Abstract

Sand cat swarm optimization (SCSO) is a recently introduced popular swarm intelligence metaheuristic algorithm, which has two significant limitations – low convergence accuracy and the tendency to get stuck in local optima. To alleviate these issues, this paper proposes an improved SCSO based on the arithmetic optimization algorithm (AOA), the refracted opposition-based learning and crisscross strategy, called the sand cat arithmetic optimization algorithm (SC-AOA), which introduced AOA to balance the exploration and exploitation and reduce the possibility of falling into the local optimum, used crisscross strategy to enhance convergence accuracy. The effectiveness of SC-AOA is benchmarked on 10 benchmark functions, CEC 2014, CEC 2017, CEC 2022, and eight engineering problems. The results show that the SC-AOA has a competitive performance.

Highlights
  • The refracted opposition-based learning strategy can enhance the initial population’s diversity and traversal.

  • Combining with arithmetic optimization algorithm, a new formula is proposed to balance exploration and exploitation.

  • Considering the low convergence accuracy of sand cat swarm optimization, the crisscross strategy helps to improve the accuracy.

  • Sand cat arithmetic optimization algorithm is compared with 11 algorithms on CEC 2014, CEC 2017, CEC 2022, and eight engineering problems, respectively.

1. Introduction

In recent years, using metaheuristics to solve complex non-linear optimization has become a hot research topic due to their superiority and efficiency in solving difficult optimization problems. Various metaheuristics have been developed and applied in several fields of science and engineering applications to test their ability to find the optimal solution. In the field of different applications such as data mining (P. Hu et al., 2020; Naik et al., 2020; Shetty et al., 2021), engineering optimization (Gupta et al., 2021; Hu, Zheng, et al., 2023; Singh & Bansal, 2022; Yin et al., 2022; Zare et al., 2023), path planning (Panwar & Deep, 2021; Qu et al., 2020a, b), image segmentation (Khairuzzaman & Chaudhury, 2017; Medjahed et al., 2016; Rajput et al., 2019), and so on. Compared with the traditional methods, metaheuristics are simpler, more efficient, and have also been recognized by many researchers. Some of the metaheuristics which are most common and widely used are the fruit fly optimization algorithm (Pan, 2012), krill herd algorithm (Gandomi & Alavi, 2012), dolphin echolocation (DE, Kaveh & Farhoudi, 2013), swallow swarm optimization (Neshat et al., 2013), animal migration optimization (X. Li et al., 2014), and so on. Some of the other algorithms that have recently been developed, such as sand cat swarm optimization (SCSO, Seyyedabbasi & Kiani, 2023), ant lion optimizer (Mirjalili, 2015a), crow search algorithm (CSA, Askarzadeh, 2016), whale optimization algorithm (WOA, Mirjalili & Lewis, 2016), sine cosine algorithm (SCA, Mirjalili, 2016), Harris hawks optimization (HHO, Heidari et al., 2019), arithmetic optimization algorithm (AOA, Abualigah, et al., 2021a), teaching–learning-based optimization (Rao et al., 2011), gaining–sharing knowledge-based algorithm (GSK, Mohamed et al., 2020), dwarf mongoose optimization algorithm (DMOA, Agushaka et al., 2022), golden jackal optimization (Chopra & Ansari, 2022), prairie dog optimization (Ezugwu et al., 2022), gazelle optimization algorithm (Agushaka et al., 2023), enhanced African vultures optimization algorithm (Zheng et al., 2023), modified beluga whale optimization (Jia et al., 2023), and running city game optimizer (Ma et al., 2023).

SCSO (Seyyedabbasi & Kiani, 2023) is a recently developed metaheuristic. The search and hunting behavior of the sand cats in nature inspires it. Sand cats have the feature to detect low-frequency noises. This critical feature allows it to find and catch its prey quickly. However, similar to other algorithms, there have been some drawbacks associated with SCSO, such as low convergence accuracy and the tendency to get stuck in local optima. Thus, the AOA is applied in this study to improve the SCSO. Here, we briefly review the major works of SCSO and AOA to understand the shortcomings of this study.

1.1. Literature review

Aiming at the limitations of SCSO, scholars have been inspired to conduct in-depth research and propose improved methods. D. Wu et al. (2022) proposed a modified SCSO based on the wandering strategy to enhance global exploration ability, and the proposed method was used to solve engineering issues. Kiani et al. (2023a) presented a novel version of the SCSO based on a political system to balance between exploration and exploitation, and the performance of the proposed method is analyzed on different benchmark functions. Talpur et al. (2023) proposed a new improved SCSO to solve local minima problems, and experimental results on the feature selection demonstrate the effectiveness of the proposed method. Alex Stanley Raja et al. (2023) proposed an improved SCSO based on Brownian random walk and chaotic tent drift strategy to enhance exploration and exploitation. Qtaish et al. (2023) proposed an enhanced SCSO called binary memory-based SCSO to overcome quickly falling into local optimal and low convergence accuracy when solving feature selection. Seyyedabbasi (2023) introduced reinforcement learning to improve the performance of the SCSO, and experimental results on the benchmark functions analyze the demonstration of the proposed method. Kiani et al. (2023b) proposed a chaotic SCSO to solve low search consistency, local optimum trap, inefficiency search, and low population diversity issues. Y. Hu et al. (2023) adapted the immune algorithm to improve the performance of the SCSO, and the proposed method was applied to solve double-layer spraying path parameters. X. Wang et al. (2023) proposed an adaptive SCSO based on Cauchy mutation and optimal neighborhood disturbance strategy to improve convergence precision.

The aforementioned literature used different strategies to improve SCSO. However, the AOA has been used by most researchers to improve the performance of methods because of its strong exploration and exploitation. For example, Mahajan et al. (2022a) presented a new hybrid method based on aquila optimizer and AOA and demonstrated the effectiveness of the proposed method on high-dimensional issues. Chauhan et al. (2022) proposed a hybrid algorithm that integrated the AOA and the proposed method was applied to solve the engineering issues. ÇetınbaŞ et al. (2022) proposed a hybrid Harris hawks optimizer-arithmetic optimization algorithm, which improves the performance of the HHO. Mahajan et al. (2022b) introduced AOA in the hunger games search to achieve high-quality performance. Thota and Sinha (2023) introduced AOA to improve the poor exploration of the grey wolf optimizer, which was applied to solve the maximum power point tracking. Erdemir (2023) adapted the exploration phase of the AOA to improve the salp swarm algorithm and demonstrated its better performance on different benchmark functions.

Although scholars have proposed that SCSO variants are superior to the basic SCSO, they still show limitations when faced with complex optimization issues. By inspiring the advantages of hybridizing two or more algorithms, in this study, the SCSO and AOA are hybridized to maintain a balance between exploration and exploitation, the proposed hybrid algorithm is named sand cat arithmetic optimization algorithm (SC-AOA). The SC-AOA is mainly based on the following factors. Firstly, SCSO has been found to have some adverse effects on its performance and high-dimensional issues. Secondly, although the existing literature has improved SCSO, the application of this method is relatively limited. Then, based on the “No Free Lunch” theory (Wolpert & Macready, 1997), no perfect method can fully resolve all issues, so researchers must constantly develop novel approaches compared with existing ones. Finally, according to the current literature, it is found that using a single operator is not very effective in improving the performance of the method, so using many different operators and combining other methods can effectively enhance the performance of the method, and it can be applied to solve most problems. The aforementioned factors motivate this study to propose a new method to solve more complex problems.

Thus, we present a hybrid algorithm named SC-AOA that combines a refracted opposition-based learning strategy, a multiplication and division operator of AOA, and a crisscross strategy. It aims to deal with low convergence accuracy, the need for more population diversity, and the poor balance between exploitation and exploration. The refracted opposition-based learning strategy is introduced to enhance the diversity of the population and minimize the probability that the method will be trapped in the optimal local state. Then, an AOA is added to update the position of the individual, which can be balanced exploration and exploitation. Lastly, the crisscross strategy can enhance convergence accuracy. All of these strategies are concerned with different aspects. Refracted opposition-based learning strategy focuses primarily on improving population diversity. The multiplication and division operator of the AOA mainly balances between exploitation and exploration. Moreover, the crisscross strategy is more concerned with enhancing convergence accuracy. Integrating those strategies removes the deficiencies of SCSO and dramatically enhances the performance of the primary method.

1.2. Contributions

To verify the efficiency of the SC-AOA, this study differs from other research in the following areas. Firstly, it is compared with 11 state-of-the-art algorithms, including SCSO, WOA, HHO, GSK, AOA, artificial hummingbird algorithm (AHA, W. Zhao et al., 2022), DMOA, honey badger algorithm (HBA, Hashim et al., 2022), Young’s double-slit experiment (YDSE, Abdel-Basset et al., 2023), multi-strategy improved slime mould algorithm (MSMA, Deng & Liu, 2023), and elite archives-driven particle swarm optimization (EAPSO, Zhang, 2023) on 10 classical benchmark functions, CEC 2014, CEC 2017, and CEC 2022. Then, three non-parametric tests (Wilcoxon signed-rank test, Friedman test, and Kruskal Wallis test) are examined. Moreover, SC-AOA is applied to eight challenging real-world engineering problems and compared with other algorithms. The experimental simulation results show that SC-AOA performs well, with high solution accuracy and robustness. The main contributions of this study can be summarized as follows.

  • The refracted opposition-based learning strategy can enhance the initial population’s diversity and traversal.

  • Combining with the multiplication and division operator of the AOA, a new update formula of the individual is proposed to balance exploration and exploitation.

  • Considering the low convergence accuracy of SCSO, the crisscross strategy helps to improve the convergence accuracy.

  • The performance of SC-AOA is compared with 11 state-of-the-art algorithms on 10 classical benchmark functions, CEC 2014, CEC 2017, CEC 2022, and eight challenging real-world engineering problems, respectively.

The rest of the study is organized as follows. Section 2 presents the basic SCSO and AOA. Section 3 discusses the proposed SC-AOA in detail. Section 4 analyzes the performance of the SC-AOA on benchmark functions. Section 5 applies the SC-AOA to solve real-world engineering problems. Finally, Section 6 summarizes the conclusions and future works.

2. Related Works

2.1. Sand cat swarm optimization

SCSO is inspired by the behavior of natural sand cats. The two main actions of the sand cats are foraging and attacking the prey. There are three main steps of sand cat hunting: initial population, searching, and attacking the prey.

  • Initial population: In a D-dimensional optimization problem, the sand cat population size is N, and the solution for each sand cat is represented as |${X}_i = ( {{x}_{i1},\ {x}_{i2}, \cdots ,{x}_{iD}} )$|⁠. The initial population is calculated by Equation (1):
    (1)

    where |${X}_{i,j}( t )$| indicates the jth dimension of the current position of |${X}_i$|⁠, t is the current iteration, |$U( {0,\ 1} )$| is random in [0, 1], |$l{b}_j$| indicates the jth dimension of the lower boundaries, and |$u{b}_j$| indicates the jth dimension of upper boundaries.

  • Searching the prey: It is assumed that the sand cat sensitivity range starts from 2 kHz to 0. Each sand cat updates its position based on the best candidate position (⁠|$Po{s}_{\mathrm{ bc}}$|⁠), its current position (⁠|$Po{s}_\mathrm{ c}$|⁠), and its sensitivity range (r). Equations (24) describe the prey searching behavior:
    (2)
    (3)
    (4)

    where |${r}_G$| indicates the broad sensitivity range that is decreased linearly from 2 to 0, the |${s}_M$| value is inspired by the hearing characteristics of the sand cats, its value is assumed to be 2, rand (0, 1) is random in [0, 1], and |${t}_{\mathrm{max}}$| is maximum iterations.

  • Attacking the prey: The sand cat sensitivity range is supposed as a circle. In this way, the direction of movement is determined by a random angle (⁠|$\theta $|⁠) on the circle. SCSO benefits the roulette wheel selection algorithm to select a random angle for each sand cat. Equations (57) describe the behavior of attacking the prey:
    (5)
    (6)
    (7)

where |$Po{s}_\mathrm{ b}$| indicates the best solution position, |$Po{s}_{\mathrm{ rnd}}$| indicates the random position, and |$\theta $| is between 0 and 360, and its value will be between −1 and 1.

