ABSTRACT

A growing number of eclipsing binary systems of the ‘HW Virginis’ (HW Vir) kind (i.e. composed by a subdwarf-B/O primary star and an M dwarf secondary) show variations in their orbital period, also called eclipse time variations (ETVs). Their physical origin is not yet known with certainty: While some ETVs have been claimed to arise from dynamical perturbations due to the presence of circumbinary planetary companions, other authors suggest that the Applegate effect or other unknown stellar mechanisms could be responsible for them. In this work, we present 28 unpublished high-precision light curves of one of the most controversial of these systems, the prototype HW Vir. We homogeneously analysed the new eclipse timings together with historical data obtained between 1983 and 2012, demonstrating that the planetary models previously claimed do not fit the new photometric data, besides being dynamically unstable. In an effort to find a new model able to fit all the available data, we developed a new approach based on a global-search genetic algorithm and eventually found two new distinct families of solutions that fit the observed timings very well, yet dynamically unstable at the 105-yr time-scale. This serves as a cautionary tale on the existence of formal solutions that apparently explain ETVs but are not physically meaningful, and on the need of carefully testing their stability. On the other hand, our data confirm the presence of an ETV on HW Vir that known stellar mechanisms are unable to explain, pushing towards further observing and modeling efforts.

1 INTRODUCTION

The discovery of the first exoplanets by Wolszczan & Frail (1992) and Mayor & Queloz (1995) was the starting point to the detection of a great number of other planetary systems through different observing techniques. Although the majority of them have been found orbiting Sun-like stars (e.g. Petigura, Marcy & Howard 2015), there is an increasing number of exoplanets being discovered orbiting all kinds of stars (e.g. Gould et al. 2014; Gillon et al. 2017; Brewer et al. 2018). A particularly interesting case among them is represented by circumbinary planets, which orbit a binary system instead of a single star. These kinds of planets can be detected, among other techniques (such as transits, e.g. Kostov et al. 2016; radial velocity, e.g. Konacki et al. 2009; or light traveltime delay, e.g. Silvotti et al. 2018), by measuring and analysing changes in the orbital period of eclipsing binary stars, a dynamical method commonly known as eclipse time variations (ETVs; e.g. Sale et al. 2020). These variations have been observed in a wide range of binary systems, such as post-common envelope binaries, which exhibit modulation periods of a few tens of years (e.g. Bours et al. 2016). A possible mechanism to explain ETVs is the light traveltime effect (LTTE; also known as the Rømer effect), which refers to the combination of the motion of the stellar components with respect to the barycentre of the system due to the gravitational perturbation of additional bodies, with the finite speed of light (Irwin 1952).

Among the vast taxonomy of eclipsing binaries, the so-called ‘HW Virginis’ (HW Vir) systems have recently drawn the attention of astronomers. These systems are post-common envelope binaries composed of a subdwarf of spectral type O or B and a late-type main-sequence star, e.g. sdB + dM for the prototype. They have very short orbital periods (of the order of a few hours), and in a surprisingly high fraction of the cases, ETVs have been observed, typically from tens of seconds to several minutes of amplitude and semiregular modulations on long time-scales, from years to decades (see Heber 2016, for a detailed review on HW Vir systems). Different explanations have been proposed to interpret ETVs, usually based on two different effects or a combination of them: the LTTE effect caused by one or more unseen companions, and the so-called Applegate effect. The latter was first proposed by Applegate (1992), and it interprets the variations on the orbital period as a consequence of magnetic activity in one of the stars of the binary system (in the case of HW Vir, the main-sequence component). According to Applegate (1992), the distribution of the angular momentum in the active star changes as the star goes through its activity cycle. These variations on the angular momentum distribution induce a change in the gravitational quadrupole moment of the star (making it more or less oblate), which can cause perturbations in the orbit of the system and thus in the orbital period.

In this work, we analyse data from the prototypical HW Vir, a detached eclipsing binary system first identified as such by Menzies & Marang (1986). HW Vir has a very short period of 2.8 h, and its components have masses of 0.49 and 0.14 M, for the sdB and dM components, respectively (see Table 1 for the most recent parameters of HW Vir). Since its discovery, the system has been broadly studied due to its intrinsic characteristics and its striking period variations. A decrease in the orbital period of the system was first detected by Kilkenny, Marang & Menzies (1994), followed by Çakirli  & Devlen (1999), who re-analysed the eclipse timings between 1984 and 1999 and concluded that LTTE was the most promising explanation for the observed period variations. They proposed that HW Vir was revolving about a third body with a period of 19 yr. Later on, further studies were performed (Wood & Saffer 1999; Kilkenny et al. 2000; Kiss et al. 2000) analysing the period variations with different techniques, without reaching a definitive explanation. Kilkenny, van Wyk & Marang (2003) presented new eclipse timings for HW Vir and confirmed the presence of a periodic LTTE term due to a third body in the system, a claim also supported by İbanoǧlu et al. (2004).

Lee et al. (2009) presented new CCD photometry with an 8-yr baseline, and proposed that the linear term of the period decrease (dP/dt) may be caused by angular momentum loss due to magnetic stellar wind braking, while the cyclic period variations may be interpreted as LTTE terms induced by the presence of two additional bodies in the system, having masses of M3sin i3 = 19.2 MJ and M4sin i4 = 8.5 MJ, respectively.1 This model was independently tested by Beuermann et al. (2012), who found that it fails to fit their new eclipse timings and it is dynamically unstable on a time-scale of a few thousand years. Beuermann et al. also proposed a new LTTE model with two companions with masses of M3sin i3 ≃ 14 MJ and M4sin i4 = 30-120 MJ, and periods of 12.7 and 55 ± 15 yr, respectively. Horner et al. (2012) independently tested Lee et al.’s model and came to the same conclusion about the dynamical instability of the system on very short time-scales; they also claimed that the ETVs cannot be driven by gravitational influence of perturbing planets only, and that there must be another astrophysical mechanism taking place in order to explain them.

Finally, Esmer et al. (2021) found a new two-planet solution, but it did not appear to be dynamically stable. The main differences between our approach and theirs will be summarized in the ‘Discussion and Conclusions’ section.

Regarding the Applegate effect, Navarrete et al. (2018) analysed the required energy to drive the Applegate effect in a sample of 12 close binary systems (including HW Vir), and compared it with the energy production of a simulated sample of magnetically active stars. In the case of HW Vir, they discarded the possibility of this effect being the underlying cause for the ETVs, since the magnetic field of the magnetically active star (i.e. the dM star) is not strong enough to produce these variations.

A conclusive explanation to HW Vir’s ETVs is still missing. For this reason, our aim is to derive new eclipse timings from our unpublished photometric data, and use them along with the ones available in the literature to better constrain the physical parameters characterizing the system of HW Vir, as well as to test these new parameters for dynamical stability on a large time-scale.

The paper is organized as follows: In Section 2, we present our data, along with the data reduction process we followed, the light-curve fitting, and the determination of the eclipse timings, while in Section 4 we outline the LTTE modeling and test the previous model proposed to explain the ETVs of the system with our new data, as well as using an N-body integrator to test its dynamical stability. In Section 5, we describe the method we used to estimate new parameters for the putative companions of HW Vir. In Section 6, we discuss our findings and we draw some conclusions regarding the explanation behind the ETVs of HW Vir as well as some prospects for future work.

2 OBSERVATIONS AND DATA REDUCTION

Our analysed data set consists of 30 photometric observations of HW Vir obtained over time span of ∼11 yr (2008–2019), including 28 previously unpublished light curves. For our analysis, we combined data from five different instruments as described in the following.

From the Asiago Astrophysical Observatory located on Mt. Ekar in Asiago, we obtained 15 light curves using the |$1.82\,\rm{-m}$| ‘Copernico’ telescope and the Asiago Faint Object Spectrograph and Camera. These images were taken with an exposure time ranging from 2 to 6 s, through the V, R, and r filters. Three light curves were obtained using the |$67/92\,-\,\rm{cm}$| Schmidt telescope located at the same observatory. These observations were carried out in the R and r filters with an exposure time of 20 s, except for the last one (4 s).

Six light curves were obtained using the telescopes of the ‘Gruppo Astrofili Salese Galileo Galilei’;2 the telescopes have a primary mirror with a diameter of 410 mm and a focal length of 1710 mm and they are located in Santa Maria di Sala, in Northern Italy. The observations were carried out in the V filter with an exposure time ranging from 20 to 45 s.

Our largest set in terms of number of data points comes from the Wide Angle Search for Planets (WASP-South; Pollacco et al. 2006), a transit survey with an array of small telescopes operating at the South African Astronomical Observatory (SAAO). WASP-South gathered four full seasons of observations of HW Vir from 2008 to 2012, for a grand total of 353 measured primary eclipses. This particular data set has not yet been included in a public data release, and has been kindly provided to us by the WASP-South team.

We also include in our analysis two light curves from K2 (Howell et al. 2014), observed during Campaign 10, and a vast collection of literature timings already analysed by Beuermann et al. (2012) and summarized at the end of this section. A detailed summary of all the observations is given in Table 2. Each light curve is identified with a unique ID with the leading letter matching the telescope: w for WASP-South, s for Asiago Schmidt, g for GAS, c for Asiago Copernico, and kt for K2. The w and kt light curves are split into four and two ‘chunks’ (respectively), for the reasons explained in Section 3.

Due to the lack of stellar crowding in the field of HW Vir, we use the differential aperture photometry technique to reduce our photometric series from the c, s, and g data sets. To perform the usual data reduction and the aperture photometry, we use the software STARSKY, a pipeline written in FORTRAN 77/90 by Nascimbeni et al. (2011, 2013), that was specially developed for The Asiago Search for Transit timing variations of Exoplanets (TASTE) project. As for the w data set, we take the light curves as they were delivered by the standard WASP software pipeline. For the K2 data, we extracted the light curve by reconstructing the 89 970 images containing HW Vir as done in Libralato et al. (2016), and performing a three-pixel aperture photometry of the target on each image, subtracting the local background measured in an annulus centred on the target and having radii rin = 7 pixels and rout = 15 pixels to the total flux. We detrended the light curve following the procedure by Nardiello et al. (2016). The resulting light curves from all the observations are shown in Fig. 1.

The 30 light curves of HW Vir analysed in this study, plotted as a function of the orbital phase. Each curve is labelled with an identifier (matching those in Table 2) and the filter name (uppercase for the Bessel system, lowercase for SDSS). The SuperWASP (w1-w4) and K2 (kt1-kt2) curves are split into separate chunks as described in Section 3. The colour scheme is used for visual reference to identify each set of light curves.
Figure 1.

The 30 light curves of HW Vir analysed in this study, plotted as a function of the orbital phase. Each curve is labelled with an identifier (matching those in Table 2) and the filter name (uppercase for the Bessel system, lowercase for SDSS). The SuperWASP (w1-w4) and K2 (kt1-kt2) curves are split into separate chunks as described in Section 3. The colour scheme is used for visual reference to identify each set of light curves.

In order to measure timing variations with an absolute accuracy much better than 1 min, as needed for measuring ETVs, it is crucial to convert all our timestamps to a single, uniform time standard. Therefore, we convert all of them to the so-called Barycentric Julian Date computed from the Barycentric Dynamical Time, or BJDTDB, following the prescription by Eastman, Siverd & Gaudi (2010). For this task, we rely on the VARTOOLS code.3 Due to the crucial importance of this step for our dynamical analysis, we perform a double check of the conversion with the help of the online tool4 made available by Eastman et al. (2010). We also apply this time conversion to all the 287 literature timings from SAAO, Wood, Zhang & Robinson (1993), Lee et al. (2009), BAV, VSNET, AAVSO, BRNO, and Beuermann et al. (2012), who, in turn, used timings from MONET/North. Again, all the HJDUTC and BJDUTC are homogeneously converted to BJDTDB to ensure a proper comparison between the old timings and our new ones. A comprehensive listing of all the literature timings as converted by us is available in Appendix  A.

3 ECLIPSE TIMINGS

To retrieve the best estimate of the orbital and physical parameters of the system, and most crucially the eclipse central time T0, we fit an appropriate model to our light curves. For this purpose, we use the JKTEBOP 5 code (Southworth 2012), which was originally developed to fit light curves of detached eclipsing binaries and later adapted to model also exoplanetary transits. JKTEBOP implements non-linear least-squares optimization techniques [based on the Levenberg–Marquardt (LM) algorithm; Moré 1978]. It has different ‘tasks’ to choose from, according to how the light curves would be fitted and how the uncertainties are estimated. This process is meant to determine the best-fitting values of T0 for each individual light curve and a reliable error estimate.

As a first step, we check that the software is properly fitting our light curves and converging to a physical solution by using task3, i.e. by simply running the task to each preliminary light curve and performing a visual inspection. At this stage, we decide to split the w and kt light curves into separate ‘chunks’. For the WASP-South data, this is done because the composite light curve has a 4-yr coverage, and fitting it as a whole could in principle smear the LTTE signal; by splitting it into four distinct ‘seasons’ of about 4 months each, we completely avoid this risk (the shortest significant OC periodicity reported in the literature being ∼3000 d). As for the K2 data, the Campaign 10 light curve shows a large 2-week gap due to a repointing procedure followed by an unexpected shutdown of the camera. To make ourselves sure that there are no systematic errors introduced by this issue, we separately analysed the two chunks before and after the blank gap.

