Abstract

Monocyte-derived, fibroblast-like cells, called fibrocytes, participate in wound-healing and the formation of fibrotic lesions. Aggregated or cross-linked IgG are key effectors in infections, autoimmune diseases, anaphylaxis, and immunotherapy. Cells, including monocytes and fibrocytes, bind IgG using FcγRs, and aggregated or cross-linked IgG inhibits fibrocyte differentiation. Mice have four different FcγRs, and which of these, if any, mediate the cross-linked IgG effect on fibrocyte differentiation is unknown. We find that in mice, deletion of FcγRI or the common signaling protein FcRγ significantly reduces the ability of cross-linked IgG or IgG2a to inhibit fibrocyte differentiation. Cells from FcγRIIb/III/IV KO mice are still sensitive to cross-linked IgG, whereas cells from FcγRI/IIb/III/IV KO mice are insensitive to cross-linked IgG. These observations suggest that IgG-mediated inhibition of fibrocyte differentiation is mediated by FcγRs, with FcγRI mediating most of the signaling.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
You do not currently have access to this article.