2.2. Arithmetic optimization algorithm

AOA is proposed through the arithmetic operators in mathematical operations, namely addition (+), subtraction (−), multiplication (⁠|$\times $|⁠), and division (⁠|$\div $|⁠). AOA can solve optimization problems without calculating its derivatives. The optimization process of the AOA consists of two main phases: exploration and exploitation. The former refers to extensive coverage of search space using search agents of an algorithm to avoid local solutions. The latter is the improved accuracy of obtained solutions during the exploration phase.

  • Exploration stage: According to the arithmetic operators, the division and multiplication operators are adopted to explore the searching mechanism. Equation (8) describes the exploration behavior:
    (8)
    where |${X}_{i,j}( {t + 1} )$| denotes the jth dimension of the ith solution at the next iteration, and |$best( {{X}_j} )$| is the jth dimension in the best-obtained solution so far. |$\epsilon $| is a small integer number, and |$u{b}_j$| and |$l{b}_j$| denote the upper and lower bound values of the jth dimension, respectively. |$\mu $| is a control parameter to adjust the search process. |${r}_2$| is a random number between (0, 1), and MOP is a coefficient calculated by Equation (9):
    (9)

    where t is the current iteration, |${t}_{\mathrm{max}}$| denotes the maximum number of iterations, and |$\alpha $| is a sensitive parameter. It defines the exploitation accuracy over the iterations, which is fixed equal to 5.

  • Exploitation stage: According to the arithmetic operators, the mathematical calculations using either subtraction or addition got high-dense results which refer to the exploitation search mechanism. Equation (10) describes the exploitation behavior:
    (10)

where |${r}_3$| is a random number between (0, 1).

3. Proposed SC-AOA

3.1. Refracted opposition-based learning strategy

Tizhoosh proposed opposition-based learning in 2005 to improve the initialization of the population. It broadens the solution range by obtaining the opposition-based solution of the current solution to find a better alternative solution for a specific problem (Tizhoosh, 2005). The literature (Sharma & Pant, 2017; Z. Wang et al., 2022; Yu et al., 2021) combined the metaheuristic with opposition-based learning, proving that it can effectively improve the solution accuracy of the algorithm. Although introducing opposition-based learning in the early stage can enhance the convergence effect, it is easy to fall into premature convergence in the later stage. Thus, the principle of refraction (F. Zhao et al., 2020) is introduced into the opposition-based learning strategy to reduce the possibility of falling into premature convergence late in the search. The principle of refracted opposition-based learning is shown in Fig. 1.

Refracted opposition-based learning.
Figure 1:

Refracted opposition-based learning.

where the search interval of the solution on the x-axis is distributed within the range [LB, UB], the origin O is the midpoint on [LB, UB], α and β are denoted as the angle of incidence, and the angle of refraction, respectively. m and m* are the lengths corresponding to the incident and refracted rays, respectively. The refracted index formula can be obtained as follows.

(11)

Let |$\sigma $| = |$\frac{m}{{{m}^*}}$| and n = 1. Substituted into Equation (11) and expanded to the high-dimensional space of SCSO yields the refracted direction solution |$x_{i,j}^*$|⁠, as follows:

(12)

where |${x}_{i,j}$| denotes the position of the ith sand cat in the population in jth dimensions (⁠|$i = 1,2, \cdots ,N,\ j = 1,2, \cdots ,D$|⁠), |$x_{i,j}^*$| denotes the refracted inverse solution of |${x}_{i,j}$|⁠, and |$L{B}_j$| and |$U{B}_j$| are the lower and upper bounds of the dynamic boundary, respectively.

3.2. The multiplication and division operator for the position component of SCSO

The multiplication and division operators in AOA have strong global exploration capability, facilitating the solution dispersion, thus avoiding premature convergence. When the sand cat agents perform position updates, their sensitivity takes different values of guides R parameter, making the sand cats choose different search strategies. In the SCSO, this balance is achieved by the guides R parameter, which allows the high exploration in the earlier iterations of the algorithm and exploits the discovered promising search areas in the later iterations.

where |$\epsilon $| is a small integer number, and |$ub$| and |$lb$| denote the upper and lower bound values, respectively. |$\mu $| is a control parameter to adjust the search process, fixed equal to 0.499. |$\rho $| is a random number between (0, 1), and MOP is a coefficient calculated by Equation (9).

3.3. Crisscross strategy

SCSO is improved by introducing the crisscross strategy (Meng et al., 2014), which enhances the solution accuracy of the algorithm.

3.3.1. Horizontal crossover

The horizontal crossover is an arithmetic crossover operated on all the dimensions between two agents. Suppose the ith parent sand cat |${X}_i$| and the kth parent sand cat |${X}_k$| are used to carry out the horizontal crossover operation at the jth dimension. Equations (1617) can calculate their offspring:

(16)
(17)

where |$X_{ij}^{\prime}$| and |$X_{kj}^{\prime}$| are the moderation solutions that are the offspring of |${X}_{ij}$| and |${X}_{kj}$|⁠, respectively. |${r}_1$| and |${r}_2$| are random in [0, 1], |${c}_1$| and |${c}_2$| are random in [−1, 1]. The new solutions generated by horizontal crossover operation must be compared with the pre-crossover to retain better sand cats.

3.3.2. Vertical crossover

The vertical crossover is an arithmetic crossover operated on all the agents between two dimensions. Suppose the j1th and the j2th dimensions of the sand cat |${X}_i$| are used to carry out the vertical crossover operation. Equation (18) can calculate their offspring:

(18)

where |$X_{ij}^{\prime}$| is the offspring of |${X}_{i{j}_1}$| and |${X}_{i{j}_2}$|⁠, and r is random in [0, 1]. The new solutions generated by vertical crossover operation must be compared with the pre-crossover to retain better sand cats.

3.4. The proposed SC-AOA

The proposed SC-AOA benefits from three new search strategies. Firstly, the refracted opposition-based learning strategy enhances the diversity of the initial population. Then, the multiplication and division operator of the AOA mainly balances between exploitation and exploration. Moreover, the crisscross strategy is more concerned with enhancing convergence accuracy. Thus, cooperation among the three strategies can improve diversification, exploitation, exploration, and convergence accuracy. The pseudo-code and the detailed flowchart of the proposed SC-AOA are shown in Algorithm 1 and Fig. 2.

The flowchart of SC-AOA.
Figure 2:

The flowchart of SC-AOA.

Algorithm 1. Pseudo-code of SC-AOA.
Input: Maximum number of function evaluations, dimension D, and population size N
Output: Optimal solution
Initialize the candidate solutions using refracted opposition-based learning
While the maximum number of function evaluations is not met do
 Calculate the fitness values based on the objective function
Fori = 1: Ndo
  If (abs(R)⇐1) then
   Update the position of sand cats based on Equation (13)
  Else
   If (⁠|$\rho < 0.5$|⁠) then
    Update the position of sand cats based on Equation (14)
   Else
    Update the position of sand cats based on Equation (15)
   End If
  End If
  Update the position of sand cats by using the crisscross strategy based on Equations (1618)
End For
Update the number of function evaluations
End While
Output the optimal solution
Algorithm 1. Pseudo-code of SC-AOA.
Input: Maximum number of function evaluations, dimension D, and population size N
Output: Optimal solution
Initialize the candidate solutions using refracted opposition-based learning
While the maximum number of function evaluations is not met do
 Calculate the fitness values based on the objective function
Fori = 1: Ndo
  If (abs(R)⇐1) then
   Update the position of sand cats based on Equation (13)
  Else
   If (⁠|$\rho < 0.5$|⁠) then
    Update the position of sand cats based on Equation (14)
   Else
    Update the position of sand cats based on Equation (15)
   End If
  End If
  Update the position of sand cats by using the crisscross strategy based on Equations (1618)
End For
Update the number of function evaluations
End While
Output the optimal solution
Algorithm 1. Pseudo-code of SC-AOA.
Input: Maximum number of function evaluations, dimension D, and population size N
Output: Optimal solution
Initialize the candidate solutions using refracted opposition-based learning
While the maximum number of function evaluations is not met do
 Calculate the fitness values based on the objective function
Fori = 1: Ndo
  If (abs(R)⇐1) then
   Update the position of sand cats based on Equation (13)
  Else
   If (⁠|$\rho < 0.5$|⁠) then
    Update the position of sand cats based on Equation (14)
   Else
    Update the position of sand cats based on Equation (15)
   End If
  End If
  Update the position of sand cats by using the crisscross strategy based on Equations (1618)
End For
Update the number of function evaluations
End While
Output the optimal solution
Algorithm 1. Pseudo-code of SC-AOA.
Input: Maximum number of function evaluations, dimension D, and population size N
Output: Optimal solution
Initialize the candidate solutions using refracted opposition-based learning
While the maximum number of function evaluations is not met do
 Calculate the fitness values based on the objective function
Fori = 1: Ndo
  If (abs(R)⇐1) then
   Update the position of sand cats based on Equation (13)
  Else
   If (⁠|$\rho < 0.5$|⁠) then
    Update the position of sand cats based on Equation (14)
   Else
    Update the position of sand cats based on Equation (15)
   End If
  End If
  Update the position of sand cats by using the crisscross strategy based on Equations (1618)
End For
Update the number of function evaluations
End While
Output the optimal solution

3.5. Computational complexity of SC-AOA

Assume that the population size is represented by N, the dimension is defined by D, and the number of maximum iterations is |${t}_{\mathrm{max}}$|⁠. The computational complexity of SCSO is O (⁠|$N \times D \times {t}_{\mathrm{max}}$|⁠). First, the computational complexity of introducing the refracted opposition-based learning to initialize the population is O (⁠|$N \times D$|⁠). Then the computational complexity of updating the population position is O (⁠|$N \times D \times {t}_{\mathrm{max}}$|⁠), and the computational complexity of introducing the crisscross strategy is O ((⁠|$\frac{N}{2} \times D + N$|⁠)|$\times {t}_{\mathrm{max}}$|⁠). Thus, the total computational complexity of the SC-AOA is O (⁠|$N \times D$| + |$N \times D \times {t}_{\mathrm{max}} + ( {\frac{N}{2} \times D + N} ) \times {t}_{\mathrm{max}}$|⁠) |$\cong $| O (⁠|$N \times D \times {t}_{\mathrm{max}}$|⁠).

4. Results and Analysis

This section analyzed the proposed SC-AOA on 10 classical benchmark functions. Among them, the first six functions are unimodal, while the remaining are multimodal. The corresponding formula of functions, dimension, range, and theoretical optimal value of these functions are given in Table 1. Dim indicates the function’s dimension, range shows the function’s domain, and |${f}_{\mathrm{min}}$| shows the function’s optimum value. All the functions used in this study are minimization problems. Several related works have used these benchmark functions (Abd Elaziz et al., 2017; Abualigah et al., 2023).

Table 1:

Characteristics of benchmark functions.