We then remove the outliers from our light curves at 4σ using task4 of JKTEBOP, and, since we want to obtain a reliable measure of the eclipse time (T0), we need to first build consistent templates of the parameters for each of the filters of our observations, to leave only T0 as a free parameter in the final fit. To do this, we join the full-phase light curves from the same filter (since the light curves are colour dependent) and leave the following parameters free to find the best-fitting values: the sum of the stellar radii (R1 + R2), their ratio R1/R2, the inclination of their orbit, the surface brightness and the limb darkening of the primary star, the reflection coefficient of the secondary star, the scale factor, and the eclipse time (T0). We do this for the V and R/r filters, and additionally, for the WASP and K2 light curves. Then, we run task9 of JKTEBOP, which uses a residual-shift method to obtain the best fit. This method evaluates the best fit for the data points and shifts the residuals of the fit point by point through all the data, calculating a new best fit after each shift. This approach allows us to have as many best fits as points in the input light curve, and it also estimates the relevance of the correlated red noise to the parameters of the fit. The output of this task is therefore three high-accuracy parameter sets (templates), one for each filter: a V template for the Copernico/V and GAS light curves; an R/r template for the Copernico/R, r and the Schmidt/R light curves; and an unfiltered template for the WASP and K2 light curves.

We retrieve the T0s by running task9 one more time, fixing all the parameters except the eclipse times. An example of the quality of the fit on our two most complete light curves from the Copernico telescope (⁠|$\tt {c2}$| in Bessel V and |$\tt {c11}$| in Sloan r) is shown in Fig. 2.

JKTEBOP best-fitting models on our two most complete light curves from the Copernico telescope: $\tt {c2}$ in Bessel V (blue points) and $\tt {c11}$ in Sloan r (red points). The residuals are shown in the upper part of the plot; their rms scatter is 3.1 and 5.0 mmag, respectively.
Figure 2.

JKTEBOP best-fitting models on our two most complete light curves from the Copernico telescope: |$\tt {c2}$| in Bessel V (blue points) and |$\tt {c11}$| in Sloan r (red points). The residuals are shown in the upper part of the plot; their rms scatter is 3.1 and 5.0 mmag, respectively.

The resulting timings of HW Vir are reported in Table 3. We compute a total of 30 mid-eclipse timings, with an excellent median timing error for our light curves of only ∼1.3 s and down to 0.3 s for the best ones (from the c and w sets). Our new data increase the current number of high-precision observations [σ(T0) < 5  s] by about 50 per cent, and extend the baseline by 6 yr with respect to the dynamical study of HW Vir (Beuermann et al. 2012).

We build the observed minus calculated (OC) diagram for HW Vir by plotting both the new and old eclipse timings as a function of the epoch E, using the linear ephemeris formula derived by Beuermann et al. (2012), by fitting their mid-eclipse times alone:
(1)
where Tc is the calculated time of the primary eclipse in the BJDTDB time standard. In Fig. 3, we show the O − C diagram including all the up-to-date eclipse timings of HW Vir. As it can be seen, our new data match the existing one with a remarkable precision (within 1σ), which also serves as an external check for our absolute time calibration.
O − C T0 diagram of HW Vir built with the literature data plus our data. We use equation (1) to obtain the linear ephemeris (Tc; see the text) and compute the O − C.
Figure 3.

O − C T0 diagram of HW Vir built with the literature data plus our data. We use equation (1) to obtain the linear ephemeris (Tc; see the text) and compute the O − C.

4 MODELLING

4.1 LTTE calculation

To calculate the LTTE, we develop a FORTRAN 77 code that implements an adaptation of the equation by Irwin (1952) to compute the LTTE:
(2)
where the subindex k = 1, 2, ... indicates the stellar or substellar companion causing the modulation, τk is the light-time delay, ek is the eccentricity of the orbit, ωk is the argument of periastron, νk is the true anomaly, and Kk is the semi-amplitude of the modulation given by
(3)
where ak bin is the semimajor axis of the orbit of the binary around the common centre of mass, ik is the inclination of the orbit with respect to the line of sight, and c is the speed of light.

The approach of Irwin (1952) was to use the plane perpendicular to the line of sight that passes through the centre of the elliptical orbit of the binary about the centre of mass of all the bodies in the system as the reference frame, which adds a neksin ωk term to equation (2). Our approach is to use another perpendicular (and parallel) plane to the line of sight that passes through the centre of mass of all the bodies in the system as the reference frame, resulting in the exclusion of this term.

4.2 Test of the previous model

By fitting a model with the contribution of two LTTE terms (τ, described in Section 1), Beuermann et al. (2012) derived an underlying linear ephemeris for the binary given by
(4)

To test this two-companion model, we plot the O − C diagram using both the literature data and our new eclipse timings in Fig. 4. The model is able to reproduce the data from the literature very well; however, it fails to fit our new data.

O − C diagram of HW Vir showing Beuermann et al.’s model along with all the literature timings available, with the model extended along time and our new timings overplotted for comparison. Some of the error bars fall within the size of the points. We use equation (4) to obtain the linear ephemeris and to compute the O − C.
Figure 4.

O − C diagram of HW Vir showing Beuermann et al.’s model along with all the literature timings available, with the model extended along time and our new timings overplotted for comparison. Some of the error bars fall within the size of the points. We use equation (4) to obtain the linear ephemeris and to compute the O − C.

We check the dynamical stability of this model by reproducing the same test performed by Beuermann et al. (2012) using the MERCURY6 6 (Chambers 1999) package. We set the initial Keplerian parameters of the system with the binary as a single body of mass Mbin = M1 + M2 at the centre of the system, as described in Beuermann et al. (2012), and we use the same hybrid symplectic integrator. As a first test, we integrate for 104 yr, and we find that the inner planet is ejected after ∼2500 yr, in contrast with Beuermann et al. (2012)’s paper, who suggest that their proposed model is stable for 108 yr.

We perform additional checks using the radau integrator within the MERCURY6 code, and also using the PYTHON-C package rebound 7 (Rein & Liu 2012) with three of their different integrators namely, ias15 (Rein & Spiegel 2015), whfast (Rein & Tamayo 2015), and mercurius. All the simulations were run for 106 yr, using a step size of 8.8 d (1/530 of P3) with output every 308.9 d (1/15 of P3). Additionally, we test the stability with a new version of MERCURY6, MERCURY6_binary,8 a modified version of the original code by Smullen, Kratter & Shannon (2016), which allows us to simulate both single and binary stars, treating the central star in the binary as a composite ‘big body’ instead of a single central object. Following the advise by the author, we use the radau integrator to perform the simulation, and we integrate for 106 yr with the same step size described above. We consider a planet to escape or be ejected at a distance >150 au.

The initial orbital and physical parameters used for all the simulations performed are listed in Table 4. The results of all the simulations returned unstable systems, in different time-scales and for different reasons, such as ejection of outer or inner planet, a close encounter between planets, or the inner planet colliding with the binary. As a final check, we use the Mean Exponential Growth factor of Nearby Orbits (MEGNO; Cincotta & Simó 2000) indicator in rebound. Briefly, the MEGNO indicator 〈Y〉 will reach the value of 〈Y〉 = 2 for stable orbits, and it will be 〈Y〉 ≫ 2 for unstable configurations (in the case of 〈Y〉 > 4 or a close encounter and an ejection, we assign the maximum value 〈Y〉 = 4). We set the initial conditions as in Table 4, but we let vary, for the inner companion (identified with the subindex 3), the semimajor axis a3 from 1 to 6 au and the eccentricity e3 from 0 to 0.5, both in 100 linear steps. We compute the orbits of each configuration with the whfast integrator with a step size of 1 d for an integration time of 105 yr. The final grid has 100 000 simulations, each returning a MEGNO value. As shown in Fig. 5, we find that the solution from Beuermann et al. (2012), depicted by the red dot, lies on an unstable region, confirming our tests with different codes and integrators. It is worth noting that all the simulations have the same reference frame as in Winn (2010), which is the plane XY in the sky plane and Ω3, 4 = 180°, and we assume the orbits to be coplanar with the binary.

MEGNO values, 〈Y〉, of each simulation based on Beuermann et al. (2012)’s solution with varying a3 (1–6 au) and e3 (0–0.5). To the simulations that did not complete the orbital integration or that returned 〈Y〉 > 4, we assigned 〈Y〉 = 4 (unstable). The configuration of Beuermann et al. (2012) is unstable and it is shown as the red dot (overplotted on the yellow region).
Figure 5.

MEGNO values, 〈Y〉, of each simulation based on Beuermann et al. (2012)’s solution with varying a3 (1–6 au) and e3 (0–0.5). To the simulations that did not complete the orbital integration or that returned 〈Y〉 > 4, we assigned 〈Y〉 = 4 (unstable). The configuration of Beuermann et al. (2012) is unstable and it is shown as the red dot (overplotted on the yellow region).

5 A NEW MODEL

Our aim at this stage is to find a new LTTE model that properly fits the data. We separately analysed two data sets: one with all the available data (317 points), and one for which we discarded the first two observing seasons from the literature (35 photoelectric measurements between JD 2445730 and 2445745 from Kilkenny et al. 1994). From now on, we will refer to these data sets as the ‘full’ and the ‘reduced’ one, respectively. The latter selection was done as a test since the Kilkenny et al. (1994) data were always suspiciously offset from any best-fitting model and lack the original time-series data; i.e. we are unable to perform any independent check on them. We also rescale all the T0 errors by adding in quadrature 1 s to Beuermann et al. (2012)’s and our values, and 5 s to the rest of the literature values. We apply this rescaling to take into account systematic errors in the absolute calibration of the timestamps at this level (due for instance to clock drift, to the finite shutter traveltime, or to technical dead times while commanding the camera or saving the images). This assumption will be later empirically justified by the residual of our best-fitting models being very close to |$\chi ^2_r\simeq 1$|⁠.

After removing the outliers and rescaling the errors, we extend the code described in Section 4.1 with the implementation of PIKAIA (Charbonneau 1995), a genetic algorithm to solve multimodal optimization problems. This algorithm is based on the theory of evolution by means of natural selection; that is, a new population is generated by choosing the fittest pairs from the original population, and this process continues until a certain fitness level is achieved or after a pre-defined number of generations. We perform 100 000 simulations of 1000 generations each on a population of 200 individuals and we use the inverse of the reduced chi-square |$1/\chi _\mathrm{r}^2$| as our fitness function. Once the code computes the results for PIKAIA at the end of each simulation, it uses the LM algorithm to refine the PIKAIA output and it calculates the final best-fitting solution.

We also run an independent analysis based on a modified version of PIKAIA in FORTRAN 90, wrapped in PYTHON, and coupled with the affine invariant ensemble sampler (Goodman & Weare 2010) algorithm implemented in the EMCEE package (Foreman-Mackey et al. 2013). The PIKAIA part used 200 individuals (a set of parameters) for 2000 generations, while we run EMCEE with 100 walkers (or chains) for 10000 steps (we remove the initial 2000 steps as burn-in). We repeat this coupled analysis 1000 times.

The same fitting parameters are used in both approaches, that is a linear ephemeris with reference time Tref and period Pbin, and the LTTE parameters for each k-th body, i.e. ak binsin i, period Pk, eccentricity ek, argument of pericentre ωk, and the time of the passage at pericentre tperi, k. We use the same boundaries of the fitting parameters for this code and the previous one (see Table 5). All the parameters have uniform uninformative priors.

We obtain a large set of solutions, but we select only the solutions that, first, are physically meaningful (i.e. we discard negative eccentricity solutions, since LM is not bounded in the parameter intervals), and have a |$\chi ^2_\mathrm{r} \lt 2$|⁠. For each of these selected simulations, we run a stability9 check with rebound and the MEGNO indicator. We run simulations for 105 yr with the whfast integrator and a small step size of 1 d. We apply the full analysis (model fitting with two approaches and stability analysis) and find that all the solutions with |$\chi ^2_\mathrm{r} \lt 2$| are unstable for both data sets.

We show in Fig. 6 the O − C diagram for the two-companion model for the four best solutions (lowest |$\chi _\mathrm{r}^2$|⁠) for both pikaia implementations and both data sets. The four solutions show clearly different contributions from the inner (3) and outer (4) companions, with different periods, amplitudes, and patterns; yet, they fit the observed data points surprisingly well, especially on the ‘reduced’ data set. It is worth noting that both solutions on the full data set are not able to properly reproduce the general trend of the two observing seasons around epoch |$20\, 000$| (1989–1990), being forced to fit the earliest points by Kilkenny et al. (1994).

The best two-companion models as the result of the fit to the full data set (left column) and the reduced data set (right column) from the best-fitting solution of the PIKAIA + LM (upper row) and of the PIKAIA + EMCEE (lower row) code. For each solution, we show in the upper panel the O − C (grey dots) as observed eclipse times (T0 obs) minus the linear ephemeris (T0 c), the combined LTTE of the two companions (τ3 + τ4 as black line), and the single LTTE of the companions (τ3 and τ4 as blue dashed line and orange dash–dotted line, respectively). The lower panel shows the residuals as T0 obs − (T0 c + τ3 + τ4).
Figure 6.

The best two-companion models as the result of the fit to the full data set (left column) and the reduced data set (right column) from the best-fitting solution of the PIKAIA + LM (upper row) and of the PIKAIA + EMCEE (lower row) code. For each solution, we show in the upper panel the OC (grey dots) as observed eclipse times (T0 obs) minus the linear ephemeris (T0 c), the combined LTTE of the two companions (τ3 + τ4 as black line), and the single LTTE of the companions (τ3 and τ4 as blue dashed line and orange dash–dotted line, respectively). The lower panel shows the residuals as T0 obs − (T0 c + τ3 + τ4).

In Table 6, we present the orbital and physical parameters of these best-fitting solutions. Values for the masses of the companions are within the brown dwarf range. We did not attempt to compute realistic errors (i.e. other than the nominal errors output from the LM fit) on the derived parameters due to the dynamical instability of all the solutions we found.

Additionally, we test a different model with a linear ephemeris (Tc), a one-companion LTTE (τ3), and a quadratic term (Q). We apply this model to both data sets only with the PIKAIA + EMCEE approach. We use uniform priors within the boundaries in Table 7. We find solutions with |$\chi ^2_\mathrm{r} \gt 6$| (see Table 7 and Fig. 7) and Bayesian Information Criteria that are higher than the two-companion model, for both the data sets. For this reason, we discard this model as a possible explanation for the ETVs.

