Summary

Mean-value formulae for important characteristics (e.g. volume, surface area, etc.) of the common intersection of randomly placed point-sets are derived under the condition that the basic probability distribution of the underlying model is either motion-invariant or translation-invariant (the orientation of the generating sets in this latter case being known). Various special cases are discussed, some of them leading to a new derivation of known results of geometrical probability theory. The expected value of the probability that an arbitrary point is covered by the random intersection-set is also determined.

References

Balanzat
,
M.
(
1942
).
Sur quelques formules de la géométrie intégrale des ensembles dans un espace à n dimensions
.
Portugaliae Math.
,
3
,
87
94
.

Berwald
,
L.
and
Varga
,
O.
(
1937
).
Integralgeometrie 24. Ueber die Schiebungen im Raum
.
Math. Zeit.
,
42
,
710
736
.

Bonnesen
,
T.
and
Fenchel
,
W.
(
1934
).
Theorie der konvexen Körper. Ergebnisse der Mathematik
, Band
III
.
Berlin
:
Springer-Verlag
.

David
,
F. N.
and
Fix
,
E.
(
1964
).
Intersections of random chords on a circle
.
Biometrika
,
51
,
373
379
.

Hadwiger
,
H.
(
1955
).
Altes und Neues über konvexe Körper.
 
Basel
:
Birkhäuser
.

Hadwiger
,
H.
(
1957
).
Vorlesungen über Inhalt, Oberfläche und Isoperimetrie.
 
Heidelberg
:
Springer-Verlag
.

Kendall
,
M. G.
and
Moran
,
P. A. P.
(
1963
).
Geometrical Probability.
 
London
:
Griffin
.

Mack
,
C.
(
1953
).
The effect of overlapping in bacterial counts of incubated colonies
.
Biometrika
,
40
,
220
222
.

Miles
,
R. E.
(
1969
).
Poisson flats in Euclidean spaces. Part I
.
Adv. Appl. Prob.
,
1
,
211
237
.

Miles
,
R. E.
(
1970
).
On the homogeneous planar Poisson point process
.
Math. Biosci.
,
6
,
85
127
.

Santaló
,
L. A.
(
1953
).
Introduction to Integral Geometry.
 
Paris
:
Hermann
.

Streit
,
F.
(
1970
).
On multiple integral geometric integrals and their applications to probability theory
.
Can. J. Math.
,
22
,
151
163
.

Takacs
,
L.
(
1958
).
On the probability distribution of the measure of the union of random sets placed in a Euclidean space
.
Ann. Univ. Sci. Budapest, Eotovos Sec. Mat.
,
1
,
89
95
.

This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/journals/pages/open_access/funder_policies/chorus/standard_publication_model)