No.FunctionsDimRange|${f}_{\mathrm{min}}$|
F1|${F}_1( x ) = \mathop \sum \limits_{i = 1}^D \, x_i^2$|30/500[−100, 100]0
F2|${F}_2( x ) = \mathop \sum \limits_{i = 1}^D \, | {{x}_i} | + \mathop \prod \limits_{i = 1}^D \, | {{x}_i} |$|30/500[−10, 10]0
F3|${F}_3( x ) = \mathop \sum \limits_{i = 1}^D \, {( {\mathop \sum \limits_{j = 1}^i \, {x}_j} )}^2$|30/500[−100, 100]0
F4|${F}_4( x ) = ma{x}_i\, \{ {| {{x}_i} |,1 \le i \le D} \}$|30/500[−100, 100]0
F5|${F}_5( x ) = \mathop \sum \limits_{i = 1}^D \, ix_i^2$|30/500[−5.12, 5.12]0
F6|${F}_6( x ) = \mathop \sum \limits_{i = 1}^D \, {( {\lfloor {x}_i + 0.5\rfloor } )}^2$|30/500[−100, 100]0
F7|${F}_7( x ) = \mathop \sum \limits_{i = 1}^D \, [ {x_i^2 - 10{\rm{cos}}( {2\pi {x}_i} ) + 10} ]$|30/500[−5.12, 5.12]0
F8|${F}_8( x ) = \mathop \sum \limits_{i = 1}^D | {{x}_i\sin ( {{x}_i} ) + 0.1{x}_i} |$|30/500[−10, 10]0
F9|${F}_9( x ) = - 20{\rm{exp}}( { - 0.2\sqrt {\frac{1}{D}\mathop \sum \limits_{i = 1}^D \, x_i^2} } ) - {\rm{exp}}( {\frac{1}{D}\mathop \sum \limits_{i = 1}^D \, {\rm{cos}}( {2\pi {x}_i} )} ) + 20 + e$|30/500[−32, 32]0
F10|${F}_{10}( x ) = \frac{1}{{4000}}\mathop \sum \limits_{i = 1}^D \, x_i^2 - \mathop \prod \limits_{i = 1}^D \, {\rm{cos}}( {\frac{{{x}_i}}{{\sqrt i }}} ) + 1$|30/500[−600, 600]0
No.FunctionsDimRange|${f}_{\mathrm{min}}$|
F1|${F}_1( x ) = \mathop \sum \limits_{i = 1}^D \, x_i^2$|30/500[−100, 100]0
F2|${F}_2( x ) = \mathop \sum \limits_{i = 1}^D \, | {{x}_i} | + \mathop \prod \limits_{i = 1}^D \, | {{x}_i} |$|30/500[−10, 10]0
F3|${F}_3( x ) = \mathop \sum \limits_{i = 1}^D \, {( {\mathop \sum \limits_{j = 1}^i \, {x}_j} )}^2$|30/500[−100, 100]0
F4|${F}_4( x ) = ma{x}_i\, \{ {| {{x}_i} |,1 \le i \le D} \}$|30/500[−100, 100]0
F5|${F}_5( x ) = \mathop \sum \limits_{i = 1}^D \, ix_i^2$|30/500[−5.12, 5.12]0
F6|${F}_6( x ) = \mathop \sum \limits_{i = 1}^D \, {( {\lfloor {x}_i + 0.5\rfloor } )}^2$|30/500[−100, 100]0
F7|${F}_7( x ) = \mathop \sum \limits_{i = 1}^D \, [ {x_i^2 - 10{\rm{cos}}( {2\pi {x}_i} ) + 10} ]$|30/500[−5.12, 5.12]0
F8|${F}_8( x ) = \mathop \sum \limits_{i = 1}^D | {{x}_i\sin ( {{x}_i} ) + 0.1{x}_i} |$|30/500[−10, 10]0
F9|${F}_9( x ) = - 20{\rm{exp}}( { - 0.2\sqrt {\frac{1}{D}\mathop \sum \limits_{i = 1}^D \, x_i^2} } ) - {\rm{exp}}( {\frac{1}{D}\mathop \sum \limits_{i = 1}^D \, {\rm{cos}}( {2\pi {x}_i} )} ) + 20 + e$|30/500[−32, 32]0
F10|${F}_{10}( x ) = \frac{1}{{4000}}\mathop \sum \limits_{i = 1}^D \, x_i^2 - \mathop \prod \limits_{i = 1}^D \, {\rm{cos}}( {\frac{{{x}_i}}{{\sqrt i }}} ) + 1$|30/500[−600, 600]0
Table 1:

Characteristics of benchmark functions.

No.FunctionsDimRange|${f}_{\mathrm{min}}$|
F1|${F}_1( x ) = \mathop \sum \limits_{i = 1}^D \, x_i^2$|30/500[−100, 100]0
F2|${F}_2( x ) = \mathop \sum \limits_{i = 1}^D \, | {{x}_i} | + \mathop \prod \limits_{i = 1}^D \, | {{x}_i} |$|30/500[−10, 10]0
F3|${F}_3( x ) = \mathop \sum \limits_{i = 1}^D \, {( {\mathop \sum \limits_{j = 1}^i \, {x}_j} )}^2$|30/500[−100, 100]0
F4|${F}_4( x ) = ma{x}_i\, \{ {| {{x}_i} |,1 \le i \le D} \}$|30/500[−100, 100]0
F5|${F}_5( x ) = \mathop \sum \limits_{i = 1}^D \, ix_i^2$|30/500[−5.12, 5.12]0
F6|${F}_6( x ) = \mathop \sum \limits_{i = 1}^D \, {( {\lfloor {x}_i + 0.5\rfloor } )}^2$|30/500[−100, 100]0
F7|${F}_7( x ) = \mathop \sum \limits_{i = 1}^D \, [ {x_i^2 - 10{\rm{cos}}( {2\pi {x}_i} ) + 10} ]$|30/500[−5.12, 5.12]0
F8|${F}_8( x ) = \mathop \sum \limits_{i = 1}^D | {{x}_i\sin ( {{x}_i} ) + 0.1{x}_i} |$|30/500[−10, 10]0
F9|${F}_9( x ) = - 20{\rm{exp}}( { - 0.2\sqrt {\frac{1}{D}\mathop \sum \limits_{i = 1}^D \, x_i^2} } ) - {\rm{exp}}( {\frac{1}{D}\mathop \sum \limits_{i = 1}^D \, {\rm{cos}}( {2\pi {x}_i} )} ) + 20 + e$|30/500[−32, 32]0
F10|${F}_{10}( x ) = \frac{1}{{4000}}\mathop \sum \limits_{i = 1}^D \, x_i^2 - \mathop \prod \limits_{i = 1}^D \, {\rm{cos}}( {\frac{{{x}_i}}{{\sqrt i }}} ) + 1$|30/500[−600, 600]0
No.FunctionsDimRange|${f}_{\mathrm{min}}$|
F1|${F}_1( x ) = \mathop \sum \limits_{i = 1}^D \, x_i^2$|30/500[−100, 100]0
F2|${F}_2( x ) = \mathop \sum \limits_{i = 1}^D \, | {{x}_i} | + \mathop \prod \limits_{i = 1}^D \, | {{x}_i} |$|30/500[−10, 10]0
F3|${F}_3( x ) = \mathop \sum \limits_{i = 1}^D \, {( {\mathop \sum \limits_{j = 1}^i \, {x}_j} )}^2$|30/500[−100, 100]0
F4|${F}_4( x ) = ma{x}_i\, \{ {| {{x}_i} |,1 \le i \le D} \}$|30/500[−100, 100]0
F5|${F}_5( x ) = \mathop \sum \limits_{i = 1}^D \, ix_i^2$|30/500[−5.12, 5.12]0
F6|${F}_6( x ) = \mathop \sum \limits_{i = 1}^D \, {( {\lfloor {x}_i + 0.5\rfloor } )}^2$|30/500[−100, 100]0
F7|${F}_7( x ) = \mathop \sum \limits_{i = 1}^D \, [ {x_i^2 - 10{\rm{cos}}( {2\pi {x}_i} ) + 10} ]$|30/500[−5.12, 5.12]0
F8|${F}_8( x ) = \mathop \sum \limits_{i = 1}^D | {{x}_i\sin ( {{x}_i} ) + 0.1{x}_i} |$|30/500[−10, 10]0
F9|${F}_9( x ) = - 20{\rm{exp}}( { - 0.2\sqrt {\frac{1}{D}\mathop \sum \limits_{i = 1}^D \, x_i^2} } ) - {\rm{exp}}( {\frac{1}{D}\mathop \sum \limits_{i = 1}^D \, {\rm{cos}}( {2\pi {x}_i} )} ) + 20 + e$|30/500[−32, 32]0
F10|${F}_{10}( x ) = \frac{1}{{4000}}\mathop \sum \limits_{i = 1}^D \, x_i^2 - \mathop \prod \limits_{i = 1}^D \, {\rm{cos}}( {\frac{{{x}_i}}{{\sqrt i }}} ) + 1$|30/500[−600, 600]0

The parameters involved in the proposed SC-AOA and comparison algorithms are shown in Table 2. The comparison algorithms included SCSO, WOA, HHO, GSK, AOA, AHA, DMOA, HBA, YDSE, MSMA, and EAPSO, which are the native ones recently proposed, and some are ones with good performance. The values used are the same as those in the corresponding references.

Table 2:

Parameter settings of different algorithms.

MethodsYearSpecifications
Common parametersMaximum number of function evaluations = 50 000
Population size (N) = 30
Dimension (D) = 10/30/500
WOA (Mirjalili & Lewis, 2016)2016|$\alpha $| from 2 linearly decreasing to 0, b = 1, r= [−1, 1]
HHO (Heidari et al., 2019)2019The initial escape energy of the prey |$E0 \in [ { - 1,\ 1} ]$|
GSK (Mohamed et al., 2020)2020P = 0.1, |${k}_f$| = 0.5, |${k}_r$| = 0.9, K = 10
AOA (Abualigah et al., 2021a)2021|$\mu $| = 0.499, |$\alpha $| = 5
AHA (W. Zhao et al., 2022)2022Migration coefficient = 2n
DMOA (Agushaka et al., 2022)2022phi|$\in [ { - 1,\ 1} ]$|
HBA (Hashim et al., 2022)2022|$\beta \ $|(the ability of a honey badger to get food) = 6, C = 2
SCSO (Seyyedabbasi & Kiani, 2023)2023|${r}_G$| is linearly decreased from 2 to 0
YDSE (Abdel-Basset et al., 2023)2023|$\lambda = 5 \times {10}^{ - 6}$|⁠, |$d = 5 \times {10}^{ - 3}$|⁠, L = 1, I = 0.01
MSMA (Deng & Liu, 2023)2023z = 0.03, E = 100, N = 10
EAPSO (Zhang, 2023)2023|${c}_1$| = 2, |${c}_2$| = 2
SC-AOA2023|${r}_G$| is linearly decreased from 2 to 0, |$\sigma $| = 10 000
MethodsYearSpecifications
Common parametersMaximum number of function evaluations = 50 000
Population size (N) = 30
Dimension (D) = 10/30/500
WOA (Mirjalili & Lewis, 2016)2016|$\alpha $| from 2 linearly decreasing to 0, b = 1, r= [−1, 1]
HHO (Heidari et al., 2019)2019The initial escape energy of the prey |$E0 \in [ { - 1,\ 1} ]$|
GSK (Mohamed et al., 2020)2020P = 0.1, |${k}_f$| = 0.5, |${k}_r$| = 0.9, K = 10
AOA (Abualigah et al., 2021a)2021|$\mu $| = 0.499, |$\alpha $| = 5
AHA (W. Zhao et al., 2022)2022Migration coefficient = 2n
DMOA (Agushaka et al., 2022)2022phi|$\in [ { - 1,\ 1} ]$|
HBA (Hashim et al., 2022)2022|$\beta \ $|(the ability of a honey badger to get food) = 6, C = 2
SCSO (Seyyedabbasi & Kiani, 2023)2023|${r}_G$| is linearly decreased from 2 to 0
YDSE (Abdel-Basset et al., 2023)2023|$\lambda = 5 \times {10}^{ - 6}$|⁠, |$d = 5 \times {10}^{ - 3}$|⁠, L = 1, I = 0.01
MSMA (Deng & Liu, 2023)2023z = 0.03, E = 100, N = 10
EAPSO (Zhang, 2023)2023|${c}_1$| = 2, |${c}_2$| = 2
SC-AOA2023|${r}_G$| is linearly decreased from 2 to 0, |$\sigma $| = 10 000
Table 2:

Parameter settings of different algorithms.