The best one-companion models as the result of the fit to the full data set (left) and the reduced data set (right). Similar to Fig. 6, but now displaying the Q term instead of τ4. The lower panel shows the residuals as T0 obs − (T0 c + τ3 + Q). Due to the high $\chi ^2_\mathrm{r}$, these models are not suitable to explain the ETVs of HW Vir.
Figure 7.

The best one-companion models as the result of the fit to the full data set (left) and the reduced data set (right). Similar to Fig. 6, but now displaying the Q term instead of τ4. The lower panel shows the residuals as T0 obs − (T0 c + τ3 + Q). Due to the high |$\chi ^2_\mathrm{r}$|⁠, these models are not suitable to explain the ETVs of HW Vir.

6 DISCUSSION AND CONCLUSIONS

In this work, we presented a study of the eclipsing binary system HW Vir by using hitherto unpublished photometric observations from four different facilities. We converted all the light curve timings into a common reference frame, as it was crucial for the purposes of this work to have accurate and homogeneous timestamps in order to properly compare different data sets. By combining our new timings with the ones available in the literature, we independently confirmed that the Beuermann et al. (2012) model reproduces the recent literature data until 2011, but it is unable to fit our new timings. Additionally, we tested the dynamical stability of their proposed model and we found it to be unstable after only a few thousand years, opposite to their claim of 108 yr of stability.

As a first effort to find a proper model for the LTTE in HW Vir, we used the PIKAIA code, which implements a genetic algorithm to explore the parameter space and estimate new parameters for the companions of the binary system. We found a set of parameter vectors with a very good fit in a statistical sense, able to explain all the available data. Notwithstanding, these sets of solutions led to very high values for the masses of the companions of HW Vir (∼50MJ, within the mass range of brown dwarfs) and dynamically unstable systems.

Regarding the recent work of Esmer et al. (2021), we describe the most significant differences between their approach and ours in the following. We performed a fully homogeneous analysis of all the new light curves presented, with the same tools and by fitting an accurate EB model (rather than measuring the T0s with the Kwee & van Woerden 1956 method; Li et al. 2018). This, coupled with the use of larger telescopes, resulted in more accurate eclipse timings by a factor of 5, on average. Also, we exploited a genetic algorithm to perform a comprehensive global search of the parameter space rather than a local one. For this reason, although our search for stable LTTE orbits has been unfruitful, the orbital parameters of our four new solutions fall well outside the region explored by Esmer et al. (2021). The direct OC comparison of their T0 with ours is also reassuring, as the average offsets of the residuals measured on a season-by-season basis demonstrate the subsecond accuracy in the absolute timestamp calibration of both data sets.

Although the best-fitting solutions we found were proven to be dynamically unstable, it is worth asking whether other stable orbital solutions with similar LTTE amplitudes exist, and how could we confirm or disprove them with one or more independent techniques.

The prospects for a follow-up with direct imaging are not very promising in the short term. The combination of angular separation (in our best solution, |$0\overset{^{\prime \prime }}{.}11$| and |$0\overset{^{\prime \prime }}{.}47$|⁠, respectively) and contrast (≃10−5 in the K band if we assume the typical luminosity of a mature 50 MJ brown dwarf; Phillips et al. 2020) falls beyond or very close to the sensitivity limits of the existing ground-based facilities such as SPHERE (Spectro-Polarimetric High-contrast Exoplanet REsearch; Beuzit et al. 2019) and GPI (Gemini Planet Imager; Ruffio et al. 2017). However, such systems may become very interesting targets for upcoming high-contrast imaging missions such as JWST and the Roman Space Telescope.

On the other hand, astrometry as a follow-up approach could be much more feasible with the release in the near future of the individual astrometric measurements by GAIA (Gaia Collaboration 2016). If we assume that the observed OC is entirely due to a combination of LTTE signals, its amplitude AOC can be easily translated into the expected astrometric signal, s, as s = AOC × c/d, where d is the distance to HW Vir from Table 1. We probe a range of AOC from 100 to 1500 s, which is spanning the amplitude of the oscillating LTTE terms of the orbital solutions claimed in the recent literature and also compatible with those included in our two best-fitting models in Fig. 6. We find that s ranges from 1.10 ± 0.12 to 16.6 ± 1.8 mas for AOC = 100 and 1500 s, respectively. That is in principle comfortably within the reach of GAIA sensitivity, since the expected astrometric precision of the individual positional measurements of HW Vir is ∼30 μas (Sahlmann, Triaud & Martin 2015). In such a scenario, the detection will be limited by the temporal baseline rather than the astrometric precision. Yet, if Gaia will survive up to its operational goal of 10 yr, at least the LTTE component with the shortest period can be robustly retrieved, while for the longest one a global analysis combining Gaia with the existing ETV data points will be needed.

Table 1.

Orbital and physical parameters of the components of HW Vir from the literature.

ParameterPrimarySecondaryReference
Orbital period P (d)0.116 719 67 ± 1.15 × 10−7Beuermann et al. (2012)
Separation a (R)0.860 ± 0.010Lee et al. (2009)
Inclination i (°)80.98 ± 0.10Lee et al. (2009)
Eccentricity e<0.0003Beuermann et al. (2012)
Distance d (pc)181 ± 20Lee et al. (2009)
Mass (M)0.485 ± 0.0130.142 ± 0.004Lee et al. (2009)
Radius (R)0.183 ± 0.0260.175 ± 0.026Lee et al. (2009)
Temperature (K)28 488 ± 2083084 ± 889Wood & Saffer (1999) and
Lee et al. (2009)
Visual magnitude (V band)10.6 (combined)Zacharias et al. (2012)
Bolometric magnitude Mbol (mag)1.46 ± 0.2411.20 ± 0.46Lee et al. (2009)
Absolute visual magnitude MV (mag)4.22 ± 0.2415.59 ± 0.46Lee et al. (2009)
Bolometric luminosity Lbol (L)19.7 ± 5.60.003 ± 0.001Lee et al. (2009)
ParameterPrimarySecondaryReference
Orbital period P (d)0.116 719 67 ± 1.15 × 10−7Beuermann et al. (2012)
Separation a (R)0.860 ± 0.010Lee et al. (2009)
Inclination i (°)80.98 ± 0.10Lee et al. (2009)
Eccentricity e<0.0003Beuermann et al. (2012)
Distance d (pc)181 ± 20Lee et al. (2009)
Mass (M)0.485 ± 0.0130.142 ± 0.004Lee et al. (2009)
Radius (R)0.183 ± 0.0260.175 ± 0.026Lee et al. (2009)
Temperature (K)28 488 ± 2083084 ± 889Wood & Saffer (1999) and
Lee et al. (2009)
Visual magnitude (V band)10.6 (combined)Zacharias et al. (2012)
Bolometric magnitude Mbol (mag)1.46 ± 0.2411.20 ± 0.46Lee et al. (2009)
Absolute visual magnitude MV (mag)4.22 ± 0.2415.59 ± 0.46Lee et al. (2009)
Bolometric luminosity Lbol (L)19.7 ± 5.60.003 ± 0.001Lee et al. (2009)
Table 1.

Orbital and physical parameters of the components of HW Vir from the literature.

ParameterPrimarySecondaryReference
Orbital period P (d)0.116 719 67 ± 1.15 × 10−7Beuermann et al. (2012)
Separation a (R)0.860 ± 0.010Lee et al. (2009)
Inclination i (°)80.98 ± 0.10Lee et al. (2009)
Eccentricity e<0.0003Beuermann et al. (2012)
Distance d (pc)181 ± 20Lee et al. (2009)
Mass (M)0.485 ± 0.0130.142 ± 0.004Lee et al. (2009)
Radius (R)0.183 ± 0.0260.175 ± 0.026Lee et al. (2009)
Temperature (K)28 488 ± 2083084 ± 889Wood & Saffer (1999) and
Lee et al. (2009)
Visual magnitude (V band)10.6 (combined)Zacharias et al. (2012)
Bolometric magnitude Mbol (mag)1.46 ± 0.2411.20 ± 0.46Lee et al. (2009)
Absolute visual magnitude MV (mag)4.22 ± 0.2415.59 ± 0.46Lee et al. (2009)
Bolometric luminosity Lbol (L)19.7 ± 5.60.003 ± 0.001Lee et al. (2009)
ParameterPrimarySecondaryReference
Orbital period P (d)0.116 719 67 ± 1.15 × 10−7Beuermann et al. (2012)
Separation a (R)0.860 ± 0.010Lee et al. (2009)
Inclination i (°)80.98 ± 0.10Lee et al. (2009)
Eccentricity e<0.0003Beuermann et al. (2012)
Distance d (pc)181 ± 20Lee et al. (2009)
Mass (M)0.485 ± 0.0130.142 ± 0.004Lee et al. (2009)
Radius (R)0.183 ± 0.0260.175 ± 0.026Lee et al. (2009)
Temperature (K)28 488 ± 2083084 ± 889Wood & Saffer (1999) and
Lee et al. (2009)
Visual magnitude (V band)10.6 (combined)Zacharias et al. (2012)
Bolometric magnitude Mbol (mag)1.46 ± 0.2411.20 ± 0.46Lee et al. (2009)
Absolute visual magnitude MV (mag)4.22 ± 0.2415.59 ± 0.46Lee et al. (2009)
Bolometric luminosity Lbol (L)19.7 ± 5.60.003 ± 0.001Lee et al. (2009)
Table 2.

Log of observations. The columns give: a unique identifier (matching those in Fig. 1), the ‘evening date’ of the observation, the telescope used, the number of acquired frames, the photometric passband, and eclipses that were observed among the primary and secondary.

ID‘Evening’ dateTelescopeNframesFilterPhase coverage
w1-w42008–2012WASP-South18 410WASP (clear)Both (multiple)
s12012/03/11Asiago Schmidt321R-BesselBoth
s22012/03/12Asiago Schmidt332R-BesselBoth
s32018/04/20Asiago Schmidt557r-SloanPrimary
g12014/03/12GAS280V-BesselBoth
g22014/03/28GAS728V-BesselBoth twice
g32014/03/29GAS660V-BesselBoth twice
g42014/03/30GAS304V-BesselPrimary and partial secondary
g52014/03/31GAS700V-BesselBoth twice
g62014/05/24GAS325V-BesselBoth
c12011/02/05Asiago 1.82-m326R-BesselPartial primary
c22012/01/26Asiago 1.82-m1392V-BesselBoth
c32013/02/04Asiago 1.82-m448V-BesselPrimary
c42013/02/07Asiago 1.82-m929V-BesselBoth
c52014/03/06Asiago 1.82-m1252V-BesselPrimary
c62014/04/01Asiago 1.82-m1086V-BesselPrimary
c72015/03/13Asiago 1.82-m320r-SloanPartial primary
c82016/02/05Asiago 1.82-m620V-BesselPrimary
c92016/02/08Asiago 1.82-m1122V-BesselBoth
c102017/01/21Asiago 1.82-m1943r-SloanPrimary
c112017/02/25Asiago 1.82-m1663r-SloanBoth
c122017/03/02Asiago 1.82-m950r-SloanPrimary
c132019/01/03Asiago 1.82-m1632r-SloanBoth
c142019/03/12Asiago 1.82-m713r-SloanPrimary
c152019/03/31Asiago 1.82-m1170r-SloanBoth
kt1-22016K289 970K2 (clear)Both (multiple)
ID‘Evening’ dateTelescopeNframesFilterPhase coverage
w1-w42008–2012WASP-South18 410WASP (clear)Both (multiple)
s12012/03/11Asiago Schmidt321R-BesselBoth
s22012/03/12Asiago Schmidt332R-BesselBoth
s32018/04/20Asiago Schmidt557r-SloanPrimary
g12014/03/12GAS280V-BesselBoth
g22014/03/28GAS728V-BesselBoth twice
g32014/03/29GAS660V-BesselBoth twice
g42014/03/30GAS304V-BesselPrimary and partial secondary
g52014/03/31GAS700V-BesselBoth twice
g62014/05/24GAS325V-BesselBoth
c12011/02/05Asiago 1.82-m326R-BesselPartial primary
c22012/01/26Asiago 1.82-m1392V-BesselBoth
c32013/02/04Asiago 1.82-m448V-BesselPrimary
c42013/02/07Asiago 1.82-m929V-BesselBoth
c52014/03/06Asiago 1.82-m1252V-BesselPrimary
c62014/04/01Asiago 1.82-m1086V-BesselPrimary
c72015/03/13Asiago 1.82-m320r-SloanPartial primary
c82016/02/05Asiago 1.82-m620V-BesselPrimary
c92016/02/08Asiago 1.82-m1122V-BesselBoth
c102017/01/21Asiago 1.82-m1943r-SloanPrimary
c112017/02/25Asiago 1.82-m1663r-SloanBoth
c122017/03/02Asiago 1.82-m950r-SloanPrimary
c132019/01/03Asiago 1.82-m1632r-SloanBoth
c142019/03/12Asiago 1.82-m713r-SloanPrimary
c152019/03/31Asiago 1.82-m1170r-SloanBoth
kt1-22016K289 970K2 (clear)Both (multiple)
Table 2.

Log of observations. The columns give: a unique identifier (matching those in Fig. 1), the ‘evening date’ of the observation, the telescope used, the number of acquired frames, the photometric passband, and eclipses that were observed among the primary and secondary.

