4509(253)−0.223(0.109)
08bh7843(403)−0.204(0.137)6311(419)−0.372(0.076)4214(392)−0.602(0.096)
08bk3889(152)−0.536(0.082)2455(192)−0.800(0.152)⋅⋅⋅⋅⋅⋅
08bm1775(360)−0.494(1.265)1391(431)−0.399(1.933)1289(438)−1.028(2.106)
08bp6821(903)−0.398(0.785)7507(1109)−0.143(0.133)⋅⋅⋅⋅⋅⋅
08br4082(490)−0.234(0.142)2499(524)−0.504(0.218)1634(487)−0.601(0.299)
08gi6789(417)−0.206(0.080)6317(511)−0.250(0.106)4216(508)−0.428(0.150)
08gr8843(424)−0.202(0.101)7550(454)−0.141(0.031)5015(487)−0.472(0.188)
08hg5512(2050)−0.441(0.293)4183(2877)−0.528(0.551)⋅⋅⋅⋅⋅⋅
08ho6481(5365)−0.153(1.027)4060(3472)−0.430(1.005)⋅⋅⋅⋅⋅⋅
08if8552(252)−0.262(0.059)7255(250)−0.294(0.033)4803(269)−0.543(0.097)
08il7862(546)−0.182(0.030)5608(677)−0.315(0.047)⋅⋅⋅⋅⋅⋅
08in5462(394)−0.308(0.133)3173(372)−0.421(0.059)2816(371)−0.591(0.215)
08k7651(205)−0.191(0.031)6923(244)−0.227(0.057)5298(254)−0.327(0.117)
08m7009(212)−0.328(0.065)5634(233)−0.522(0.089)3716(227)−0.763(0.124)
08w7043(243)−0.230(0.074)5893(292)−0.438(0.107)3918(297)−0.645(0.161)
09aj3130(250)−0.192(0.320)2719(227)−0.078(0.169)2892(281)−1.287(0.380)
09ao6003(306)−0.267(0.146)5274(376)−0.402(0.197)3621(368)−0.672(0.259)
09au2584(290)−0.257(0.194)1991(353)−0.605(0.456)1485(361)−0.983(0.567)
09bu7483(308)−0.598(0.059)5623(372)−0.754(0.088)4066(368)−0.635(0.179)
09bz8329(480)−0.227(0.052)6168(550)−0.345(0.076)3397(924)−0.834(0.451)
09n4509(249)−0.693(0.099)2845(298)−1.011(0.176)2625(269)−0.719(0.180)
86l7719(243)−0.229(0.071)6743(287)−0.340(0.080)4418(336)−0.495(0.160)
88a7802(2023)−0.179(0.198)6294(2070)−0.232(0.251)4548(2407)−0.323(0.425)
90e8245(791)−0.273(0.078)7415(899)−0.268(0.099)4576(1106)−0.615(0.290)
90k7853(286)−0.137(0.185)6587(355)−0.346(0.295)3971(334)−0.744(0.461)
91al8905(254)−0.136(0.069)7801(293)−0.211(0.094)5010(364)−0.535(0.196)
92af7739(502)−0.045(0.121)6345(558)−0.199(0.173)⋅⋅⋅⋅⋅⋅
92ba6293(327)−0.296(0.050)5116(406)−0.393(0.073)3485(416)−0.585(0.133)
93k7121(352)−0.323(0.180)6359(418)−0.447(0.232)4423(556)−0.772(0.398)
93s7792(315)−0.084(0.099)6911(380)−0.297(0.142)4959(443)−0.320(0.208)
99br3618(435)−0.315(0.147)3203(458)−0.385(0.170)1752(451)−0.776(0.285)
99ca7389(1032)−0.208(0.292)6855(1291)−0.238(0.391)5200(1276)−0.180(0.511)
99cr5973(355)−0.143(0.065)4938(452)−0.233(0.093)3658(462)−0.469(0.213)
99em6065(386)−0.369(0.052)5716(466)−0.308(0.068)3487(482)−0.596(0.146)
Table A6.

pEW of |$\rm H\alpha$| at 50 d after explosion.