ID‘Evening’ dateTelescopeNframesFilterPhase coverage
w1-w42008–2012WASP-South18 410WASP (clear)Both (multiple)
s12012/03/11Asiago Schmidt321R-BesselBoth
s22012/03/12Asiago Schmidt332R-BesselBoth
s32018/04/20Asiago Schmidt557r-SloanPrimary
g12014/03/12GAS280V-BesselBoth
g22014/03/28GAS728V-BesselBoth twice
g32014/03/29GAS660V-BesselBoth twice
g42014/03/30GAS304V-BesselPrimary and partial secondary
g52014/03/31GAS700V-BesselBoth twice
g62014/05/24GAS325V-BesselBoth
c12011/02/05Asiago 1.82-m326R-BesselPartial primary
c22012/01/26Asiago 1.82-m1392V-BesselBoth
c32013/02/04Asiago 1.82-m448V-BesselPrimary
c42013/02/07Asiago 1.82-m929V-BesselBoth
c52014/03/06Asiago 1.82-m1252V-BesselPrimary
c62014/04/01Asiago 1.82-m1086V-BesselPrimary
c72015/03/13Asiago 1.82-m320r-SloanPartial primary
c82016/02/05Asiago 1.82-m620V-BesselPrimary
c92016/02/08Asiago 1.82-m1122V-BesselBoth
c102017/01/21Asiago 1.82-m1943r-SloanPrimary
c112017/02/25Asiago 1.82-m1663r-SloanBoth
c122017/03/02Asiago 1.82-m950r-SloanPrimary
c132019/01/03Asiago 1.82-m1632r-SloanBoth
c142019/03/12Asiago 1.82-m713r-SloanPrimary
c152019/03/31Asiago 1.82-m1170r-SloanBoth
kt1-22016K289 970K2 (clear)Both (multiple)
ID‘Evening’ dateTelescopeNframesFilterPhase coverage
w1-w42008–2012WASP-South18 410WASP (clear)Both (multiple)
s12012/03/11Asiago Schmidt321R-BesselBoth
s22012/03/12Asiago Schmidt332R-BesselBoth
s32018/04/20Asiago Schmidt557r-SloanPrimary
g12014/03/12GAS280V-BesselBoth
g22014/03/28GAS728V-BesselBoth twice
g32014/03/29GAS660V-BesselBoth twice
g42014/03/30GAS304V-BesselPrimary and partial secondary
g52014/03/31GAS700V-BesselBoth twice
g62014/05/24GAS325V-BesselBoth
c12011/02/05Asiago 1.82-m326R-BesselPartial primary
c22012/01/26Asiago 1.82-m1392V-BesselBoth
c32013/02/04Asiago 1.82-m448V-BesselPrimary
c42013/02/07Asiago 1.82-m929V-BesselBoth
c52014/03/06Asiago 1.82-m1252V-BesselPrimary
c62014/04/01Asiago 1.82-m1086V-BesselPrimary
c72015/03/13Asiago 1.82-m320r-SloanPartial primary
c82016/02/05Asiago 1.82-m620V-BesselPrimary
c92016/02/08Asiago 1.82-m1122V-BesselBoth
c102017/01/21Asiago 1.82-m1943r-SloanPrimary
c112017/02/25Asiago 1.82-m1663r-SloanBoth
c122017/03/02Asiago 1.82-m950r-SloanPrimary
c132019/01/03Asiago 1.82-m1632r-SloanBoth
c142019/03/12Asiago 1.82-m713r-SloanPrimary
c152019/03/31Asiago 1.82-m1170r-SloanBoth
kt1-22016K289 970K2 (clear)Both (multiple)
Table 3.

Best-fitting eclipse timings (T0) for the primary eclipse of HW Vir derived from our unpublished data. The epoch is computed with respect to the linear ephemeris in equation (1).

T0 (BJDTDB)|$\sigma _{T_0}$| (d)EpochID
2455598.6087560.000 039468c1
2455953.6696860.000 0043510c2
2456328.5728820.000 0046722c3
2456331.6075850.000 0076748c4
2456723.5517850.000 00610 106c5
2456749.4635030.000 02210 328c6
2457095.5369140.000 03513 293c7
2457424.6858570.000 00316 113c8
2457427.6038420.000 00616 138c9
2457775.6613580.000 01019 120c10
2457810.5604860.000 00719 419c11
2457815.5794180.000 00919 462c12
2458487.6501690.000 01425 220c13
2458555.5809380.000 00325 802c14
2458574.3727760.000 00825 963c15
2455998.6066870.000 0223895s1
2455999.6570990.000 0483904s2
2458229.4667020.000 02623 008s3
2456729.5044480.000 02210 157g1
2456745.4950250.000 01510 294g2
2456746.4287630.000 02310 302g3
2456747.4792940.000 05010 311g4
2456748.4130450.000 02510 319g5
2456802.4541630.000 04610 782g6
2454539.6126550.000 012−8605w1
2454961.4368530.000 003−4991w2
2455283.5827360.000 004−2231w3
2455596.7412840.000 008452w4
2457584.47484800.000 000317 482kt1
2457629.17841080.000 000217 865kt2
T0 (BJDTDB)|$\sigma _{T_0}$| (d)EpochID
2455598.6087560.000 039468c1
2455953.6696860.000 0043510c2
2456328.5728820.000 0046722c3
2456331.6075850.000 0076748c4
2456723.5517850.000 00610 106c5
2456749.4635030.000 02210 328c6
2457095.5369140.000 03513 293c7
2457424.6858570.000 00316 113c8
2457427.6038420.000 00616 138c9
2457775.6613580.000 01019 120c10
2457810.5604860.000 00719 419c11
2457815.5794180.000 00919 462c12
2458487.6501690.000 01425 220c13
2458555.5809380.000 00325 802c14
2458574.3727760.000 00825 963c15
2455998.6066870.000 0223895s1
2455999.6570990.000 0483904s2
2458229.4667020.000 02623 008s3
2456729.5044480.000 02210 157g1
2456745.4950250.000 01510 294g2
2456746.4287630.000 02310 302g3
2456747.4792940.000 05010 311g4
2456748.4130450.000 02510 319g5
2456802.4541630.000 04610 782g6
2454539.6126550.000 012−8605w1
2454961.4368530.000 003−4991w2
2455283.5827360.000 004−2231w3
2455596.7412840.000 008452w4
2457584.47484800.000 000317 482kt1
2457629.17841080.000 000217 865kt2
Table 3.

Best-fitting eclipse timings (T0) for the primary eclipse of HW Vir derived from our unpublished data. The epoch is computed with respect to the linear ephemeris in equation (1).

T0 (BJDTDB)|$\sigma _{T_0}$| (d)EpochID
2455598.6087560.000 039468c1
2455953.6696860.000 0043510c2
2456328.5728820.000 0046722c3
2456331.6075850.000 0076748c4
2456723.5517850.000 00610 106c5
2456749.4635030.000 02210 328c6
2457095.5369140.000 03513 293c7
2457424.6858570.000 00316 113c8
2457427.6038420.000 00616 138c9
2457775.6613580.000 01019 120c10
2457810.5604860.000 00719 419c11
2457815.5794180.000 00919 462c12
2458487.6501690.000 01425 220c13
2458555.5809380.000 00325 802c14
2458574.3727760.000 00825 963c15
2455998.6066870.000 0223895s1
2455999.6570990.000 0483904s2
2458229.4667020.000 02623 008s3
2456729.5044480.000 02210 157g1
2456745.4950250.000 01510 294g2
2456746.4287630.000 02310 302g3
2456747.4792940.000 05010 311g4
2456748.4130450.000 02510 319g5
2456802.4541630.000 04610 782g6
2454539.6126550.000 012−8605w1
2454961.4368530.000 003−4991w2
2455283.5827360.000 004−2231w3
2455596.7412840.000 008452w4
2457584.47484800.000 000317 482kt1
2457629.17841080.000 000217 865kt2
T0 (BJDTDB)|$\sigma _{T_0}$| (d)EpochID
2455598.6087560.000 039468c1
2455953.6696860.000 0043510c2
2456328.5728820.000 0046722c3
2456331.6075850.000 0076748c4
2456723.5517850.000 00610 106c5
2456749.4635030.000 02210 328c6
2457095.5369140.000 03513 293c7
2457424.6858570.000 00316 113c8
2457427.6038420.000 00616 138c9
2457775.6613580.000 01019 120c10
2457810.5604860.000 00719 419c11
2457815.5794180.000 00919 462c12
2458487.6501690.000 01425 220c13
2458555.5809380.000 00325 802c14
2458574.3727760.000 00825 963c15
2455998.6066870.000 0223895s1
2455999.6570990.000 0483904s2
2458229.4667020.000 02623 008s3
2456729.5044480.000 02210 157g1
2456745.4950250.000 01510 294g2
2456746.4287630.000 02310 302g3
2456747.4792940.000 05010 311g4
2456748.4130450.000 02510 319g5
2456802.4541630.000 04610 782g6
2454539.6126550.000 012−8605w1
2454961.4368530.000 003−4991w2
2455283.5827360.000 004−2231w3
2455596.7412840.000 008452w4
2457584.47484800.000 000317 482kt1
2457629.17841080.000 000217 865kt2
Table 4.

Orbital and physical parameters of HW Vir and the two companions proposed by Beuermann et al. (2012) used for the dynamical stability tests, where the subscripts bin, 3, and 4 represent the binary, and the inner and outer companions, respectively. Values marked with * are assumed values.

ParameterValue
Mbin0.627 M
Rbin0.860 R
M314.3 MJ
R3*1 RJ
a34.69 au
e30.4
i380.9°
ω3−18°
|$\mathcal {M}_3$|33°
Ω3180°
M465 MJ
R4*2 RJ
a412.8 au
e40.05
i480.9°
ω4
|$\mathcal {M}_4$|166.23°
Ω4180°
ParameterValue
Mbin0.627 M
Rbin0.860 R
M314.3 MJ
R3*1 RJ
a34.69 au
e30.4
i380.9°
ω3−18°
|$\mathcal {M}_3$|33°
Ω3180°
M465 MJ
R4*2 RJ
a412.8 au
e40.05
i480.9°
ω4
|$\mathcal {M}_4$|166.23°
Ω4180°
Table 4.

Orbital and physical parameters of HW Vir and the two companions proposed by Beuermann et al. (2012) used for the dynamical stability tests, where the subscripts bin, 3, and 4 represent the binary, and the inner and outer companions, respectively. Values marked with * are assumed values.

ParameterValue
Mbin0.627 M
Rbin0.860 R
M314.3 MJ
R3*1 RJ
a34.69 au
e30.4
i380.9°
ω3−18°
|$\mathcal {M}_3$|33°
Ω3180°
M465 MJ
R4*2 RJ
a412.8 au
e40.05
i480.9°
ω4
|$\mathcal {M}_4$|166.23°
Ω4180°
ParameterValue
Mbin0.627 M
Rbin0.860 R
M314.3 MJ
R3*1 RJ
a34.69 au
e30.4
i380.9°
ω3−18°
|$\mathcal {M}_3$|33°
Ω3180°
M465 MJ
R4*2 RJ
a412.8 au
e40.05
i480.9°
ω4
|$\mathcal {M}_4$|166.23°
Ω4180°
Table 5.

Boundaries of the parameters of linear ephemeris plus two LTTE models.

ParameterMin.Max.
Tref (BJDTDB)2445 730.52445 730.6
Pbin (d)0.116 7190.116 723
a3 binsin i (au)01
P3 (d)200010 000
e300.5
ω3 (°)0360
tperi 3 (d)2452 0002465 000
a4 binsin i (au)0.55
P4 (d)10 00040 000
e400.7
ω4 (°)0360
tperi, 4 (d)2452 0002491 000
ParameterMin.Max.
Tref (BJDTDB)2445 730.52445 730.6
Pbin (d)0.116 7190.116 723
a3 binsin i (au)01
P3 (d)200010 000
e300.5
ω3 (°)0360
tperi 3 (d)2452 0002465 000
a4 binsin i (au)0.55
P4 (d)10 00040 000
e400.7
ω4 (°)0360
tperi, 4 (d)2452 0002491 000
Table 5.

Boundaries of the parameters of linear ephemeris plus two LTTE models.

ParameterMin.Max.
Tref (BJDTDB)2445 730.52445 730.6
Pbin (d)0.116 7190.116 723
a3 binsin i (au)01
P3 (d)200010 000
e300.5
ω3 (°)0360
tperi 3 (d)2452 0002465 000
a4 binsin i (au)0.55
P4 (d)10 00040 000
e400.7
ω4 (°)0360
tperi, 4 (d)2452 0002491 000
ParameterMin.Max.
Tref (BJDTDB)2445 730.52445 730.6
Pbin (d)0.116 7190.116 723
a3 binsin i (au)01
P3 (d)200010 000
e300.5
ω3 (°)0360
tperi 3 (d)2452 0002465 000
a4 binsin i (au)0.55
P4 (d)10 00040 000
e400.7
ω4 (°)0360
tperi, 4 (d)2452 0002491 000
Table 6.

Orbital and physical parameters of our four best-fitting solutions for the ETVs of HW Vir with two-companion model.

Full data setReduced data set
Model and physical parametersPIKAIA + LMPIKAIA + EMCEEPIKAIA + LMPIKAIA + EMCEE
|$T_\mathrm{ref}^{(a)}$| (BJDTDB)|$45\ 730.557\ 572$||$45\ 730.553\ 198$||$45\ 730.538\ 213$||$45\ 730.549\ 2131$|
Pbin (d)0.116 71950.116 71960.116 71980.116 7196
a3, binsin i (au)0.510.200.720.96
P3 (d)|$7367$||$7315$||$8781$||$8947$|
e30.2350.2410.1590.199
ω3 (°)4242331340
|$t_{\mathrm{peri},3}^{(a)}$| (BJDTDB)|$60\, 499$||$58\, 757$||$62\, 135$||$53\, 506$|
a3sin i(b) (au)6.56.47.47.6
|$M_3^{(b)}$| (MJ)56227096
a4, binsin i (au)0.530.562.581.45
P4 (days)|$8\, 012$||$26\, 155$||$34\, 258$||$13\, 649$|
e40.240.70.680.445
ω4 (°)251211185186
|$t_{\mathrm{peri},4}^{(a)}$| (BJDTDB)|$70\, 449$||$54\, 541$||$54\, 160$||$54\, 103$|
a4sin i(b) (au)6.91518.610.1
|$M_4^{(b)}$| (MJ)5426106110
|$\chi ^2_\mathrm{r}$|1.1051.5750.7620.758
dof258227258227
Full data setReduced data set
Model and physical parametersPIKAIA + LMPIKAIA + EMCEEPIKAIA + LMPIKAIA + EMCEE
|$T_\mathrm{ref}^{(a)}$| (BJDTDB)|$45\ 730.557\ 572$||$45\ 730.553\ 198$||$45\ 730.538\ 213$||$45\ 730.549\ 2131$|
Pbin (d)0.116 71950.116 71960.116 71980.116 7196
a3, binsin i (au)0.510.200.720.96
P3 (d)|$7367$||$7315$||$8781$||$8947$|
e30.2350.2410.1590.199
ω3 (°)4242331340
|$t_{\mathrm{peri},3}^{(a)}$| (BJDTDB)|$60\, 499$||$58\, 757$||$62\, 135$||$53\, 506$|
a3sin i(b) (au)6.56.47.47.6
|$M_3^{(b)}$| (MJ)56227096
a4, binsin i (au)0.530.562.581.45
P4 (days)|$8\, 012$||$26\, 155$||$34\, 258$||$13\, 649$|
e40.240.70.680.445
ω4 (°)251211185186
|$t_{\mathrm{peri},4}^{(a)}$| (BJDTDB)|$70\, 449$||$54\, 541$||$54\, 160$||$54\, 103$|
a4sin i(b) (au)6.91518.610.1
|$M_4^{(b)}$| (MJ)5426106110
|$\chi ^2_\mathrm{r}$|1.1051.5750.7620.758
dof258227258227

a BJDTDB|$- 2400000$|⁠.

b Physical parameter computed from the model parameters.

Table 6.

Orbital and physical parameters of our four best-fitting solutions for the ETVs of HW Vir with two-companion model.

Full data setReduced data set
Model and physical parametersPIKAIA + LMPIKAIA + EMCEEPIKAIA + LMPIKAIA + EMCEE
|$T_\mathrm{ref}^{(a)}$| (BJDTDB)|$45\ 730.557\ 572$||$45\ 730.553\ 198$||$45\ 730.538\ 213$||$45\ 730.549\ 2131$|
Pbin (d)0.116 71950.116 71960.116 71980.116 7196
a3, binsin i (au)0.510.200.720.96
P3 (d)|$7367$||$7315$||$8781$||$8947$|
e30.2350.2410.1590.199
ω3 (°)4242331340
|$t_{\mathrm{peri},3}^{(a)}$| (BJDTDB)|$60\, 499$||$58\, 757$||$62\, 135$||$53\, 506$|
a3sin i(b) (au)6.56.47.47.6
|$M_3^{(b)}$| (MJ)56227096
a4, binsin i (au)0.530.562.581.45
P4 (days)|$8\, 012$||$26\, 155$||$34\, 258$||$13\, 649$|
e40.240.70.680.445
ω4 (°)251211185186
|$t_{\mathrm{peri},4}^{(a)}$| (BJDTDB)|$70\, 449$||$54\, 541$||$54\, 160$||$54\, 103$|
a4sin i(b) (au)6.91518.610.1
|$M_4^{(b)}$| (MJ)5426106110
|$\chi ^2_\mathrm{r}$|1.1051.5750.7620.758
dof258227258227
Full data setReduced data set
Model and physical parametersPIKAIA + LMPIKAIA + EMCEEPIKAIA + LMPIKAIA + EMCEE
|$T_\mathrm{ref}^{(a)}$| (BJDTDB)|$45\ 730.557\ 572$||$45\ 730.553\ 198$||$45\ 730.538\ 213$||$45\ 730.549\ 2131$|
Pbin (d)0.116 71950.116 71960.116 71980.116 7196
a3, binsin i (au)0.510.200.720.96
P3 (d)|$7367$||$7315$||$8781$||$8947$|
e30.2350.2410.1590.199
ω3 (°)4242331340
|$t_{\mathrm{peri},3}^{(a)}$| (BJDTDB)|$60\, 499$||$58\, 757$||$62\, 135$||$53\, 506$|
a3sin i(b) (au)6.56.47.47.6
|$M_3^{(b)}$| (MJ)56227096
a4, binsin i (au)0.530.562.581.45
P4 (days)|$8\, 012$||$26\, 155$||$34\, 258$||$13\, 649$|
e40.240.70.680.445
ω4 (°)251211185186
|$t_{\mathrm{peri},4}^{(a)}$| (BJDTDB)|$70\, 449$||$54\, 541$||$54\, 160$||$54\, 103$|
a4sin i(b) (au)6.91518.610.1
|$M_4^{(b)}$| (MJ)5426106110
|$\chi ^2_\mathrm{r}$|1.1051.5750.7620.758
dof258227258227

a BJDTDB|$- 2400000$|⁠.

b Physical parameter computed from the model parameters.

Table 7.

Boundaries and best-fitting parameters of the one-companion model (Tc + τ3 + Q).

Best fit
ParameterMin.Max.Full data setReduced data set
Tref (BJDTDB)|$2445\ 730.5$||$2445\, 730.6$||$2445\ 730.557\ 5759$||$2445\ 730.555\ 9335$|
Pbin (d)0.116 7190.116 7230.116 71960.116 7197
a3, binsin i (au)010.2130.295
P3 (d)500|$50\, 000$||$9750$||$10\, 396$|
e300.50.410.37
ω3 (°)0360123116
tperi, 3 (d)|$2452\ 000$||$2502\ 000$||$2459\ 013$||$2459\ 294$|
Q−10−810−8−7.1 × 10−13−1.2 × 10−12
|$\chi ^2_\mathrm{r}$|6.8687.520
dof262231
Best fit
ParameterMin.Max.Full data setReduced data set
Tref (BJDTDB)|$2445\ 730.5$||$2445\, 730.6$||$2445\ 730.557\ 5759$||$2445\ 730.555\ 9335$|
Pbin (d)0.116 7190.116 7230.116 71960.116 7197
a3, binsin i (au)010.2130.295
P3 (d)500|$50\, 000$||$9750$||$10\, 396$|
e300.50.410.37
ω3 (°)0360123116
tperi, 3 (d)|$2452\ 000$||$2502\ 000$||$2459\ 013$||$2459\ 294$|
Q−10−810−8−7.1 × 10−13−1.2 × 10−12
|$\chi ^2_\mathrm{r}$|6.8687.520
dof262231
Table 7.

Boundaries and best-fitting parameters of the one-companion model (Tc + τ3 + Q).

Best fit
ParameterMin.Max.Full data setReduced data set
Tref (BJDTDB)|$2445\ 730.5$||$2445\, 730.6$||$2445\ 730.557\ 5759$||$2445\ 730.555\ 9335$|
Pbin (d)0.116 7190.116 7230.116 71960.116 7197
a3, binsin i (au)010.2130.295
P3 (d)500|$50\, 000$||$9750$||$10\, 396$|
e300.50.410.37
ω3 (°)0360123116
tperi, 3 (d)|$2452\ 000$||$2502\ 000$||$2459\ 013$||$2459\ 294$|
Q−10−810−8−7.1 × 10−13−1.2 × 10−12
|$\chi ^2_\mathrm{r}$|6.8687.520
dof262231
Best fit
ParameterMin.Max.Full data setReduced data set
Tref (BJDTDB)|$2445\ 730.5$||$2445\, 730.6$||$2445\ 730.557\ 5759$||$2445\ 730.555\ 9335$|
Pbin (d)0.116 7190.116 7230.116 71960.116 7197
a3, binsin i (au)010.2130.295
P3 (d)500|$50\, 000$||$9750$||$10\, 396$|
e300.50.410.37
ω3 (°)0360123116
tperi, 3 (d)|$2452\ 000$||$2502\ 000$||$2459\ 013$||$2459\ 294$|
Q−10−810−8−7.1 × 10−13−1.2 × 10−12
|$\chi ^2_\mathrm{r}$|6.8687.520
dof262231

A satisfying explanation for the ETVs of HW Vir is still eluding us; however, this only highlights the fact that there is still a lot to be learned about systems of this kind. One of the challenges to accurately determine the underlying cause of the ETVs in this case is that the observations show that the period of one of the components from the LTTE of HW Vir is longer than the total observational time span available. Therefore, increasing the observational baseline will certainly bring us closer to determine the cause behind the ETVs of HW Vir.

ACKNOWLEDGEMENTS

GP and LB acknowledge the funding support from Italian Space Agency (ASI) regulated by ‘Accordo ASI-INAF n. 2013-016-R.0 del 9 luglio 2013 e integrazione del 9 luglio 2015 CHEOPS Fasi A/B/C’. LT acknowledges support from Ministero dell'Università e della Ricerca (MIUR; PRIN 2017 grant 20179ZF5KS). DN acknowledges the support from the French Centre National d’Etudes Spatiales (CNES).

DATA AVAILABILITY

The data underlying this article will be uploaded on Vizier/CDS in a second stage; in the meantime, it will be shared on reasonable request to the corresponding author.

Footnotes

1

sin i3 and sin i4 being the inclination with respect to the line of sight of the orbital plane of the inner and outer perturbers, respectively. Throughout this paper, we adopt this index convention, meaning the third and fourth massive bodies of the system.

6

We used the version available at https://github.com/4xxi/mercury.

9

We compute the mass of the k-th companion by combining the third Kepler’s law and ak, bin = akMk/(Mk + Mbin) and finding the real root of a polynomial of third order in Mk of kind |$M_k^3 - x M_k^2 - 2 x M_\mathrm{bin}M_k - x M_\mathrm{bin}^2 = 0$| with |$x = \frac{4 \pi ^2}{G} \frac{a_{k,\mathrm{bin}}^3}{P_k^2}$| and k = 3 and 4.

REFERENCES

Applegate
J. H.
,
1992
,
ApJ
,
385
,
621

Beuermann
K.
,
Dreizler
S.
,
Hessman
F. V.
,
Deller
J.
,
2012
,
A&A
,
543
,
A138

Beuzit
J. L.
et al. ,
2019
,
A&A
,
631
,
A155

Bours
M. C. P.
et al. ,
2016
,
MNRAS
,
460
,
3873

Brewer
J. M.
,
Wang
S.
,
Fischer
D. A.
,
Foreman-Mackey
D.
,
2018
,
ApJ
,
867
,
L3

Çakirli
Ö.
,
Devlen
A.
,
1999
,
A&AS
,
136
,
27

Chambers
J. E.
,
1999
,
MNRAS
,
304
,
793

Charbonneau
P.
,
1995
,
ApJS
,
101
,
309

Cincotta
P. M.
,
Simó
C.
,
2000
,
A&AS
,
147
,
205

Eastman
J.
,
Siverd
R.
,
Gaudi
B. S.
,
2010
,
PASP
,
122
,
935

Esmer
E. M.
,
Baştürk
Ö.
,
Hinse
T. C.
,
Selam
S. O.
,
Correia
A. C. M.
,
2021
,
A&A
,
648
,
A85

Foreman-Mackey
D.
,
Hogg
D. W.
,
Lang
D.
,
Goodman
J.
,
2013
,
PASP
,
125
,
306

Gaia Collaboration
et al. .,
2016
,
A&A
,
595
,
A1

Gillon
M.
et al. ,
2017
,
Nature
,
542
,
456

Goodman
J.
,
Weare
J.
,
2010
,
Commun. Appl. Math. Comput. Sci.
,
5
,
65

Gould
A.
et al. ,
2014
,
Science
,
345
,
46

Heber
U.
,
2016
,
PASP
,
128
,
082001

Horner
J.
,
Hinse
T. C.
,
Wittenmyer
R. A.
,
Marshall
J. P.
,
Tinney
C. G.
,
2012
,
MNRAS
,
427
,
2812

Howell
S. B.
et al. ,
2014
,
PASP
,
126
,
398

İbanoǧlu
C.
,
Çakırlı
Ö.
,
Taş
G.
,
Evren
S.
,
2004
,
A&A
,
414
,
1043

Irwin
J. B.
,
1952
,
ApJ
,
116
,
211

Kilkenny
D.
,
Marang
F.
,
Menzies
J. W.
,
1994
,
MNRAS
,
267
,
535

Kilkenny
D.
,
Keuris
S.
,
Marang
F.
,
Roberts
G.
,
van Wyk
F.
,
Ogloza
W.
,
2000
,
The Observatory
,
120
,
48

Kilkenny
D.
,
van Wyk
F.
,
Marang
F.
,
2003
,
The Observatory
,
123
,
31

Kiss
L. L.
,
Csák
B.
,
Szatmáry
K.
,
Furész
G.
,
Sziládi
K.
,
2000
,
A&A
,
364
,
199

Konacki
M.
,
Muterspaugh
M. W.
,
Kulkarni
S. R.
,
Hełminiak
K. G.
,
2009
,
ApJ
,
704
,
513

Kostov
V. B.
et al. ,
2016
,
ApJ
,
827
,
86

Kwee
K. K.
,
van Woerden
H.
,
1956
,
Bull. Astron. Inst. Neth.
,
12
,
327

Lee
J. W.
,
Kim
S.-L.
,
Kim
C.-H.
,
Koch
R. H.
,
Lee
C.-U.
,
Kim
H.-I.
,
Park
J.-H.
,
2009
,
AJ
,
137
,
3181

Li
M. C. A.
et al. ,
2018
,
MNRAS
,
480
,
4557

Libralato
M.
,
Bedin
L. R.
,
Nardiello
D.
,
Piotto
G.
,
2016
,
MNRAS
,
456
,
1137