SN|$\rm H\alpha _{obs}^{50}(\sigma)$||$\rm H\alpha _{emi}^{50}(\sigma)$|||$\rm H\alpha _{o/e}^{50}$||
PS15cwo32.87(0.16)−219.65(0.40)0.14
SN2011bi41.41(2.07)−186.57(0.53)0.24
SN2012ec58.93(1.71)−157.90(1.29)0.38
SN2013gd24.57(0.01)−114.51(0.07)0.35
SN2014G21.87(1.22)−205.86(0.34)0.11
SN2014cx72.57(0.21)−183.46(0.68)0.40
SN2014cy31.01(0.07)−82.63(0.02)0.38
SN2014dq52.89(0.23)−184.36(0.21)0.29
SN2015V67.15(0.54)−185.65(0.74)0.37
SN2015cz32.61(0.02)−137.40(1.15)0.24
SN2016jft29.55(0.19)−178.35(0.03)0.17
SN2016jfu41.56(0.15)−127.64(0.91)0.33
SN2017aub41.90(0.63)−112.56(0.25)0.37
SN2018aoq61.09(0.78)−115.59(0.40)0.56
SN2012fc54.95(0.25)−327.85(0.67)0.17
SN2013af97.99(0.04)−178.25(0.39)0.55
SN2014A57.56(0.29)−96.20(0.12)0.60
SN2014B44.88(1.14)−224.62(0.24)0.20
SN2015W47.55(0.13)−226.44(0.76)0.21
SN2016aip60.60(1.76)−200.19(2.16)0.30
SN2016jby21.19(0.06)−123.93(0.18)0.17
SN2012A44.87 (0.13)−204.44(0.38)0.22
SN|$\rm H\alpha _{obs}^{50}(\sigma)$||$\rm H\alpha _{emi}^{50}(\sigma)$|||$\rm H\alpha _{o/e}^{50}$||
PS15cwo32.87(0.16)−219.65(0.40)0.14
SN2011bi41.41(2.07)−186.57(0.53)0.24
SN2012ec58.93(1.71)−157.90(1.29)0.38
SN2013gd24.57(0.01)−114.51(0.07)0.35
SN2014G21.87(1.22)−205.86(0.34)0.11
SN2014cx72.57(0.21)−183.46(0.68)0.40
SN2014cy31.01(0.07)−82.63(0.02)0.38
SN2014dq52.89(0.23)−184.36(0.21)0.29
SN2015V67.15(0.54)−185.65(0.74)0.37
SN2015cz32.61(0.02)−137.40(1.15)0.24
SN2016jft29.55(0.19)−178.35(0.03)0.17
SN2016jfu41.56(0.15)−127.64(0.91)0.33
SN2017aub41.90(0.63)−112.56(0.25)0.37
SN2018aoq61.09(0.78)−115.59(0.40)0.56
SN2012fc54.95(0.25)−327.85(0.67)0.17
SN2013af97.99(0.04)−178.25(0.39)0.55
SN2014A57.56(0.29)−96.20(0.12)0.60
SN2014B44.88(1.14)−224.62(0.24)0.20
SN2015W47.55(0.13)−226.44(0.76)0.21
SN2016aip60.60(1.76)−200.19(2.16)0.30
SN2016jby21.19(0.06)−123.93(0.18)0.17
SN2012A44.87 (0.13)−204.44(0.38)0.22
Table A6.

pEW of |$\rm H\alpha$| at 50 d after explosion.

SN|$\rm H\alpha _{obs}^{50}(\sigma)$||$\rm H\alpha _{emi}^{50}(\sigma)$|||$\rm H\alpha _{o/e}^{50}$||
PS15cwo32.87(0.16)−219.65(0.40)0.14
SN2011bi41.41(2.07)−186.57(0.53)0.24
SN2012ec58.93(1.71)−157.90(1.29)0.38
SN2013gd24.57(0.01)−114.51(0.07)0.35
SN2014G21.87(1.22)−205.86(0.34)0.11
SN2014cx72.57(0.21)−183.46(0.68)0.40
SN2014cy31.01(0.07)−82.63(0.02)0.38
SN2014dq52.89(0.23)−184.36(0.21)0.29
SN2015V67.15(0.54)−185.65(0.74)0.37
SN2015cz32.61(0.02)−137.40(1.15)0.24
SN2016jft29.55(0.19)−178.35(0.03)0.17
SN2016jfu41.56(0.15)−127.64(0.91)0.33
SN2017aub41.90(0.63)−112.56(0.25)0.37
SN2018aoq61.09(0.78)−115.59(0.40)0.56
SN2012fc54.95(0.25)−327.85(0.67)0.17
SN2013af97.99(0.04)−178.25(0.39)0.55
SN2014A57.56(0.29)−96.20(0.12)0.60
SN2014B44.88(1.14)−224.62(0.24)0.20
SN2015W47.55(0.13)−226.44(0.76)0.21
SN2016aip60.60(1.76)−200.19(2.16)0.30
SN2016jby21.19(0.06)−123.93(0.18)0.17
SN2012A44.87 (0.13)−204.44(0.38)0.22
SN|$\rm H\alpha _{obs}^{50}(\sigma)$||$\rm H\alpha _{emi}^{50}(\sigma)$|||$\rm H\alpha _{o/e}^{50}$||
PS15cwo32.87(0.16)−219.65(0.40)0.14
SN2011bi41.41(2.07)−186.57(0.53)0.24
SN2012ec58.93(1.71)−157.90(1.29)0.38
SN2013gd24.57(0.01)−114.51(0.07)0.35
SN2014G21.87(1.22)−205.86(0.34)0.11
SN2014cx72.57(0.21)−183.46(0.68)0.40
SN2014cy31.01(0.07)−82.63(0.02)0.38
SN2014dq52.89(0.23)−184.36(0.21)0.29
SN2015V67.15(0.54)−185.65(0.74)0.37
SN2015cz32.61(0.02)−137.40(1.15)0.24
SN2016jft29.55(0.19)−178.35(0.03)0.17
SN2016jfu41.56(0.15)−127.64(0.91)0.33
SN2017aub41.90(0.63)−112.56(0.25)0.37
SN2018aoq61.09(0.78)−115.59(0.40)0.56
SN2012fc54.95(0.25)−327.85(0.67)0.17
SN2013af97.99(0.04)−178.25(0.39)0.55
SN2014A57.56(0.29)−96.20(0.12)0.60
SN2014B44.88(1.14)−224.62(0.24)0.20
SN2015W47.55(0.13)−226.44(0.76)0.21
SN2016aip60.60(1.76)−200.19(2.16)0.30
SN2016jby21.19(0.06)−123.93(0.18)0.17
SN2012A44.87 (0.13)−204.44(0.38)0.22
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Supplementary data