Mayor
M.
,
Queloz
D.
,
1995
,
Nature
,
378
,
355

Menzies
J. W.
,
Marang
F.
,
1986
, in
Hearnshaw
J. B.
,
Cottrell
P. L.
, eds,
Proc. IAU Symp. 118, Instrumentation and Research Programmes for Small Telescopes
.
D. Reidel Publishing Company, Dordrecht, Holland
.
Norwell, MA
, p.
305

Moré
J. J.
,
1978
,
The Levenberg–Marquardt Algorithm: Implementation and Theory
.
Springer Verlag
.
Berlin,
p.
105

Nardiello
D.
,
Libralato
M.
,
Bedin
L. R.
,
Piotto
G.
,
Borsato
L.
,
Granata
V.
,
Malavolta
L.
,
Nascimbeni
V.
,
2016
,
MNRAS
,
463
,
1831

Nascimbeni
V.
,
Piotto
G.
,
Bedin
L. R.
,
Damasso
M.
,
2011
,
A&A
,
527
,
A85

Nascimbeni
V.
et al. ,
2013
,
A&A
,
549
,
A30

Navarrete
F. H.
,
Schleicher
D. R. G.
,
Zamponi
J.
,
Völschow
M.
,
2018
,
A&A
,
615
,
A81

Petigura
E.
,
Marcy
G. W.
,
Howard
A.
,
2015
,
American Astronomical Society Meeting Abstracts
,
225
,
406.03

Phillips
M. W.
et al. ,
2020
,
A&A
,
637
,
A38

Pollacco
D. L.
et al. ,
2006
,
PASP
,
118
,
1407

Rein
H.
,
Liu
S. F.
,
2012
,
A&A
,
537
,
A128

Rein
H.
,
Spiegel
D. S.
,
2015
,
MNRAS
,
446
,
1424

Rein
H.
,
Tamayo
D.
,
2015
,
MNRAS
,
452
,
376

Ruffio
J.-B.
et al. ,
2017
,
ApJ
,
842
,
14

Sahlmann
J.
,
Triaud
A. H. M. J.
,
Martin
D. V.
,
2015
,
MNRAS
,
447
,
287

Sale
O.
,
Bogensberger
D.
,
Clarke
F.
,
Lynas-Gray
A. E.
,
2020
,
MNRAS
,
499
,
3071

Silvotti
R.
et al. ,
2018
,
A&A
,
611
,
A85

Smullen
R. A.
,
Kratter
K. M.
,
Shannon
A.
,
2016
,
MNRAS
,
461
,
1288

Southworth
J.
,
2012
,
Astrophysics Source Code Library
,
record ascl:1207.013

Winn
J. N.
,
2010
,
Exoplanet Transits and Occultations
.
University of Arizona Press
Tucson, AZ,
p.
55

Wolszczan
A.
,
Frail
D. A.
,
1992
,
Nature
,
355
,
145

Wood
J. H.
,
Saffer
R.
,
1999
,
MNRAS
,
305
,
820

Wood
J. H.
,
Zhang
E.-H.
,
Robinson
E. L.
,
1993
,
MNRAS
,
261
,
103

Zacharias
N.
,
Finch
C. T.
,
Girard
T. M.
,
Henden
A.
,
Bartlett
J. L.
,
Monet
D. G.
,
Zacharias
M. I.
,
2013
,
AJ
,
145
,
14

APPENDIX A: LITERATURE TIMINGS

In this table, we list the 240 timing measurements taken from the literature (from the compilation by Kilkenny et al. 1994, K94; Lee et al. 2009, L09; Beuermann et al. 2012, B12) and included in our fits together with our new data (Table 3), after being converted by us into a uniform BJDTDB time standard (Eastman et al. 2010). The epoch is computed according to the ephemeris in equation (1) of (Beuermann et al. 2012).

Table A1.

Literature eclipse times for HW Vir.

T0 (BJDTDB)σ(T0)EpochReference
2445730.556669.000 0990K94
2445731.607139.000 0999K94
2445732.540889.000 09917K94
2445733.591389.000 09926K94
2445734.525149.000 09934K94
2445735.575549.000 09943K94
2445736.509219.000 09951K94
2445740.477899.000 09985K94
2445740.594559.000 09986K94
2445741.528339.000 09994K94
2445742.462240.000 099102K94
2445744.446450.000 099119K94
2445773.509431.000 099368K94
2445773.626191.000 099369K94
2445774.443131.000 099376K94
2445774.559881.000 099377K94
2445775.376921.000 099384K94
2445775.610421.000 099386K94
2445776.427511.000 099393K94
2445776.544181.000 099394K94
2445819.380354.000 099761K94
2445823.932404.000 099800K94
2446086.551616.000 0993050K94
2446098.573736.000 0993153K94
2446100.557976.000 0993170K94
2446101.608376.000 0993179K94
2446139.075518.000 0993500K94
2446164.403620.000 0993717K94
2446164.520380.000 0993718K94
2446203.271322.000 0994050K94
2446223.347073.000 0994222K94
2447684.326630.000 06516 739L09
2447687.244620.000 06516 764L09
2447688.295090.000 07616 773L09
2447689.228830.000 06516 781L09
2447968.539023.000 06119 174L09
2447972.507483.000 06119 208L09
2448267.574765.000 06121 736L09
2448294.887134.000 09921 970L09
2448295.003934.000 09921 971L09
2448295.937624.000 09921 979L09
2448307.609604.000 06122 079L09
2448311.578084.000 06122 113L09
2448313.562324.000 06122 130L09
2448365.385823.000 05922 574L09
2448371.455263.000 05922 626L09
2448404.370202.000 05922 908L09
2448406.354412.000 06522 925L09
2448410.322872.000 06122 959L09
2448682.512946.000 06125 291L09
2448684.497166.000 05925 308L09
2448703.522456.000 07625 471L09
2448704.456226.000 05925 479L09
2448705.506696.000 05925 488L09
2448803.317656.000 05926 326L09
2449104.453947.000 06528 906L09
2449122.312007.000 06129 059L09
2449137.368797.000 06129 188L09
2449139.353057.000 05929 205L09
2449190.242759.000 09929 641L09
2449393.567882.000 07631 383L09
2449400.571182.000 07631 443L09
2449418.546033.000 09931 597L09
2449427.533383.000 07631 674L09
2449437.571373.000 09931 760L09
2449450.643884.000 09931 872L09
2449476.322135.000 09932 092L09
2449480.407315.000 09932 127L09
2449485.309515.000 09932 169L09
2449511.337986.000 09932 392L09
2449518.341386.000 09932 452L09
2449519.274896.000 09932 460L09
2449728.552864.000 09934 253L09
2449733.571774.000 09934 296L09
2449778.625606.000 50334 682L09
2449785.628606.000 20834 742L09
2449808.505507.000 70234 938L09
2449833.483648.000 09935 152L09
2449880.288110.000 09935 553L09
2450142.556692.000 09937 800L09
2450144.540882.000 09937 817L09
2450147.575632.000 09937 843L09
2450155.512633.000 09137 911L09
2450185.392715.000 09938 167L09
2450186.443205.000 09938 176L09
2450201.383275.000 09938 304L09
2450202.433755.000 09938 313L09
2450216.673546.000 09938 435L09
2450218.424376.000 09938 450L09
2450222.509566.000 09938 485L09
2450280.285549.000 09938 980L09
2450491.430748.000 08340 789L09
2450491.547448.000 07640 790L09
2450506.487748.000 09940 918L09
2450509.522508.000 09940 944L09
2450510.572978.000 09940 953L09
2450511.506448.000 07040 961L09
2450511.506728.000 09940 961L09
2450543.721290.000 09941 237L09
2450547.456320.000 09941 269L09
2450547.689760.000 09941 271L09
2450552.475150.000 20841 312L09
2450575.468952.000 09941 509L09
2450594.377552.000 70241 671L09
2450595.427952.000 09941 680L09
2450596.361552.000 09941 688L09
2450597.295462.000 09941 696L09
2450599.279703.000 09941 713L09
2450600.330183.000 09941 722L09
2450631.260795.000 09941 987L09
2450883.491443.000 09944 148L09
2450885.475673.000 09944 165L09
2450910.453614.000 09944 379L09
2450912.321074.000 20844 395L09
2450912.554564.000 09944 397L09
2450927.494574.000 20844 525L09
2450931.346364.000 09944 558L09
2450943.368574.000 11644 661L09
2450943.485074.000 20844 662L09
2450946.403174.000 50344 687L09
2450948.387375.000 60344 704L09
2450955.390545.000 09944 764L09
2450959.242275.000 09944 797L09
2451021.220295.000 09945 328L09
2451183.576969.000 09946  719L09
2451190.580109.000 09946 779L09
2451216.491839.000 09947 001L09
2451236.567569.000 09947 173L09
2451300.413290.000 20847 720L09
2451301.346790.00011647 728L09
2451301.463690.000 11647 729L09
2451302.397390.000 20847 737L09
2451326.324779.000 09947 942L09
2451368.227049.000 09948 301L09
2451578.555416.000 09950 103L09
2451582.523896.000 09950 137L09
2451608.552335.000 09950 360L09
2451616.489185.000 20850 428L09
2451627.460985.000 34550 522L09
2451630.145755.000 07050 545L09
2451630.262425.000 07050 546L09
2451654.423084.000 20850 753L09
2451655.356784.000 20850 761L09
2451668.429584.000 09950 873L09
2451671.463984.000 09950 899L09
2451674.382184.000 20850 924L09
2451688.038573.000 07651 041L09
2451689.088893.000 12451 050L09
2451691.423283.000 11651 070L09
2451692.356883.000 11651 078L09
2451712.315903.000 09951 249L09
2452001.429972.000 11653 726L09
2452001.546772.000 11653 727L09
2452342.251085.000 05956 646L09
2452348.437235.000 71256 699L09
2452348.553995.000 90256 700L09
2452349.487705.000 09956 708L09
2452353.456065.000 40456 742L09
2452356.490895.000 09956 768L09
2452373.298454.000 72256 912L09
2452373.415084.000 87256 913L09
2452402.361703.000 09957 161L09
2452410.298603.000 09957 229L09
2452431.308112.000 09957 409L09
2452650.390821.000 06159 286L09
2452675.368760.000 06559 500L09
2452724.390928.000 39459 920L09
2452724.507628.000 39459 921L09
2452756.371957.000 07060 194L09
2452759.406997.000 52360 220L09
2452764.425637.000 50360 263L09
2452764.542637.000 20860 264L09
2453061.360425.000 06562 807L09
2453112.716925.000 05963 247L09
2453112.833625.000 06163 248L09
2453124.972714.000 10763 352L09
2453360.746019.000 05965 372L09
2453384.323359.000 05965 574L09
2453410.702118.000 11665 800L09
2453444.083818.000 11666 086L09
2453444.200518.000 11666 087L09
2453465.443518.000 20866 269L09
2453466.377218.000 11666 277L09
2453491.355218.000 07666 491L09
2453773.933130.000 05968 912L09
2453825.289771.000 06169 352L09
2453829.024531.000 30669 384L09
2453829.141431.000 20869 385L09
2453861.589331.000 05969 663L09
2454105.182936.000 11671 750L09
2454108.217636.000 11671 776L09
2454108.334536.000 11671 777L09
2454143.233437.000 11672 076L09
2454143.350237.000 11672 077L09
2454155.255507.000 05972 179L09
2454155.372217.000 05972 180L09
2454158.290127.000 09172 205L09
2454214.082109.000 06572 683L09
2454216.416479.000 11672 703L09
2454239.410470.000 20872 900L09
2454498.877648.000 11675 123L09
2454498.877674.000 06075 123B12
2454509.148988.000 06575 211L09
2454509.265688.000 05975 212L09
2454512.300308.000 05975 238L09
2454513.350858.000 08375 247L09
2454514.167808.000 05975 254L09
2454514.284538.000 05975 255L09
2454515.335018.000 06575 264L09
2454517.319248.000 05975 281L09
2454533.193149.000 11675 417L09
2454533.309849.000 11675 418L09
2454535.177249.000 40475 434L09
2454554.902950.000 50375 603L09
2454588.401364.000 07075 890B12
2454601.707367.000 06076 004B12
2454607.076602.000 06576 050L09
2454608.593786.000 06176 063B12
2454611.628553.000 05976 089B12
2454841.916149.000 05978 062B12
2455543.984048.000 01484 077B12
2455549.003005.000 01484120B12
2455556.006176.000 01584180B12
2455582.968393.000 01584 411B12
2455584.952622.000 01584 428B12
2455591.955807.000 01584 488B12
2455593.006274.000 01484 497B12
2455605.028372.000 01484 600B12
2455605.962117.000 01984 608B12
2455615.883298.000 01484 693B12
2455635.725619.000 01384 863B12
2455647.864460.000 01484 967B12
2455648.914932.000 01484 976B12
2455654.750921.000 01385 026B12
2455680.779371.000 01485 249B12
2455682.763597.000 01985 266B12
2455896.010239.000 01487 093B12
2455953.903110.000 02187 589B12
2455957.988315.000 01487 624B12
2455977.013609.000 01487 787B12
T0 (BJDTDB)σ(T0)EpochReference
2445730.556669.000 0990K94
2445731.607139.000 0999K94
2445732.540889.000 09917K94
2445733.591389.000 09926K94
2445734.525149.000 09934K94
2445735.575549.000 09943K94
2445736.509219.000 09951K94
2445740.477899.000 09985K94
2445740.594559.000 09986K94
2445741.528339.000 09994K94
2445742.462240.000 099102K94
2445744.446450.000 099119K94
2445773.509431.000 099368K94
2445773.626191.000 099369K94
2445774.443131.000 099376K94
2445774.559881.000 099377K94
2445775.376921.000 099384K94
2445775.610421.000 099386K94
2445776.427511.000 099393K94
2445776.544181.000 099394K94
2445819.380354.000 099761K94
2445823.932404.000 099800K94
2446086.551616.000 0993050K94
2446098.573736.000 0993153K94
2446100.557976.000 0993170K94
2446101.608376.000 0993179K94
2446139.075518.000 0993500K94
2446164.403620.000 0993717K94
2446164.520380.000 0993718K94
2446203.271322.000 0994050K94
2446223.347073.000 0994222K94
2447684.326630.000 06516 739L09
2447687.244620.000 06516 764L09
2447688.295090.000 07616 773L09
2447689.228830.000 06516 781L09
2447968.539023.000 06119 174L09
2447972.507483.000 06119 208L09
2448267.574765.000 06121 736L09
2448294.887134.000 09921 970L09
2448295.003934.000 09921 971L09
2448295.937624.000 09921 979L09
2448307.609604.000 06122 079L09
2448311.578084.000 06122 113L09
2448313.562324.000 06122 130L09
2448365.385823.000 05922 574L09
2448371.455263.000 05922 626L09
2448404.370202.000 05922 908L09
2448406.354412.000 06522 925L09
2448410.322872.000 06122 959L09
2448682.512946.000 06125 291L09
2448684.497166.000 05925 308L09
2448703.522456.000 07625 471L09
2448704.456226.000 05925 479L09
2448705.506696.000 05925 488L09
2448803.317656.000 05926 326L09
2449104.453947.000 06528 906L09
2449122.312007.000 06129 059L09
2449137.368797.000 06129 188L09
2449139.353057.000 05929 205L09
2449190.242759.000 09929 641L09
2449393.567882.000 07631 383L09
2449400.571182.000 07631 443L09
2449418.546033.000 09931 597L09
2449427.533383.000 07631 674L09
2449437.571373.000 09931 760L09
2449450.643884.000 09931 872L09
2449476.322135.000 09932 092L09
2449480.407315.000 09932 127L09
2449485.309515.000 09932 169L09
2449511.337986.000 09932 392L09
2449518.341386.000 09932 452L09
2449519.274896.000 09932 460L09
2449728.552864.000 09934 253L09
2449733.571774.000 09934 296L09
2449778.625606.000 50334 682L09
2449785.628606.000 20834 742L09
2449808.505507.000 70234 938L09
2449833.483648.000 09935 152L09
2449880.288110.000 09935 553L09
2450142.556692.000 09937 800L09
2450144.540882.000 09937 817L09
2450147.575632.000 09937 843L09
2450155.512633.000 09137 911L09
2450185.392715.000 09938 167L09
2450186.443205.000 09938 176L09
2450201.383275.000 09938 304L09
2450202.433755.000 09938 313L09
2450216.673546.000 09938 435L09
2450218.424376.000 09938 450L09
2450222.509566.000 09938 485L09
2450280.285549.000 09938 980L09
2450491.430748.000 08340 789L09
2450491.547448.000 07640 790L09
2450506.487748.000 09940 918L09
2450509.522508.000 09940 944L09
2450510.572978.000 09940 953L09
2450511.506448.000 07040 961L09
2450511.506728.000 09940 961L09
2450543.721290.000 09941 237L09
2450547.456320.000 09941 269L09
2450547.689760.000 09941 271L09
2450552.475150.000 20841 312L09
2450575.468952.000 09941 509L09
2450594.377552.000 70241 671L09
2450595.427952.000 09941 680L09
2450596.361552.000 09941 688L09
2450597.295462.000 09941 696L09
2450599.279703.000 09941 713L09
2450600.330183.000 09941 722L09
2450631.260795.000 09941 987L09
2450883.491443.000 09944 148L09
2450885.475673.000 09944 165L09
2450910.453614.000 09944 379L09
2450912.321074.000 20844 395L09
2450912.554564.000 09944 397L09
2450927.494574.000 20844 525L09
2450931.346364.000 09944 558L09
2450943.368574.000 11644 661L09
2450943.485074.000 20844 662L09
2450946.403174.000 50344 687L09
2450948.387375.000 60344 704L09
2450955.390545.000 09944 764L09
2450959.242275.000 09944 797L09
2451021.220295.000 09945 328L09
2451183.576969.000 09946  719L09
2451190.580109.000 09946 779L09
2451216.491839.000 09947 001L09
2451236.567569.000 09947 173L09
2451300.413290.000 20847 720L09
2451301.346790.00011647 728L09
2451301.463690.000 11647 729L09
2451302.397390.000 20847 737L09
2451326.324779.000 09947 942L09
2451368.227049.000 09948 301L09
2451578.555416.000 09950 103L09
2451582.523896.000 09950 137L09
2451608.552335.000 09950 360L09
2451616.489185.000 20850 428L09
2451627.460985.000 34550 522L09
2451630.145755.000 07050 545L09
2451630.262425.000 07050 546L09
2451654.423084.000 20850 753L09
2451655.356784.000 20850 761L09
2451668.429584.000 09950 873L09
2451671.463984.000 09950 899L09
2451674.382184.000 20850 924L09
2451688.038573.000 07651 041L09
2451689.088893.000 12451 050L09
2451691.423283.000 11651 070L09
2451692.356883.000 11651 078L09
2451712.315903.000 09951 249L09
2452001.429972.000 11653 726L09
2452001.546772.000 11653 727L09
2452342.251085.000 05956 646L09
2452348.437235.000 71256 699L09
2452348.553995.000 90256 700L09
2452349.487705.000 09956 708L09
2452353.456065.000 40456 742L09
2452356.490895.000 09956 768L09
2452373.298454.000 72256 912L09
2452373.415084.000 87256 913L09
2452402.361703.000 09957 161L09
2452410.298603.000 09957 229L09
2452431.308112.000 09957 409L09
2452650.390821.000 06159 286L09
2452675.368760.000 06559 500L09
2452724.390928.000 39459 920L09
2452724.507628.000 39459 921L09
2452756.371957.000 07060 194L09
2452759.406997.000 52360 220L09
2452764.425637.000 50360 263L09
2452764.542637.000 20860 264L09
2453061.360425.000 06562 807L09
2453112.716925.000 05963 247L09
2453112.833625.000 06163 248L09
2453124.972714.000 10763 352L09
2453360.746019.000 05965 372L09
2453384.323359.000 05965 574L09
2453410.702118.000 11665 800L09
2453444.083818.000 11666 086L09
2453444.200518.000 11666 087L09
2453465.443518.000 20866 269L09
2453466.377218.000 11666 277L09
2453491.355218.000 07666 491L09
2453773.933130.000 05968 912L09
2453825.289771.000 06169 352L09
2453829.024531.000 30669 384L09
2453829.141431.000 20869 385L09
2453861.589331.000 05969 663L09
2454105.182936.000 11671 750L09
2454108.217636.000 11671 776L09
2454108.334536.000 11671 777L09
2454143.233437.000 11672 076L09
2454143.350237.000 11672 077L09
2454155.255507.000 05972 179L09
2454155.372217.000 05972 180L09
2454158.290127.000 09172 205L09
2454214.082109.000 06572 683L09
2454216.416479.000 11672 703L09
2454239.410470.000 20872 900L09
2454498.877648.000 11675 123L09
2454498.877674.000 06075 123B12
2454509.148988.000 06575 211L09
2454509.265688.000 05975 212L09
2454512.300308.000 05975 238L09
2454513.350858.000 08375 247L09
2454514.167808.000 05975 254L09
2454514.284538.000 05975 255L09
2454515.335018.000 06575 264L09
2454517.319248.000 05975 281L09
2454533.193149.000 11675 417L09
2454533.309849.000 11675 418L09
2454535.177249.000 40475 434L09
2454554.902950.000 50375 603L09
2454588.401364.000 07075 890B12
2454601.707367.000 06076 004B12
2454607.076602.000 06576 050L09
2454608.593786.000 06176 063B12
2454611.628553.000 05976 089B12
2454841.916149.000 05978 062B12
2455543.984048.000 01484 077B12
2455549.003005.000 01484120B12
2455556.006176.000 01584180B12
2455582.968393.000 01584 411B12
2455584.952622.000 01584 428B12
2455591.955807.000 01584 488B12
2455593.006274.000 01484 497B12
2455605.028372.000 01484 600B12
2455605.962117.000 01984 608B12
2455615.883298.000 01484 693B12
2455635.725619.000 01384 863B12
2455647.864460.000 01484 967B12
2455648.914932.000 01484 976B12
2455654.750921.000 01385 026B12
2455680.779371.000 01485 249B12
2455682.763597.000 01985 266B12
2455896.010239.000 01487 093B12
2455953.903110.000 02187 589B12
2455957.988315.000 01487 624B12
2455977.013609.000 01487 787B12
Table A1.

Literature eclipse times for HW Vir.

T0 (BJDTDB)σ(T0)EpochReference
2445730.556669.000 0990K94
2445731.607139.000 0999K94
2445732.540889.000 09917K94
2445733.591389.000 09926K94
2445734.525149.000 09934K94
2445735.575549.000 09943K94
2445736.509219.000 09951K94
2445740.477899.000 09985K94
2445740.594559.000 09986K94
2445741.528339.000 09994K94
2445742.462240.000 099102K94
2445744.446450.000 099119K94
2445773.509431.000 099368K94
2445773.626191.000 099369K94
2445774.443131.000 099376K94
2445774.559881.000 099377K94
2445775.376921.000 099384K94
2445775.610421.000 099386K94
2445776.427511.000 099393K94
2445776.544181.000 099394K94
2445819.380354.000 099761K94
2445823.932404.000 099800K94
2446086.551616.000 0993050K94
2446098.573736.000 0993153K94
2446100.557976.000 0993170K94
2446101.608376.000 0993179K94
2446139.075518.000 0993500K94
2446164.403620.000 0993717K94
2446164.520380.000 0993718K94
2446203.271322.000 0994050K94
2446223.347073.000 0994222K94
2447684.326630.000 06516 739L09
2447687.244620.000 06516 764L09
2447688.295090.000 07616 773L09
2447689.228830.000 06516 781L09
2447968.539023.000 06119 174L09
2447972.507483.000 06119 208L09
2448267.574765.000 06121 736L09
2448294.887134.000 09921 970L09
2448295.003934.000 09921 971L09
2448295.937624.000 09921 979L09
2448307.609604.000 06122 079L09
2448311.578084.000 06122 113L09
2448313.562324.000 06122 130L09
2448365.385823.000 05922 574L09
2448371.455263.000 05922 626L09
2448404.370202.000 05922 908L09
2448406.354412.000 06522 925L09
2448410.322872.000 06122 959L09
2448682.512946.000 06125 291L09
2448684.497166.000 05925 308L09
2448703.522456.000 07625 471L09
2448704.456226.000 05925 479L09
2448705.506696.000 05925 488L09
2448803.317656.000 05926 326L09
2449104.453947.000 06528 906L09
2449122.312007.000 06129 059L09
2449137.368797.000 06129 188L09
2449139.353057.000 05929 205L09
2449190.242759.000 09929 641L09
2449393.567882.000 07631 383L09
2449400.571182.000 07631 443L09
2449418.546033.000 09931 597L09
2449427.533383.000 07631 674L09
2449437.571373.000 09931 760L09
2449450.643884.000 09931 872L09
2449476.322135.000 09932 092L09
2449480.407315.000 09932 127L09
2449485.309515.000 09932 169L09
2449511.337986.000 09932 392L09
2449518.341386.000 09932 452L09
2449519.274896.000 09932 460L09
2449728.552864.000 09934 253L09
2449733.571774.000 09934 296L09
2449778.625606.000 50334 682L09
2449785.628606.000 20834 742L09
2449808.505507.000 70234 938L09
2449833.483648.000 09935 152L09
2449880.288110.000 09935 553L09
2450142.556692.000 09937 800L09
2450144.540882.000 09937 817L09
2450147.575632.000 09937 843L09
2450155.512633.000 09137 911L09
2450185.392715.000 09938 167L09
2450186.443205.000 09938 176L09
2450201.383275.000 09938 304L09
2450202.433755.000 09938 313L09
2450216.673546.000 09938 435L09
2450218.424376.000 09938 450L09
2450222.509566.000 09938 485L09
2450280.285549.000 09938 980L09
2450491.430748.000 08340 789L09
2450491.547448.000 07640 790L09
2450506.487748.000 09940 918L09
2450509.522508.000 09940 944L09
2450510.572978.000 09940 953L09
2450511.506448.000 07040 961L09
2450511.506728.000 09940 961L09
2450543.721290.000 09941 237L09
2450547.456320.000 09941 269L09
2450547.689760.000 09941 271L09
2450552.475150.000 20841 312L09
2450575.468952.000 09941 509L09
2450594.377552.000 70241 671L09
2450595.427952.000 09941 680L09
2450596.361552.000 09941 688L09
2450597.295462.000 09941 696L09
2450599.279703.000 09941 713L09
2450600.330183.000 09941 722L09
2450631.260795.000 09941 987L09
2450883.491443.000 09944 148L09
2450885.475673.000 09944 165L09
2450910.453614.000 09944 379L09
2450912.321074.000 20844 395L09
2450912.554564.000 09944 397L09
2450927.494574.000 20844 525L09
2450931.346364.000 09944 558L09
2450943.368574.000 11644 661L09
2450943.485074.000 20844 662L09
2450946.403174.000 50344 687L09
2450948.387375.000 60344 704L09
2450955.390545.000 09944 764L09
2450959.242275.000 09944 797L09
2451021.220295.000 09945 328L09
2451183.576969.000 09946  719L09
2451190.580109.000 09946 779L09
2451216.491839.000 09947 001L09
2451236.567569.000 09947 173L09
2451300.413290.000 20847 720L09
2451301.346790.00011647 728L09
2451301.463690.000 11647 729L09
2451302.397390.000 20847 737L09
2451326.324779.000 09947 942L09
2451368.227049.000 09948 301L09
2451578.555416.000 09950 103L09
2451582.523896.000 09950 137L09
2451608.552335.000 09950 360L09
2451616.489185.000 20850 428L09
2451627.460985.000 34550 522L09
2451630.145755.000 07050 545L09
2451630.262425.000 07050 546L09
2451654.423084.000 20850 753L09
2451655.356784.000 20850 761L09
2451668.429584.000 09950 873L09
2451671.463984.000 09950 899L09
2451674.382184.000 20850 924L09
2451688.038573.000 07651 041L09
2451689.088893.000 12451 050L09
2451691.423283.000 11651 070L09
2451692.356883.000 11651 078L09
2451712.315903.000 09951 249L09
2452001.429972.000 11653 726L09
2452001.546772.000 11653 727L09
2452342.251085.000 05956 646L09
2452348.437235.000 71256 699L09
2452348.553995.000 90256 700L09
2452349.487705.000 09956 708L09
2452353.456065.000 40456 742L09
2452356.490895.000 09956 768L09
2452373.298454.000 72256 912L09
2452373.415084.000 87256 913L09
2452402.361703.000 09957 161L09
2452410.298603.000 09957 229L09
2452431.308112.000 09957 409L09
2452650.390821.000 06159 286L09
2452675.368760.000 06559 500L09
2452724.390928.000 39459 920L09
2452724.507628.000 39459 921L09
2452756.371957.000 07060 194L09
2452759.406997.000 52360 220L09
2452764.425637.000 50360 263L09
2452764.542637.000 20860 264L09
2453061.360425.000 06562 807L09
2453112.716925.000 05963 247L09
2453112.833625.000 06163 248L09
2453124.972714.000 10763 352L09
2453360.746019.000 05965 372L09
2453384.323359.000 05965 574L09
2453410.702118.000 11665 800L09
2453444.083818.000 11666 086L09
2453444.200518.000 11666 087L09
2453465.443518.000 20866 269L09
2453466.377218.000 11666 277L09
2453491.355218.000 07666 491L09
2453773.933130.000 05968 912L09
2453825.289771.000 06169 352L09
2453829.024531.000 30669 384L09
2453829.141431.000 20869 385L09
2453861.589331.000 05969 663L09
2454105.182936.000 11671 750L09
2454108.217636.000 11671 776L09
2454108.334536.000 11671 777L09
2454143.233437.000 11672 076L09
2454143.350237.000 11672 077L09
2454155.255507.000 05972 179L09
2454155.372217.000 05972 180L09
2454158.290127.000 09172 205L09
2454214.082109.000 06572 683L09
2454216.416479.000 11672 703L09
2454239.410470.000 20872 900L09
2454498.877648.000 11675 123L09
2454498.877674.000 06075 123B12
2454509.148988.000 06575 211L09
2454509.265688.000 05975 212L09
2454512.300308.000 05975 238L09
2454513.350858.000 08375 247L09
2454514.167808.000 05975 254L09
2454514.284538.000 05975 255L09
2454515.335018.000 06575 264L09
2454517.319248.000 05975 281L09
2454533.193149.000 11675 417L09
2454533.309849.000 11675 418L09
2454535.177249.000 40475 434L09
2454554.902950.000 50375 603L09
2454588.401364.000 07075 890B12
2454601.707367.000 06076 004B12
2454607.076602.000 06576 050L09
2454608.593786.000 06176 063B12
2454611.628553.000 05976 089B12
2454841.916149.000 05978 062B12
2455543.984048.000 01484 077B12
2455549.003005.000 01484120B12
2455556.006176.000 01584180B12
2455582.968393.000 01584 411B12
2455584.952622.000 01584 428B12
2455591.955807.000 01584 488B12
2455593.006274.000 01484 497B12
2455605.028372.000 01484 600B12
2455605.962117.000 01984 608B12
2455615.883298.000 01484 693B12
2455635.725619.000 01384 863B12
2455647.864460.000 01484 967B12
2455648.914932.000 01484 976B12
2455654.750921.000 01385 026B12
2455680.779371.000 01485 249B12
2455682.763597.000 01985 266B12
2455896.010239.000 01487 093B12
2455953.903110.000 02187 589B12
2455957.988315.000 01487 624B12
2455977.013609.000 01487 787B12
T0 (BJDTDB)σ(T0)EpochReference
2445730.556669.000 0990K94
2445731.607139.000 0999K94
2445732.540889.000 09917K94
2445733.591389.000 09926K94
2445734.525149.000 09934K94
2445735.575549.000 09943K94
2445736.509219.000 09951K94
2445740.477899.000 09985K94
2445740.594559.000 09986K94
2445741.528339.000 09994K94
2445742.462240.000 099102K94
2445744.446450.000 099119K94
2445773.509431.000 099368K94
2445773.626191.000 099369K94
2445774.443131.000 099376K94
2445774.559881.000 099377K94
2445775.376921.000 099384K94
2445775.610421.000 099386K94
2445776.427511.000 099393K94
2445776.544181.000 099394K94
2445819.380354.000 099761K94
2445823.932404.000 099800K94
2446086.551616.000 0993050K94
2446098.573736.000 0993153K94
2446100.557976.000 0993170K94
2446101.608376.000 0993179K94
2446139.075518.000 0993500K94
2446164.403620.000 0993717K94
2446164.520380.000 0993718K94
2446203.271322.000 0994050K94
2446223.347073.000 0994222K94
2447684.326630.000 06516 739L09
2447687.244620.000 06516 764L09
2447688.295090.000 07616 773L09
2447689.228830.000 06516 781L09
2447968.539023.000 06119 174L09
2447972.507483.000 06119 208L09
2448267.574765.000 06121 736L09
2448294.887134.000 09921 970L09
2448295.003934.000 09921 971L09
2448295.937624.000 09921 979L09
2448307.609604.000 06122 079L09
2448311.578084.000 06122 113L09
2448313.562324.000 06122 130L09
2448365.385823.000 05922 574L09
2448371.455263.000 05922 626L09
2448404.370202.000 05922 908L09
2448406.354412.000 06522 925L09
2448410.322872.000 06122 959L09
2448682.512946.000 06125 291L09
2448684.497166.000 05925 308L09
2448703.522456.000 07625 471L09
2448704.456226.000 05925 479L09
2448705.506696.000 05925 488L09
2448803.317656.000 05926 326L09
2449104.453947.000 06528 906L09
2449122.312007.000 06129 059L09
2449137.368797.000 06129 188L09
2449139.353057.000 05929 205L09
2449190.242759.000 09929 641L09
2449393.567882.000 07631 383L09
2449400.571182.000 07631 443L09
2449418.546033.000 09931 597L09
2449427.533383.000 07631 674L09
2449437.571373.000 09931 760L09
2449450.643884.000 09931 872L09
2449476.322135.000 09932 092L09
2449480.407315.000 09932 127L09
2449485.309515.000 09932 169L09
2449511.337986.000 09932 392L09
2449518.341386.000 09932 452L09
2449519.274896.000 09932 460L09
2449728.552864.000 09934 253L09
2449733.571774.000 09934 296L09
2449778.625606.000 50334 682L09
2449785.628606.000 20834 742L09
2449808.505507.000 70234 938L09
2449833.483648.000 09935 152L09
2449880.288110.000 09935 553L09
2450142.556692.000 09937 800L09
2450144.540882.000 09937 817L09
2450147.575632.000 09937 843L09
2450155.512633.000 09137 911L09
2450185.392715.000 09938 167L09
2450186.443205.000 09938 176L09
2450201.383275.000 09938 304L09
2450202.433755.000 09938 313L09
2450216.673546.000 09938 435L09
2450218.424376.000 09938 450L09
2450222.509566.000 09938 485L09
2450280.285549.000 09938 980L09
2450491.430748.000 08340 789L09
2450491.547448.000 07640 790L09
2450506.487748.000 09940 918L09
2450509.522508.000 09940 944L09
2450510.572978.000 09940 953L09
2450511.506448.000 07040 961L09
2450511.506728.000 09940 961L09
2450543.721290.000 09941 237L09
2450547.456320.000 09941 269L09
2450547.689760.000 09941 271L09
2450552.475150.000 20841 312L09
2450575.468952.000 09941 509L09
2450594.377552.000 70241 671L09
2450595.427952.000 09941 680L09
2450596.361552.000 09941 688L09
2450597.295462.000 09941 696L09
2450599.279703.000 09941 713L09
2450600.330183.000 09941 722L09
2450631.260795.000 09941 987L09
2450883.491443.000 09944 148L09
2450885.475673.000 09944 165L09
2450910.453614.000 09944 379L09
2450912.321074.000 20844 395L09
2450912.554564.000 09944 397L09
2450927.494574.000 20844 525L09
2450931.346364.000 09944 558L09
2450943.368574.000 11644 661L09
2450943.485074.000 20844 662L09
2450946.403174.000 50344 687L09
2450948.387375.000 60344 704L09
2450955.390545.000 09944 764L09
2450959.242275.000 09944 797L09
2451021.220295.000 09945 328L09
2451183.576969.000 09946  719L09
2451190.580109.000 09946 779L09
2451216.491839.000 09947 001L09
2451236.567569.000 09947 173L09
2451300.413290.000 20847 720L09
2451301.346790.00011647 728L09
2451301.463690.000 11647 729L09
2451302.397390.000 20847 737L09
2451326.324779.000 09947 942L09
2451368.227049.000 09948 301L09
2451578.555416.000 09950 103L09
2451582.523896.000 09950 137L09
2451608.552335.000 09950 360L09
2451616.489185.000 20850 428L09
2451627.460985.000 34550 522L09
2451630.145755.000 07050 545L09
2451630.262425.000 07050 546L09
2451654.423084.000 20850 753L09
2451655.356784.000 20850 761L09
2451668.429584.000 09950 873L09
2451671.463984.000 09950 899L09
2451674.382184.000 20850 924L09
2451688.038573.000 07651 041L09
2451689.088893.000 12451 050L09
2451691.423283.000 11651 070L09
2451692.356883.000 11651 078L09
2451712.315903.000 09951 249L09
2452001.429972.000 11653 726L09
2452001.546772.000 11653 727L09
2452342.251085.000 05956 646L09
2452348.437235.000 71256 699L09
2452348.553995.000 90256 700L09
2452349.487705.000 09956 708L09
2452353.456065.000 40456 742L09
2452356.490895.000 09956 768L09
2452373.298454.000 72256 912L09
2452373.415084.000 87256 913L09
2452402.361703.000 09957 161L09
2452410.298603.000 09957 229L09
2452431.308112.000 09957 409L09
2452650.390821.000 06159 286L09
2452675.368760.000 06559 500L09
2452724.390928.000 39459 920L09
2452724.507628.000 39459 921L09
2452756.371957.000 07060 194L09
2452759.406997.000 52360 220L09
2452764.425637.000 50360 263L09
2452764.542637.000 20860 264L09
2453061.360425.000 06562 807L09
2453112.716925.000 05963 247L09
2453112.833625.000 06163 248L09
2453124.972714.000 10763 352L09
2453360.746019.000 05965 372L09
2453384.323359.000 05965 574L09
2453410.702118.000 11665 800L09
2453444.083818.000 11666 086L09
2453444.200518.000 11666 087L09
2453465.443518.000 20866 269L09
2453466.377218.000 11666 277L09
2453491.355218.000 07666 491L09
2453773.933130.000 05968 912L09
2453825.289771.000 06169 352L09
2453829.024531.000 30669 384L09
2453829.141431.000 20869 385L09
2453861.589331.000 05969 663L09
2454105.182936.000 11671 750L09
2454108.217636.000 11671 776L09
2454108.334536.000 11671 777L09
2454143.233437.000 11672 076L09
2454143.350237.000 11672 077L09
2454155.255507.000 05972 179L09
2454155.372217.000 05972 180L09
2454158.290127.000 09172 205L09
2454214.082109.000 06572 683L09
2454216.416479.000 11672 703L09
2454239.410470.000 20872 900L09
2454498.877648.000 11675 123L09
2454498.877674.000 06075 123B12
2454509.148988.000 06575 211L09
2454509.265688.000 05975 212L09
2454512.300308.000 05975 238L09
2454513.350858.000 08375 247L09
2454514.167808.000 05975 254L09
2454514.284538.000 05975 255L09
2454515.335018.000 06575 264L09
2454517.319248.000 05975 281L09
2454533.193149.000 11675 417L09
2454533.309849.000 11675 418L09
2454535.177249.000 40475 434L09
2454554.902950.000 50375 603L09
2454588.401364.000 07075 890B12
2454601.707367.000 06076 004B12
2454607.076602.000 06576 050L09
2454608.593786.000 06176 063B12
2454611.628553.000 05976 089B12
2454841.916149.000 05978 062B12
2455543.984048.000 01484 077B12
2455549.003005.000 01484120B12
2455556.006176.000 01584180B12
2455582.968393.000 01584 411B12
2455584.952622.000 01584 428B12
2455591.955807.000 01584 488B12
2455593.006274.000 01484 497B12
2455605.028372.000 01484 600B12
2455605.962117.000 01984 608B12
2455615.883298.000 01484 693B12
2455635.725619.000 01384 863B12
2455647.864460.000 01484 967B12
2455648.914932.000 01484 976B12
2455654.750921.000 01385 026B12
2455680.779371.000 01485 249B12
2455682.763597.000 01985 266B12
2455896.010239.000 01487 093B12
2455953.903110.000 02187 589B12
2455957.988315.000 01487 624B12
2455977.013609.000 01487 787B12

Author notes

Member of the International Max-Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg (IMPRS-HD), Germany.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/journals/pages/open_access/funder_policies/chorus/standard_publication_model)