MethodsYearSpecifications
Common parametersMaximum number of function evaluations = 50 000
Population size (N) = 30
Dimension (D) = 10/30/500
WOA (Mirjalili & Lewis, 2016)2016|$\alpha $| from 2 linearly decreasing to 0, b = 1, r= [−1, 1]
HHO (Heidari et al., 2019)2019The initial escape energy of the prey |$E0 \in [ { - 1,\ 1} ]$|
GSK (Mohamed et al., 2020)2020P = 0.1, |${k}_f$| = 0.5, |${k}_r$| = 0.9, K = 10
AOA (Abualigah et al., 2021a)2021|$\mu $| = 0.499, |$\alpha $| = 5
AHA (W. Zhao et al., 2022)2022Migration coefficient = 2n
DMOA (Agushaka et al., 2022)2022phi|$\in [ { - 1,\ 1} ]$|
HBA (Hashim et al., 2022)2022|$\beta \ $|(the ability of a honey badger to get food) = 6, C = 2
SCSO (Seyyedabbasi & Kiani, 2023)2023|${r}_G$| is linearly decreased from 2 to 0
YDSE (Abdel-Basset et al., 2023)2023|$\lambda = 5 \times {10}^{ - 6}$|⁠, |$d = 5 \times {10}^{ - 3}$|⁠, L = 1, I = 0.01
MSMA (Deng & Liu, 2023)2023z = 0.03, E = 100, N = 10
EAPSO (Zhang, 2023)2023|${c}_1$| = 2, |${c}_2$| = 2
SC-AOA2023|${r}_G$| is linearly decreased from 2 to 0, |$\sigma $| = 10 000
MethodsYearSpecifications
Common parametersMaximum number of function evaluations = 50 000
Population size (N) = 30
Dimension (D) = 10/30/500
WOA (Mirjalili & Lewis, 2016)2016|$\alpha $| from 2 linearly decreasing to 0, b = 1, r= [−1, 1]
HHO (Heidari et al., 2019)2019The initial escape energy of the prey |$E0 \in [ { - 1,\ 1} ]$|
GSK (Mohamed et al., 2020)2020P = 0.1, |${k}_f$| = 0.5, |${k}_r$| = 0.9, K = 10
AOA (Abualigah et al., 2021a)2021|$\mu $| = 0.499, |$\alpha $| = 5
AHA (W. Zhao et al., 2022)2022Migration coefficient = 2n
DMOA (Agushaka et al., 2022)2022phi|$\in [ { - 1,\ 1} ]$|
HBA (Hashim et al., 2022)2022|$\beta \ $|(the ability of a honey badger to get food) = 6, C = 2
SCSO (Seyyedabbasi & Kiani, 2023)2023|${r}_G$| is linearly decreased from 2 to 0
YDSE (Abdel-Basset et al., 2023)2023|$\lambda = 5 \times {10}^{ - 6}$|⁠, |$d = 5 \times {10}^{ - 3}$|⁠, L = 1, I = 0.01
MSMA (Deng & Liu, 2023)2023z = 0.03, E = 100, N = 10
EAPSO (Zhang, 2023)2023|${c}_1$| = 2, |${c}_2$| = 2
SC-AOA2023|${r}_G$| is linearly decreased from 2 to 0, |$\sigma $| = 10 000

4.1. Comparison with other algorithms on benchmark functions in different dimensions

In Tables 34, results are presented for 30 and 500-dimensional functions, respectively, to observe the robustness of the proposed SC-AOA on the scalability of benchmark functions. The performance of the proposed SC-AOA on 10 classical benchmark functions shows better exploitation than the other algorithms. In all the unimodal benchmark functions, the proposed SC-AOA generally gives the best results. In multimodal benchmark functions (F7–F10), the proposed SC-AOA also provides competitive results with the other algorithms. From Table 4, it can be seen that the proposed SC-AOA also outperforms the comparison algorithms in all high-dimensional benchmark functions. Overall, the proposed SC-AOA shows better efficacy regarding exploration and exploitation than the other algorithms.

Table 3:

Experimental results of the different algorithms in 30 dimensions.

FunSCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSOSC-AOA
F1Best3.56E−1091.62E+008.60E−133.43E+006.63E+0402.58E+002.40E−183.41E+045.88E−3088.00E−560
Worst1.09E−854.78E+013.68E−092.66E+017.96E+0403.22E+001.90E−153.97E+046.38E−1932.39E−520
Mean3.62E−862.28E+011.24E−091.50E+017.10E+0402.95E+006.36E−163.77E+042.13E−1937.96E−530
Std5.12E−861.90E+011.73E−091.16E+016.05E+0302.67E−018.95E−162.56E+030.00E+001.12E−520
F2Best3.48E−541.82E+001.23E−061.59E−0801.43E−2632.82E+004.02E−166.10E+021.11E−1547.69E−280
Worst4.77E−531.20E+014.11E−051.89E−0807.11E−2552.99E+009.69E−123.50E+047.20E−1401.48E−240
Mean2.20E−535.28E+002.29E−051.74E−0802.37E−2552.91E+003.68E−121.25E+042.40E−1406.98E−250
Std1.88E−534.78E+001.65E−051.52E−09006.64E−024.28E−121.60E+043.39E−1406.08E−250
F3Best1.24E−1031.60E+034.51E−088.34E+001.00E+0509.73E+012.19E+003.44E+048.65E−1131.10E−090
Worst1.66E−941.22E+043.00E−073.63E+011.75E+0505.85E+021.80E+034.62E+041.99E+017.67E−080
Mean5.52E−956.57E+031.52E−072.23E+011.49E+0502.87E+026.05E+024.07E+048.36E+003.07E−080
Std7.81E−954.37E+031.08E−071.40E+013.45E+0402.13E+028.44E+024.84E+038.44E+003.30E−080
F4Best7.86E−721.54E−066.69E−085.20E−208.15E−0101.63E−061.21E−1873.33E−056.82E−2916.53E−1730
Worst3.67E−621.43E−051.77E−063.22E−184.64E+0007.75E−061.69E−1812.17E−034.15E−1621.18E−1690
Mean1.22E−625.85E−061.04E−061.63E−182.57E+0004.63E−065.62E−1829.93E−041.38E−1624.65E−1700
Std1.73E−625.98E−067.18E−071.58E−181.58E+0002.50E−0608.85E−042.22E−16200
F5Best6.13E−1545.25E−019.82E−121.86E−04002.35E+013.60E−221.08E+0301.05E−560
Worst2.24E−1431.52E+018.65E−112.08E−04002.96E+017.20E−151.42E+039.46E−2892.30E−560
Mean1.12E−1437.87E+004.82E−111.97E−04002.66E+013.60E−151.25E+034.73E−2891.67E−560
Std1.12E−1437.34E+003.84E−111.14E−05003.05E+003.60E−151.69E+020.00E+006.23E−570
F6Best07.33E+0202.20E+017.08E+0403.00E+0003.94E+0401.40E+010
Worst08.32E+0203.00E+017.48E+0403.00E+0004.16E+0402.20E+010
Mean07.83E+0202.60E+017.28E+0403.00E+0004.05E+0401.80E+010
Std04.95E+0104.00E+002.01E+030001.08E+0304.00E+000
F7Best02.52E+014.28E−121.71E+02001.19E+028.26E−143.04E+0205.67E+010
Worst08.69E+011.66E−091.74E+02001.29E+025.38E−083.30E+025.14E+019.15E+010
Mean05.61E+018.32E−101.72E+02001.24E+022.69E−083.17E+022.57E+017.41E+010
Std03.09E+018.28E−101.39E+00005.00E+002.69E−081.30E+012.57E+011.74E+010
F8Best1.36E−551.74E+009.43E−075.09E−0906.00E−2631.21E+004.08E−094.08E+016.66E−1646.11E−150
Worst5.91E−512.30E+003.17E−062.42E−0708.04E−2531.81E+001.61E−064.47E+016.09E−1088.27E−150
Mean3.15E−511.98E+001.90E−061.24E−0702.68E−2531.48E+005.42E−074.23E+012.03E−1086.96E−150
Std2.43E−512.34E−019.36E−071.19E−07002.46E−017.56E−071.72E+002.87E−1089.42E−160
F9Best9.20E−512.58E+005.58E−064.08E+001.00E−9709.83E−011.15E+011.85E+0103.88E−290
Worst4.07E−486.30E+001.02E−054.46E+002.00E−9701.17E+001.73E+011.97E+0101.50E+000
Mean1.52E−484.22E+007.15E−064.27E+001.33E−9701.05E+001.44E+011.92E+0108.86E−010
Std1.81E−481.55E+002.19E−061.94E−014.71E−9808.22E−022.39E+004.82E−0106.42E−010
F10Best0.00E+001.49E+005.37E−142.31E−025.85E+0208.71E−027.97E−153.44E+0201.28E−580
Worst8.29E−975.58E+004.24E−091.79E−016.07E+0201.01E−011.54E−143.51E+0201.23E−020
Mean2.76E−974.00E+001.42E−091.01E−015.99E+0209.31E−021.19E−143.48E+0204.11E−030
Std3.91E−971.79E+002.00E−097.78E−029.53E+0006.00E−033.05E−152.96E+0005.81E−030
FunSCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSOSC-AOA
F1Best3.56E−1091.62E+008.60E−133.43E+006.63E+0402.58E+002.40E−183.41E+045.88E−3088.00E−560
Worst1.09E−854.78E+013.68E−092.66E+017.96E+0403.22E+001.90E−153.97E+046.38E−1932.39E−520
Mean3.62E−862.28E+011.24E−091.50E+017.10E+0402.95E+006.36E−163.77E+042.13E−1937.96E−530
Std5.12E−861.90E+011.73E−091.16E+016.05E+0302.67E−018.95E−162.56E+030.00E+001.12E−520
F2Best3.48E−541.82E+001.23E−061.59E−0801.43E−2632.82E+004.02E−166.10E+021.11E−1547.69E−280
Worst4.77E−531.20E+014.11E−051.89E−0807.11E−2552.99E+009.69E−123.50E+047.20E−1401.48E−240
Mean2.20E−535.28E+002.29E−051.74E−0802.37E−2552.91E+003.68E−121.25E+042.40E−1406.98E−250
Std1.88E−534.78E+001.65E−051.52E−09006.64E−024.28E−121.60E+043.39E−1406.08E−250
F3Best1.24E−1031.60E+034.51E−088.34E+001.00E+0509.73E+012.19E+003.44E+048.65E−1131.10E−090
Worst1.66E−941.22E+043.00E−073.63E+011.75E+0505.85E+021.80E+034.62E+041.99E+017.67E−080
Mean5.52E−956.57E+031.52E−072.23E+011.49E+0502.87E+026.05E+024.07E+048.36E+003.07E−080
Std7.81E−954.37E+031.08E−071.40E+013.45E+0402.13E+028.44E+024.84E+038.44E+003.30E−080
F4Best7.86E−721.54E−066.69E−085.20E−208.15E−0101.63E−061.21E−1873.33E−056.82E−2916.53E−1730
Worst3.67E−621.43E−051.77E−063.22E−184.64E+0007.75E−061.69E−1812.17E−034.15E−1621.18E−1690
Mean1.22E−625.85E−061.04E−061.63E−182.57E+0004.63E−065.62E−1829.93E−041.38E−1624.65E−1700
Std1.73E−625.98E−067.18E−071.58E−181.58E+0002.50E−0608.85E−042.22E−16200
F5Best6.13E−1545.25E−019.82E−121.86E−04002.35E+013.60E−221.08E+0301.05E−560
Worst2.24E−1431.52E+018.65E−112.08E−04002.96E+017.20E−151.42E+039.46E−2892.30E−560
Mean1.12E−1437.87E+004.82E−111.97E−04002.66E+013.60E−151.25E+034.73E−2891.67E−560
Std1.12E−1437.34E+003.84E−111.14E−05003.05E+003.60E−151.69E+020.00E+006.23E−570
F6Best07.33E+0202.20E+017.08E+0403.00E+0003.94E+0401.40E+010
Worst08.32E+0203.00E+017.48E+0403.00E+0004.16E+0402.20E+010
Mean07.83E+0202.60E+017.28E+0403.00E+0004.05E+0401.80E+010
Std04.95E+0104.00E+002.01E+030001.08E+0304.00E+000
F7Best02.52E+014.28E−121.71E+02001.19E+028.26E−143.04E+0205.67E+010
Worst08.69E+011.66E−091.74E+02001.29E+025.38E−083.30E+025.14E+019.15E+010
Mean05.61E+018.32E−101.72E+02001.24E+022.69E−083.17E+022.57E+017.41E+010
Std03.09E+018.28E−101.39E+00005.00E+002.69E−081.30E+012.57E+011.74E+010
F8Best1.36E−551.74E+009.43E−075.09E−0906.00E−2631.21E+004.08E−094.08E+016.66E−1646.11E−150
Worst5.91E−512.30E+003.17E−062.42E−0708.04E−2531.81E+001.61E−064.47E+016.09E−1088.27E−150
Mean3.15E−511.98E+001.90E−061.24E−0702.68E−2531.48E+005.42E−074.23E+012.03E−1086.96E−150
Std2.43E−512.34E−019.36E−071.19E−07002.46E−017.56E−071.72E+002.87E−1089.42E−160
F9Best9.20E−512.58E+005.58E−064.08E+001.00E−9709.83E−011.15E+011.85E+0103.88E−290
Worst4.07E−486.30E+001.02E−054.46E+002.00E−9701.17E+001.73E+011.97E+0101.50E+000
Mean1.52E−484.22E+007.15E−064.27E+001.33E−9701.05E+001.44E+011.92E+0108.86E−010
Std1.81E−481.55E+002.19E−061.94E−014.71E−9808.22E−022.39E+004.82E−0106.42E−010
F10Best0.00E+001.49E+005.37E−142.31E−025.85E+0208.71E−027.97E−153.44E+0201.28E−580
Worst8.29E−975.58E+004.24E−091.79E−016.07E+0201.01E−011.54E−143.51E+0201.23E−020
Mean2.76E−974.00E+001.42E−091.01E−015.99E+0209.31E−021.19E−143.48E+0204.11E−030
Std3.91E−971.79E+002.00E−097.78E−029.53E+0006.00E−033.05E−152.96E+0005.81E−030
Table 3:

Experimental results of the different algorithms in 30 dimensions.

FunSCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSOSC-AOA
F1Best3.56E−1091.62E+008.60E−133.43E+006.63E+0402.58E+002.40E−183.41E+045.88E−3088.00E−560
Worst1.09E−854.78E+013.68E−092.66E+017.96E+0403.22E+001.90E−153.97E+046.38E−1932.39E−520
Mean3.62E−862.28E+011.24E−091.50E+017.10E+0402.95E+006.36E−163.77E+042.13E−1937.96E−530
Std5.12E−861.90E+011.73E−091.16E+016.05E+0302.67E−018.95E−162.56E+030.00E+001.12E−520
F2Best3.48E−541.82E+001.23E−061.59E−0801.43E−2632.82E+004.02E−166.10E+021.11E−1547.69E−280
Worst4.77E−531.20E+014.11E−051.89E−0807.11E−2552.99E+009.69E−123.50E+047.20E−1401.48E−240
Mean2.20E−535.28E+002.29E−051.74E−0802.37E−2552.91E+003.68E−121.25E+042.40E−1406.98E−250
Std1.88E−534.78E+001.65E−051.52E−09006.64E−024.28E−121.60E+043.39E−1406.08E−250
F3Best1.24E−1031.60E+034.51E−088.34E+001.00E+0509.73E+012.19E+003.44E+048.65E−1131.10E−090
Worst1.66E−941.22E+043.00E−073.63E+011.75E+0505.85E+021.80E+034.62E+041.99E+017.67E−080
Mean5.52E−956.57E+031.52E−072.23E+011.49E+0502.87E+026.05E+024.07E+048.36E+003.07E−080
Std7.81E−954.37E+031.08E−071.40E+013.45E+0402.13E+028.44E+024.84E+038.44E+003.30E−080
F4Best7.86E−721.54E−066.69E−085.20E−208.15E−0101.63E−061.21E−1873.33E−056.82E−2916.53E−1730
Worst3.67E−621.43E−051.77E−063.22E−184.64E+0007.75E−061.69E−1812.17E−034.15E−1621.18E−1690
Mean1.22E−625.85E−061.04E−061.63E−182.57E+0004.63E−065.62E−1829.93E−041.38E−1624.65E−1700
Std1.73E−625.98E−067.18E−071.58E−181.58E+0002.50E−0608.85E−042.22E−16200
F5Best6.13E−1545.25E−019.82E−121.86E−04002.35E+013.60E−221.08E+0301.05E−560
Worst2.24E−1431.52E+018.65E−112.08E−04002.96E+017.20E−151.42E+039.46E−2892.30E−560
Mean1.12E−1437.87E+004.82E−111.97E−04002.66E+013.60E−151.25E+034.73E−2891.67E−560
Std1.12E−1437.34E+003.84E−111.14E−05003.05E+003.60E−151.69E+020.00E+006.23E−570
F6Best07.33E+0202.20E+017.08E+0403.00E+0003.94E+0401.40E+010
Worst08.32E+0203.00E+017.48E+0403.00E+0004.16E+0402.20E+010
Mean07.83E+0202.60E+017.28E+0403.00E+0004.05E+0401.80E+010
Std04.95E+0104.00E+002.01E+030001.08E+0304.00E+000
F7Best02.52E+014.28E−121.71E+02001.19E+028.26E−143.04E+0205.67E+010
Worst08.69E+011.66E−091.74E+02001.29E+025.38E−083.30E+025.14E+019.15E+010
Mean05.61E+018.32E−101.72E+02001.24E+022.69E−083.17E+022.57E+017.41E+010
Std03.09E+018.28E−101.39E+00005.00E+002.69E−081.30E+012.57E+011.74E+010
F8Best1.36E−551.74E+009.43E−075.09E−0906.00E−2631.21E+004.08E−094.08E+016.66E−1646.11E−150
Worst5.91E−512.30E+003.17E−062.42E−0708.04E−2531.81E+001.61E−064.47E+016.09E−1088.27E−150
Mean3.15E−511.98E+001.90E−061.24E−0702.68E−2531.48E+005.42E−074.23E+012.03E−1086.96E−150
Std2.43E−512.34E−019.36E−071.19E−07002.46E−017.56E−071.72E+002.87E−1089.42E−160
F9Best9.20E−512.58E+005.58E−064.08E+001.00E−9709.83E−011.15E+011.85E+0103.88E−290
Worst4.07E−486.30E+001.02E−054.46E+002.00E−9701.17E+001.73E+011.97E+0101.50E+000
Mean1.52E−484.22E+007.15E−064.27E+001.33E−9701.05E+001.44E+011.92E+0108.86E−010
Std1.81E−481.55E+002.19E−061.94E−014.71E−9808.22E−022.39E+004.82E−0106.42E−010
F10Best0.00E+001.49E+005.37E−142.31E−025.85E+0208.71E−027.97E−153.44E+0201.28E−580
Worst8.29E−975.58E+004.24E−091.79E−016.07E+0201.01E−011.54E−143.51E+0201.23E−020
Mean2.76E−974.00E+001.42E−091.01E−015.99E+0209.31E−021.19E−143.48E+0204.11E−030
Std3.91E−971.79E+002.00E−097.78E−029.53E+0006.00E−033.05E−152.96E+0005.81E−030
FunSCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSOSC-AOA
F1Best3.56E−1091.62E+008.60E−133.43E+006.63E+0402.58E+002.40E−183.41E+045.88E−3088.00E−560
Worst1.09E−854.78E+013.68E−092.66E+017.96E+0403.22E+001.90E−153.97E+046.38E−1932.39E−520
Mean3.62E−862.28E+011.24E−091.50E+017.10E+0402.95E+006.36E−163.77E+042.13E−1937.96E−530
Std5.12E−861.90E+011.73E−091.16E+016.05E+0302.67E−018.95E−162.56E+030.00E+001.12E−520
F2Best3.48E−541.82E+001.23E−061.59E−0801.43E−2632.82E+004.02E−166.10E+021.11E−1547.69E−280
Worst4.77E−531.20E+014.11E−051.89E−0807.11E−2552.99E+009.69E−123.50E+047.20E−1401.48E−240
Mean2.20E−535.28E+002.29E−051.74E−0802.37E−2552.91E+003.68E−121.25E+042.40E−1406.98E−250
Std1.88E−534.78E+001.65E−051.52E−09006.64E−024.28E−121.60E+043.39E−1406.08E−250
F3Best1.24E−1031.60E+034.51E−088.34E+001.00E+0509.73E+012.19E+003.44E+048.65E−1131.10E−090
Worst1.66E−941.22E+043.00E−073.63E+011.75E+0505.85E+021.80E+034.62E+041.99E+017.67E−080
Mean5.52E−956.57E+031.52E−072.23E+011.49E+0502.87E+026.05E+024.07E+048.36E+003.07E−080
Std7.81E−954.37E+031.08E−071.40E+013.45E+0402.13E+028.44E+024.84E+038.44E+003.30E−080
F4Best7.86E−721.54E−066.69E−085.20E−208.15E−0101.63E−061.21E−1873.33E−056.82E−2916.53E−1730
Worst3.67E−621.43E−051.77E−063.22E−184.64E+0007.75E−061.69E−1812.17E−034.15E−1621.18E−1690
Mean1.22E−625.85E−061.04E−061.63E−182.57E+0004.63E−065.62E−1829.93E−041.38E−1624.65E−1700
Std1.73E−625.98E−067.18E−071.58E−181.58E+0002.50E−0608.85E−042.22E−16200
F5Best6.13E−1545.25E−019.82E−121.86E−04002.35E+013.60E−221.08E+0301.05E−560
Worst2.24E−1431.52E+018.65E−112.08E−04002.96E+017.20E−151.42E+039.46E−2892.30E−560
Mean1.12E−1437.87E+004.82E−111.97E−04002.66E+013.60E−151.25E+034.73E−2891.67E−560
Std1.12E−1437.34E+003.84E−111.14E−05003.05E+003.60E−151.69E+020.00E+006.23E−570
F6Best07.33E+0202.20E+017.08E+0403.00E+0003.94E+0401.40E+010
Worst08.32E+0203.00E+017.48E+0403.00E+0004.16E+0402.20E+010
Mean07.83E+0202.60E+017.28E+0403.00E+0004.05E+0401.80E+010
Std04.95E+0104.00E+002.01E+030001.08E+0304.00E+000
F7Best02.52E+014.28E−121.71E+02001.19E+028.26E−143.04E+0205.67E+010
Worst08.69E+011.66E−091.74E+02001.29E+025.38E−083.30E+025.14E+019.15E+010
Mean05.61E+018.32E−101.72E+02001.24E+022.69E−083.17E+022.57E+017.41E+010
Std03.09E+018.28E−101.39E+00005.00E+002.69E−081.30E+012.57E+011.74E+010
F8Best1.36E−551.74E+009.43E−075.09E−0906.00E−2631.21E+004.08E−094.08E+016.66E−1646.11E−150
Worst5.91E−512.30E+003.17E−062.42E−0708.04E−2531.81E+001.61E−064.47E+016.09E−1088.27E−150
Mean3.15E−511.98E+001.90E−061.24E−0702.68E−2531.48E+005.42E−074.23E+012.03E−1086.96E−150
Std2.43E−512.34E−019.36E−071.19E−07002.46E−017.56E−071.72E+002.87E−1089.42E−160
F9Best9.20E−512.58E+005.58E−064.08E+001.00E−9709.83E−011.15E+011.85E+0103.88E−290
Worst4.07E−486.30E+001.02E−054.46E+002.00E−9701.17E+001.73E+011.97E+0101.50E+000
Mean1.52E−484.22E+007.15E−064.27E+001.33E−9701.05E+001.44E+011.92E+0108.86E−010
Std1.81E−481.55E+002.19E−061.94E−014.71E−9808.22E−022.39E+004.82E−0106.42E−010
F10Best0.00E+001.49E+005.37E−142.31E−025.85E+0208.71E−027.97E−153.44E+0201.28E−580
Worst8.29E−975.58E+004.24E−091.79E−016.07E+0201.01E−011.54E−143.51E+0201.23E−020
Mean2.76E−974.00E+001.42E−091.01E−015.99E+0209.31E−021.19E−143.48E+0204.11E−030
Std3.91E−971.79E+002.00E−097.78E−029.53E+0006.00E−033.05E−152.96E+0005.81E−030
Table 4:

Experimental results of the different algorithms in 500 dimensions.

FunSCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSOSC-AOA
F1Best4.24E−1173.13E+022.14E−096.22E+041.52E+0601.80E+033.88E+021.36E+065.14E−107.37E+040
Worst2.71E−1019.32E+022.56E−086.27E+041.57E+0604.08E+032.99E+031.39E+066.39E+029.14E+040
Mean9.04E−1026.62E+021.07E−086.24E+041.55E+0603.23E+031.67E+031.37E+062.13E+028.44E+040
Std1.28E−1012.59E+021.06E−082.61E+022.22E+0401.02E+031.06E+031.14E+043.01E+027.67E+030
F2Best1.21E−601.03E+021.31E−053.60E+0202.80E−2711.05E+024.79E−021.32E+2353.25E−156.50E+020
Worst8.90E−534.03E+022.11E−043.65E+0207.80E−2571.07E+029.18E−013.58E+2361.79E+009.25E+020
Mean2.99E−532.08E+021.04E−043.63E+0202.60E−2571.06E+023.44E−011.85E+2365.96E−017.58E+020
Std4.18E−531.38E+028.18E−052.56E+00007.30E−014.06E−011.80E+3088.43E−011.20E+020
F3Best4.25E−1124.68E+061.07E−032.43E+054.05E+0701.62E+061.48E+061.03E+071.25E+071.30E+060
Worst1.57E−1026.05E+061.67E−012.78E+054.76E+0704.40E+061.14E+071.16E+071.33E+071.79E+060
Mean5.22E−1035.38E+065.72E−022.61E+054.31E+0703.21E+065.71E+061.09E+071.28E+071.47E+060
Std7.38E−1035.58E+057.80E−021.73E+043.22E+0601.17E+064.20E+065.33E+053.18E+052.29E+050
F4Best1.72E−884.12E−052.48E−071.33E−205.44E+0003.89E−067.91E−1892.40E−0402.45E−1700
Worst1.68E−691.10E−032.13E−063.56E−179.37E+0001.36E−052.35E−1873.17E−0302.40E−1640
Mean5.61E−704.08E−048.87E−071.78E−177.50E+0008.05E−061.15E−1872.07E−0308.20E−1650
Std7.90E−704.87E−048.82E−071.78E−171.61E+0004.09E−060.00E+001.30E−03000
F5Best1.00E−1164.91E+021.71E−093.83E+04002.60E+049.84E+008.70E+052.82E−345.03E+040
Worst1.96E−1057.02E+031.10E−073.98E+04003.08E+042.98E+038.88E+058.13E−017.16E+040
Mean6.55E−1063.66E+034.04E−083.91E+04002.85E+041.03E+038.78E+052.73E−016.16E+040
Std9.22E−1062.67E+034.95E−087.36E+02001.98E+031.38E+037.46E+033.82E−018.76E+030
F6Best01.21E+0208.08E+041.53E+0603.31E+037.80E+011.37E+0601.36E+050
Worst01.21E+0508.84E+041.55E+0605.00E+031.18E+031.42E+061.10E+011.92E+050
Mean04.49E+0408.46E+041.54E+0603.95E+034.98E+021.40E+063.67E+001.61E+050
Std05.40E+0403.80E+037.36E+0307.45E+024.88E+021.83E+045.19E+002.32E+040
F7Best01.40E+031.01E−112.34E+03001.89E+034.73E+008.23E+039.15E−322.93E+030
Worst1.01E−931.99E+032.83E−082.35E+03001.93E+031.10E+028.36E+034.42E+033.47E+030
Mean3.37E−941.76E+039.57E−092.35E+03001.92E+034.82E+018.29E+031.47E+033.20E+030
Std4.76E−942.58E+021.32E−087.33E+00002.23E+014.52E+015.42E+012.08E+032.22E+020
F8Best5.62E−601.22E+003.13E−061.65E+0202.11E−2706.17E+012.25E−031.28E+035.66E−271.74E+020
Worst5.82E−547.48E+009.33E−061.77E+0203.73E−2606.57E+014.72E+001.30E+031.56E−022.45E+020
Mean1.94E−543.77E+007.16E−061.71E+0201.24E−2606.37E+011.62E+001.29E+035.22E−032.09E+020
Std2.74E−542.69E+002.85E−065.77E+00001.65E+002.19E+005.15E+007.34E−032.93E+010
F9Best5.64E−653.27E+002.23E−071.30E+011.00E−9704.06E+001.82E+012.10E+012.46E−021.80E+010
Worst4.19E−541.38E+013.77E−061.33E+012.00E−9704.87E+002.00E+012.10E+018.34E+001.85E+010
Mean2.01E−548.23E+002.04E−061.31E+011.67E−9704.37E+001.94E+012.10E+012.81E+001.82E+010
Std1.71E−544.31E+001.45E−061.40E−014.71E−9803.57E−018.52E−019.30E−033.91E+001.95E−010
F10Best04.24E+017.13E−115.47E+021.33E+0401.08E+009.01E−011.25E+043.09E−218.21E+020
Worst02.02E+028.43E−095.62E+021.41E+0405.30E+002.08E+001.27E+041.39E+009.74E+020
Mean09.88E+012.96E−095.55E+021.38E+0402.64E+001.31E+001.26E+049.00E−019.22E+020
Std07.30E+013.88E−097.23E+003.54E+0201.89E+005.47E−019.12E+016.37E−017.16E+010
FunSCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSOSC-AOA
F1Best4.24E−1173.13E+022.14E−096.22E+041.52E+0601.80E+033.88E+021.36E+065.14E−107.37E+040
Worst2.71E−1019.32E+022.56E−086.27E+041.57E+0604.08E+032.99E+031.39E+066.39E+029.14E+040
Mean9.04E−1026.62E+021.07E−086.24E+041.55E+0603.23E+031.67E+031.37E+062.13E+028.44E+040
Std1.28E−1012.59E+021.06E−082.61E+022.22E+0401.02E+031.06E+031.14E+043.01E+027.67E+030
F2Best1.21E−601.03E+021.31E−053.60E+0202.80E−2711.05E+024.79E−021.32E+2353.25E−156.50E+020
Worst8.90E−534.03E+022.11E−043.65E+0207.80E−2571.07E+029.18E−013.58E+2361.79E+009.25E+020
Mean2.99E−532.08E+021.04E−043.63E+0202.60E−2571.06E+023.44E−011.85E+2365.96E−017.58E+020
Std4.18E−531.38E+028.18E−052.56E+00007.30E−014.06E−011.80E+3088.43E−011.20E+020
F3Best4.25E−1124.68E+061.07E−032.43E+054.05E+0701.62E+061.48E+061.03E+071.25E+071.30E+060
Worst1.57E−1026.05E+061.67E−012.78E+054.76E+0704.40E+061.14E+071.16E+071.33E+071.79E+060
Mean5.22E−1035.38E+065.72E−022.61E+054.31E+0703.21E+065.71E+061.09E+071.28E+071.47E+060
Std7.38E−1035.58E+057.80E−021.73E+043.22E+0601.17E+064.20E+065.33E+053.18E+052.29E+050
F4Best1.72E−884.12E−052.48E−071.33E−205.44E+0003.89E−067.91E−1892.40E−0402.45E−1700
Worst1.68E−691.10E−032.13E−063.56E−179.37E+0001.36E−052.35E−1873.17E−0302.40E−1640
Mean5.61E−704.08E−048.87E−071.78E−177.50E+0008.05E−061.15E−1872.07E−0308.20E−1650
Std7.90E−704.87E−048.82E−071.78E−171.61E+0004.09E−060.00E+001.30E−03000
F5Best1.00E−1164.91E+021.71E−093.83E+04002.60E+049.84E+008.70E+052.82E−345.03E+040
Worst1.96E−1057.02E+031.10E−073.98E+04003.08E+042.98E+038.88E+058.13E−017.16E+040
Mean6.55E−1063.66E+034.04E−083.91E+04002.85E+041.03E+038.78E+052.73E−016.16E+040
Std9.22E−1062.67E+034.95E−087.36E+02001.98E+031.38E+037.46E+033.82E−018.76E+030
F6Best01.21E+0208.08E+041.53E+0603.31E+037.80E+011.37E+0601.36E+050
Worst01.21E+0508.84E+041.55E+0605.00E+031.18E+031.42E+061.10E+011.92E+050
Mean04.49E+0408.46E+041.54E+0603.95E+034.98E+021.40E+063.67E+001.61E+050
Std05.40E+0403.80E+037.36E+0307.45E+024.88E+021.83E+045.19E+002.32E+040
F7Best01.40E+031.01E−112.34E+03001.89E+034.73E+008.23E+039.15E−322.93E+030
Worst1.01E−931.99E+032.83E−082.35E+03001.93E+031.10E+028.36E+034.42E+033.47E+030
Mean3.37E−941.76E+039.57E−092.35E+03001.92E+034.82E+018.29E+031.47E+033.20E+030
Std4.76E−942.58E+021.32E−087.33E+00002.23E+014.52E+015.42E+012.08E+032.22E+020
F8Best5.62E−601.22E+003.13E−061.65E+0202.11E−2706.17E+012.25E−031.28E+035.66E−271.74E+020
Worst5.82E−547.48E+009.33E−061.77E+0203.73E−2606.57E+014.72E+001.30E+031.56E−022.45E+020
Mean1.94E−543.77E+007.16E−061.71E+0201.24E−2606.37E+011.62E+001.29E+035.22E−032.09E+020
Std2.74E−542.69E+002.85E−065.77E+00001.65E+002.19E+005.15E+007.34E−032.93E+010
F9Best5.64E−653.27E+002.23E−071.30E+011.00E−9704.06E+001.82E+012.10E+012.46E−021.80E+010
Worst4.19E−541.38E+013.77E−061.33E+012.00E−9704.87E+002.00E+012.10E+018.34E+001.85E+010
Mean2.01E−548.23E+002.04E−061.31E+011.67E−9704.37E+001.94E+012.10E+012.81E+001.82E+010
Std1.71E−544.31E+001.45E−061.40E−014.71E−9803.57E−018.52E−019.30E−033.91E+001.95E−010
F10Best04.24E+017.13E−115.47E+021.33E+0401.08E+009.01E−011.25E+043.09E−218.21E+020
Worst02.02E+028.43E−095.62E+021.41E+0405.30E+002.08E+001.27E+041.39E+009.74E+020
Mean09.88E+012.96E−095.55E+021.38E+0402.64E+001.31E+001.26E+049.00E−019.22E+020
Std07.30E+013.88E−097.23E+003.54E+0201.89E+005.47E−019.12E+016.37E−017.16E+010
Table 4:

Experimental results of the different algorithms in 500 dimensions.

FunSCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSOSC-AOA
F1Best4.24E−1173.13E+022.14E−096.22E+041.52E+0601.80E+033.88E+021.36E+065.14E−107.37E+040
Worst2.71E−1019.32E+022.56E−086.27E+041.57E+0604.08E+032.99E+031.39E+066.39E+029.14E+040
Mean9.04E−1026.62E+021.07E−086.24E+041.55E+0603.23E+031.67E+031.37E+062.13E+028.44E+040
Std1.28E−1012.59E+021.06E−082.61E+022.22E+0401.02E+031.06E+031.14E+043.01E+027.67E+030
F2Best1.21E−601.03E+021.31E−053.60E+0202.80E−2711.05E+024.79E−021.32E+2353.25E−156.50E+020
Worst8.90E−534.03E+022.11E−043.65E+0207.80E−2571.07E+029.18E−013.58E+2361.79E+009.25E+020
Mean2.99E−532.08E+021.04E−043.63E+0202.60E−2571.06E+023.44E−011.85E+2365.96E−017.58E+020
Std4.18E−531.38E+028.18E−052.56E+00007.30E−014.06E−011.80E+3088.43E−011.20E+020
F3Best4.25E−1124.68E+061.07E−032.43E+054.05E+0701.62E+061.48E+061.03E+071.25E+071.30E+060
Worst1.57E−1026.05E+061.67E−012.78E+054.76E+0704.40E+061.14E+071.16E+071.33E+071.79E+060
Mean5.22E−1035.38E+065.72E−022.61E+054.31E+0703.21E+065.71E+061.09E+071.28E+071.47E+060
Std7.38E−1035.58E+057.80E−021.73E+043.22E+0601.17E+064.20E+065.33E+053.18E+052.29E+050
F4Best1.72E−884.12E−052.48E−071.33E−205.44E+0003.89E−067.91E−1892.40E−0402.45E−1700
Worst1.68E−691.10E−032.13E−063.56E−179.37E+0001.36E−052.35E−1873.17E−0302.40E−1640
Mean5.61E−704.08E−048.87E−071.78E−177.50E+0008.05E−061.15E−1872.07E−0308.20E−1650
Std7.90E−704.87E−048.82E−071.78E−171.61E+0004.09E−060.00E+001.30E−03000
F5Best1.00E−1164.91E+021.71E−093.83E+04002.60E+049.84E+008.70E+052.82E−345.03E+040
Worst1.96E−1057.02E+031.10E−073.98E+04003.08E+042.98E+038.88E+058.13E−017.16E+040
Mean6.55E−1063.66E+034.04E−083.91E+04002.85E+041.03E+038.78E+052.73E−016.16E+040
Std9.22E−1062.67E+034.95E−087.36E+02001.98E+031.38E+037.46E+033.82E−018.76E+030
F6Best01.21E+0208.08E+041.53E+0603.31E+037.80E+011.37E+0601.36E+050
Worst01.21E+0508.84E+041.55E+0605.00E+031.18E+031.42E+061.10E+011.92E+050
Mean04.49E+0408.46E+041.54E+0603.95E+034.98E+021.40E+063.67E+001.61E+050
Std05.40E+0403.80E+037.36E+0307.45E+024.88E+021.83E+045.19E+002.32E+040
F7Best01.40E+031.01E−112.34E+03001.89E+034.73E+008.23E+039.15E−322.93E+030
Worst1.01E−931.99E+032.83E−082.35E+03001.93E+031.10E+028.36E+034.42E+033.47E+030
Mean3.37E−941.76E+039.57E−092.35E+03001.92E+034.82E+018.29E+031.47E+033.20E+030
Std4.76E−942.58E+021.32E−087.33E+00002.23E+014.52E+015.42E+012.08E+032.22E+020
F8Best5.62E−601.22E+003.13E−061.65E+0202.11E−2706.17E+012.25E−031.28E+035.66E−271.74E+020
Worst5.82E−547.48E+009.33E−061.77E+0203.73E−2606.57E+014.72E+001.30E+031.56E−022.45E+020
Mean1.94E−543.77E+007.16E−061.71E+0201.24E−2606.37E+011.62E+001.29E+035.22E−032.09E+020
Std2.74E−542.69E+002.85E−065.77E+00001.65E+002.19E+005.15E+007.34E−032.93E+010
F9Best5.64E−653.27E+002.23E−071.30E+011.00E−9704.06E+001.82E+012.10E+012.46E−021.80E+010
Worst4.19E−541.38E+013.77E−061.33E+012.00E−9704.87E+002.00E+012.10E+018.34E+001.85E+010
Mean2.01E−548.23E+002.04E−061.31E+011.67E−9704.37E+001.94E+012.10E+012.81E+001.82E+010
Std1.71E−544.31E+001.45E−061.40E−014.71E−9803.57E−018.52E−019.30E−033.91E+001.95E−010
F10Best04.24E+017.13E−115.47E+021.33E+0401.08E+009.01E−011.25E+043.09E−218.21E+020
Worst02.02E+028.43E−095.62E+021.41E+0405.30E+002.08E+001.27E+041.39E+009.74E+020
Mean09.88E+012.96E−095.55E+021.38E+0402.64E+001.31E+001.26E+049.00E−019.22E+020
Std07.30E+013.88E−097.23E+003.54E+0201.89E+005.47E−019.12E+016.37E−017.16E+010
FunSCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSOSC-AOA
F1Best4.24E−1173.13E+022.14E−096.22E+041.52E+0601.80E+033.88E+021.36E+065.14E−107.37E+040
Worst2.71E−1019.32E+022.56E−086.27E+041.57E+0604.08E+032.99E+031.39E+066.39E+029.14E+040
Mean9.04E−1026.62E+021.07E−086.24E+041.55E+0603.23E+031.67E+031.37E+062.13E+028.44E+040
Std1.28E−1012.59E+021.06E−082.61E+022.22E+0401.02E+031.06E+031.14E+043.01E+027.67E+030
F2Best1.21E−601.03E+021.31E−053.60E+0202.80E−2711.05E+024.79E−021.32E+2353.25E−156.50E+020
Worst8.90E−534.03E+022.11E−043.65E+0207.80E−2571.07E+029.18E−013.58E+2361.79E+009.25E+020
Mean2.99E−532.08E+021.04E−043.63E+0202.60E−2571.06E+023.44E−011.85E+2365.96E−017.58E+020
Std4.18E−531.38E+028.18E−052.56E+00007.30E−014.06E−011.80E+3088.43E−011.20E+020
F3Best4.25E−1124.68E+061.07E−032.43E+054.05E+0701.62E+061.48E+061.03E+071.25E+071.30E+060
Worst1.57E−1026.05E+061.67E−012.78E+054.76E+0704.40E+061.14E+071.16E+071.33E+071.79E+060
Mean5.22E−1035.38E+065.72E−022.61E+054.31E+0703.21E+065.71E+061.09E+071.28E+071.47E+060
Std7.38E−1035.58E+057.80E−021.73E+043.22E+0601.17E+064.20E+065.33E+053.18E+052.29E+050
F4Best1.72E−884.12E−052.48E−071.33E−205.44E+0003.89E−067.91E−1892.40E−0402.45E−1700
Worst1.68E−691.10E−032.13E−063.56E−179.37E+0001.36E−052.35E−1873.17E−0302.40E−1640
Mean5.61E−704.08E−048.87E−071.78E−177.50E+0008.05E−061.15E−1872.07E−0308.20E−1650
Std7.90E−704.87E−048.82E−071.78E−171.61E+0004.09E−060.00E+001.30E−03000
F5Best1.00E−1164.91E+021.71E−093.83E+04002.60E+049.84E+008.70E+052.82E−345.03E+040
Worst1.96E−1057.02E+031.10E−073.98E+04003.08E+042.98E+038.88E+058.13E−017.16E+040
Mean6.55E−1063.66E+034.04E−083.91E+04002.85E+041.03E+038.78E+052.73E−016.16E+040
Std9.22E−1062.67E+034.95E−087.36E+02001.98E+031.38E+037.46E+033.82E−018.76E+030
F6Best01.21E+0208.08E+041.53E+0603.31E+037.80E+011.37E+0601.36E+050
Worst01.21E+0508.84E+041.55E+0605.00E+031.18E+031.42E+061.10E+011.92E+050
Mean04.49E+0408.46E+041.54E+0603.95E+034.98E+021.40E+063.67E+001.61E+050
Std05.40E+0403.80E+037.36E+0307.45E+024.88E+021.83E+045.19E+002.32E+040
F7Best01.40E+031.01E−112.34E+03001.89E+034.73E+008.23E+039.15E−322.93E+030
Worst1.01E−931.99E+032.83E−082.35E+03001.93E+031.10E+028.36E+034.42E+033.47E+030
Mean3.37E−941.76E+039.57E−092.35E+03001.92E+034.82E+018.29E+031.47E+033.20E+030
Std4.76E−942.58E+021.32E−087.33E+00002.23E+014.52E+015.42E+012.08E+032.22E+020
F8Best5.62E−601.22E+003.13E−061.65E+0202.11E−2706.17E+012.25E−031.28E+035.66E−271.74E+020
Worst5.82E−547.48E+009.33E−061.77E+0203.73E−2606.57E+014.72E+001.30E+031.56E−022.45E+020
Mean1.94E−543.77E+007.16E−061.71E+0201.24E−2606.37E+011.62E+001.29E+035.22E−032.09E+020
Std2.74E−542.69E+002.85E−065.77E+00001.65E+002.19E+005.15E+007.34E−032.93E+010
F9Best5.64E−653.27E+002.23E−071.30E+011.00E−9704.06E+001.82E+012.10E+012.46E−021.80E+010
Worst4.19E−541.38E+013.77E−061.33E+012.00E−9704.87E+002.00E+012.10E+018.34E+001.85E+010
Mean2.01E−548.23E+002.04E−061.31E+011.67E−9704.37E+001.94E+012.10E+012.81E+001.82E+010
Std1.71E−544.31E+001.45E−061.40E−014.71E−9803.57E−018.52E−019.30E−033.91E+001.95E−010
F10Best04.24E+017.13E−115.47E+021.33E+0401.08E+009.01E−011.25E+043.09E−218.21E+020
Worst02.02E+028.43E−095.62E+021.41E+0405.30E+002.08E+001.27E+041.39E+009.74E+020
Mean09.88E+012.96E−095.55E+021.38E+0402.64E+001.31E+001.26E+049.00E−019.22E+020
Std07.30E+013.88E−097.23E+003.54E+0201.89E+005.47E−019.12E+016.37E−017.16E+010

Table 5 gives the average runtime obtained by each algorithm on 10 classical benchmark functions. To conclude more intuitively, the ranking of the runtime of each algorithm in most cases is as follows:

Table 5:

Runtime results of different algorithms on 10 classical benchmark functions.

FunSCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSOSC-AOA
F14.43E+013.31E+007.99E−017.39E−012.43E+018.86E+004.31E+001.41E+011.37E+012.55E+015.79E+002.47E+01
F24.94E+015.00E+009.39E−017.66E−012.42E+014.48E+005.81E+001.58E+011.41E+012.30E+012.05E+012.55E+01
F34.91E+016.25E+002.80E+002.33E+002.67E+016.28E+006.86E+001.85E+011.46E+012.23E+011.20E+012.22E+01
F46.60E+011.83E+018.27E+003.62E+003.95E+011.32E+011.36E+012.67E+012.28E+012.53E+011.19E+014.16E+01
F51.48E+011.62E+003.91E−018.09E−011.04E+011.41E+001.43E+007.56E+004.30E+009.06E+001.35E+001.15E+01
F61.58E+012.00E+006.15E−011.10E+001.16E+011.70E+001.81E+007.78E+005.66E+009.45E+001.81E+001.27E+01
F71.92E+015.26E+002.83E+004.46E+001.50E+015.76E+005.29E+001.03E+017.93E+001.27E+015.06E+001.66E+01
F85.09E+013.56E+001.04E+008.82E−012.48E+013.87E+004.23E+001.52E+011.15E+012.51E+013.01E+001.90E+01
F95.25E+011.34E+017.70E+007.60E+003.51E+011.62E+011.44E+012.07E+012.04E+013.59E+011.33E+012.87E+01
F104.26E+013.81E+001.28E+001.13E+002.28E+013.72E+004.48E+001.45E+011.11E+012.43E+013.62E+001.76E+01
Avg4.05E+016.25E+002.67E+002.34E+002.34E+016.55E+006.22E+001.51E+011.26E+012.13E+017.83E+002.20E+01
Rank191112281056473
FunSCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSOSC-AOA
F14.43E+013.31E+007.99E−017.39E−012.43E+018.86E+004.31E+001.41E+011.37E+012.55E+015.79E+002.47E+01
F24.94E+015.00E+009.39E−017.66E−012.42E+014.48E+005.81E+001.58E+011.41E+012.30E+012.05E+012.55E+01
F34.91E+016.25E+002.80E+002.33E+002.67E+016.28E+006.86E+001.85E+011.46E+012.23E+011.20E+012.22E+01
F46.60E+011.83E+018.27E+003.62E+003.95E+011.32E+011.36E+012.67E+012.28E+012.53E+011.19E+014.16E+01
F51.48E+011.62E+003.91E−018.09E−011.04E+011.41E+001.43E+007.56E+004.30E+009.06E+001.35E+001.15E+01
F61.58E+012.00E+006.15E−011.10E+001.16E+011.70E+001.81E+007.78E+005.66E+009.45E+001.81E+001.27E+01
F71.92E+015.26E+002.83E+004.46E+001.50E+015.76E+005.29E+001.03E+017.93E+001.27E+015.06E+001.66E+01
F85.09E+013.56E+001.04E+008.82E−012.48E+013.87E+004.23E+001.52E+011.15E+012.51E+013.01E+001.90E+01
F95.25E+011.34E+017.70E+007.60E+003.51E+011.62E+011.44E+012.07E+012.04E+013.59E+011.33E+012.87E+01
F104.26E+013.81E+001.28E+001.13E+002.28E+013.72E+004.48E+001.45E+011.11E+012.43E+013.62E+001.76E+01
Avg4.05E+016.25E+002.67E+002.34E+002.34E+016.55E+006.22E+001.51E+011.26E+012.13E+017.83E+002.20E+01
Rank191112281056473
Table 5:

Runtime results of different algorithms on 10 classical benchmark functions.

FunSCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSOSC-AOA
F14.43E+013.31E+007.99E−017.39E−012.43E+018.86E+004.31E+001.41E+011.37E+012.55E+015.79E+002.47E+01
F24.94E+015.00E+009.39E−017.66E−012.42E+014.48E+005.81E+001.58E+011.41E+012.30E+012.05E+012.55E+01
F34.91E+016.25E+002.80E+002.33E+002.67E+016.28E+006.86E+001.85E+011.46E+012.23E+011.20E+012.22E+01
F46.60E+011.83E+018.27E+003.62E+003.95E+011.32E+011.36E+012.67E+012.28E+012.53E+011.19E+014.16E+01
F51.48E+011.62E+003.91E−018.09E−011.04E+011.41E+001.43E+007.56E+004.30E+009.06E+001.35E+001.15E+01
F61.58E+012.00E+006.15E−011.10E+001.16E+011.70E+001.81E+007.78E+005.66E+009.45E+001.81E+001.27E+01
F71.92E+015.26E+002.83E+004.46E+001.50E+015.76E+005.29E+001.03E+017.93E+001.27E+015.06E+001.66E+01
F85.09E+013.56E+001.04E+008.82E−012.48E+013.87E+004.23E+001.52E+011.15E+012.51E+013.01E+001.90E+01
F95.25E+011.34E+017.70E+007.60E+003.51E+011.62E+011.44E+012.07E+012.04E+013.59E+011.33E+012.87E+01
F104.26E+013.81E+001.28E+001.13E+002.28E+013.72E+004.48E+001.45E+011.11E+012.43E+013.62E+001.76E+01
Avg4.05E+016.25E+002.67E+002.34E+002.34E+016.55E+006.22E+001.51E+011.26E+012.13E+017.83E+002.20E+01
Rank191112281056473
FunSCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSOSC-AOA
F14.43E+013.31E+007.99E−017.39E−012.43E+018.86E+004.31E+001.41E+011.37E+012.55E+015.79E+002.47E+01
F24.94E+015.00E+009.39E−017.66E−012.42E+014.48E+005.81E+001.58E+011.41E+012.30E+012.05E+012.55E+01
F34.91E+016.25E+002.80E+002.33E+002.67E+016.28E+006.86E+001.85E+011.46E+012.23E+011.20E+012.22E+01
F46.60E+011.83E+018.27E+003.62E+003.95E+011.32E+011.36E+012.67E+012.28E+012.53E+011.19E+014.16E+01
F51.48E+011.62E+003.91E−018.09E−011.04E+011.41E+001.43E+007.56E+004.30E+009.06E+001.35E+001.15E+01
F61.58E+012.00E+006.15E−011.10E+001.16E+011.70E+001.81E+007.78E+005.66E+009.45E+001.81E+001.27E+01
F71.92E+015.26E+002.83E+004.46E+001.50E+015.76E+005.29E+001.03E+017.93E+001.27E+015.06E+001.66E+01
F85.09E+013.56E+001.04E+008.82E−012.48E+013.87E+004.23E+001.52E+011.15E+012.51E+013.01E+001.90E+01
F95.25E+011.34E+017.70E+007.60E+003.51E+011.62E+011.44E+012.07E+012.04E+013.59E+011.33E+012.87E+01
F104.26E+013.81E+001.28E+001.13E+002.28E+013.72E+004.48E+001.45E+011.11E+012.43E+013.62E+001.76E+01
Avg4.05E+016.25E+002.67E+002.34E+002.34E+016.55E+006.22E+001.51E+011.26E+012.13E+017.83E+002.20E+01
Rank191112281056473

SCSO > AOA > SC-AOA > MSMA > HBA > YDSE > EAPSO > AHA > WOA > DMOA > HHO > GSK. From the results, SC-AOA consumes rank three. An explanation is that introduced strategies are added to the native algorithm. The high time consumption of SCSO itself is also the main reason. To improve the accuracy of solutions, we sacrifice some runtime.

4.2. Convergence behavior analysis

To observe the convergence behavior of algorithms, the convergence curves plotted in Fig. 3 correspond to the benchmark functions. From Fig. 3, the proposed SC-AOA shows a better convergence rate than the other algorithms. Moreover, for the F1, F6, F7, F9, and F10 functions, the convergence curve of the proposed SC-AOA shows noticeable decreases with the lapse of iteration, which indicates that the multiplication and division operator position update strategy can significantly escape from the local optimum and find better solutions. Overall, the proposed SC-AOA can be considered a better optimizer in terms of convergence rate.

Convergence curves of different methods on 10 benchmark functions in 30-dimensional.
Figure 3:

Convergence curves of different methods on 10 benchmark functions in 30-dimensional.

4.3. Non-parametric statistical test analysis

Based on the statistical test analysis in the literature (M. W. Li et al., 2022), two methods, Wilcoxon signed-rank test and Friedman test, are used for statistical analysis to determine whether there is a significant difference between the proposed SC-AOA and the compared algorithms. Wilcoxon signed-rank test performs a signed rank test of the hypothesis that two independent samples and returns the P-value from the trial. In this study, the level of significance is set as 5%. Friedman test is used to detect significant differences between the behaviors of two or more algorithms. Moreover, this study uses the Kruskal Wallis test method (Azizi et al., 2023) for statistical test.

Table 6 shows the results of the Wilcoxon and Kruskal Wallis P-value test for the proposed SC-AOA and the compared algorithms. From them, it can be seen that the proposed SC-AOA is significantly different from the compared algorithms for all functions, which indicates that SC-AOA substantially outperforms the compared algorithms.

Table 6:

Experimental results of Wilcoxon signed-rank test and Kruskal Wallis test. *** denotes P < 0.001, “W” denotes Wilcoxon signed-rank test, and “K” denotes Kruskal Wallis test.

FunSC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.
SCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSO
F1W*********************************
K*********************************
F2W*********************************
K*********************************
F3W*********************************
K*********************************
F4W*********************************
K*********************************
F5W*********************************
K*********************************
F6W******5.92E−03******************3.84E−03***
K******5.60E−03******************3.08E−03***
F7W*********************************
K*********************************
F8W*********************************
K*********************************
F9W*********************************
K*********************************
F10W*********************************
K*********************************
FunSC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.
SCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSO
F1W*********************************
K*********************************
F2W*********************************
K*********************************
F3W*********************************
K*********************************
F4W*********************************
K*********************************
F5W*********************************
K*********************************
F6W******5.92E−03******************3.84E−03***
K******5.60E−03******************3.08E−03***
F7W*********************************
K*********************************
F8W*********************************
K*********************************
F9W*********************************
K*********************************
F10W*********************************
K*********************************
Table 6:

Experimental results of Wilcoxon signed-rank test and Kruskal Wallis test. *** denotes P < 0.001, “W” denotes Wilcoxon signed-rank test, and “K” denotes Kruskal Wallis test.

FunSC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.
SCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSO
F1W*********************************
K*********************************
F2W*********************************
K*********************************
F3W*********************************
K*********************************
F4W*********************************
K*********************************
F5W*********************************
K*********************************
F6W******5.92E−03******************3.84E−03***
K******5.60E−03******************3.08E−03***
F7W*********************************
K*********************************
F8W*********************************
K*********************************
F9W*********************************
K*********************************
F10W*********************************
K*********************************
FunSC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.SC-AOA vs.
SCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSO
F1W*********************************
K*********************************
F2W*********************************
K*********************************
F3W*********************************
K*********************************
F4W*********************************
K*********************************
F5W*********************************
K*********************************
F6W******5.92E−03******************3.84E−03***
K******5.60E−03******************3.08E−03***
F7W*********************************
K*********************************
F8W*********************************
K*********************************
F9W*********************************
K*********************************
F10W*********************************
K*********************************

Table 7 and Fig. 4 present the results of the Friedman P-value test for the proposed SC-AOA and the compared algorithms. From them, it can be observed that the proposed SC-AOA gets the 1st rank compared with other algorithms. The Chi-square is 76.17, and the P-value is less than 0.05. It also proves significant differences between the proposed SC-AOA and the compared algorithms.

The results of the Friedman test.
Figure 4:

The results of the Friedman test.

Table 7:

Experimental results of the Friedman test.

MethodsMeanRank
SCSO4.304
WOA9.9011
HHO6.657
GSK8.609
AOA7.158
AHA2.252
DMOA8.9010
HBA6.556
YDSE11.5012
MSMA4.053
EAPSO6.205
SC-AOA1.951
Chi-square76.17
P-value8.08E−12
MethodsMeanRank
SCSO4.304
WOA9.9011
HHO6.657
GSK8.609
AOA7.158
AHA2.252
DMOA8.9010
HBA6.556
YDSE11.5012
MSMA4.053
EAPSO6.205
SC-AOA1.951
Chi-square76.17
P-value8.08E−12
Table 7:

Experimental results of the Friedman test.

MethodsMeanRank
SCSO4.304
WOA9.9011
HHO6.657
GSK8.609
AOA7.158
AHA2.252
DMOA8.9010
HBA6.556
YDSE11.5012
MSMA4.053
EAPSO6.205
SC-AOA1.951
Chi-square76.17
P-value8.08E−12
MethodsMeanRank
SCSO4.304
WOA9.9011
HHO6.657
GSK8.609
AOA7.158
AHA2.252
DMOA8.9010
HBA6.556
YDSE11.5012
MSMA4.053
EAPSO6.205
SC-AOA1.951
Chi-square76.17
P-value8.08E−12

4.4. Impact of introduced strategies

In this subsection, to verify the impact of each strategy in the proposed SC-AOA, three different combinations are added to the SCSO named SCSO1, SCSO2, and SCSO3. In SCSO1, the improved refracted opposition-based learning is added to SCSO. In SCSO2, the AOA position update is added to SCSO. In SCSO3, the crisscross strategy is added to SCSO. The same benchmark functions (F1–F10) have been used to verify the impact of each strategy. The specific experimental results are shown in Table 8.

Table 8:

Experimental results of different strategies in 30 dimensions.

FunctionsAlgorithmsBestWorstMeanStd
F1SCSO3.56E−1091.09E−853.62E−865.12E−86
SCSO11.11E−1574.57E−1572.84E−1571.73E−157
SCSO20000
SCSO32.23E−1619.50E−1544.75E−1544.75E−154
SC-AOA0000
F2SCSO3.48E−544.77E−532.20E−531.88E−53
SCSO11.14E−812.17E−781.09E−781.09E−78
SCSO21.08E−1165.76E−1062.88E−1062.88E−106
SCSO35.50E−835.34E−822.94E−822.39E−82
SC-AOA0000
F3SCSO1.24E−1031.66E−945.52E−957.81E−95
SCSO12.42E−1781.17E−1515.84E−1525.84E−152
SCSO20000
SCSO33.27E−1384.06E−1282.03E−1282.03E−128
SC-AOA0000
F4SCSO7.86E−723.67E−621.22E−621.73E−62
SCSO11.57E−1149.18E−1145.38E−1143.81E−114
SCSO20000
SCSO31.17E−1394.97E−1382.54E−1382.42E−138
SC-AOA0000
F5SCSO6.13E−1542.24E−1431.12E−1431.12E−143
SCSO11.22E−1551.55E−1548.36E−1557.14E−155
SCSO20000
SCSO36.00E−1577.18E−1553.62E−1553.56E−155
SC-AOA0000
F6SCSO0000
SCSO10000
SCSO20000
SCSO30000
SC-AOA0000
F7SCSO0000
SCSO10000
SCSO20000
SCSO30000
SC-AOA0000
F8SCSO1.36E−555.91E−513.15E−512.43E−51
SCSO19.86E−791.38E−781.19E−781.99E−79
SCSO24.96E−1168.15E−1166.56E−1161.60E−116
SCSO33.74E−836.79E−813.41E−813.38E−81
SC-AOA0000
F9SCSO9.20E−514.07E−481.52E−481.81E−48
SCSO15.86E−772.19E−731.10E−731.10E−73
SCSO20000
SCSO35.54E−774.07E−742.04E−742.03E−74
SC-AOA0000
F10SCSO08.29E−972.76E−973.91E−97
SCSO10000
SCSO20000
SCSO30000
SC-AOA0000
FunctionsAlgorithmsBestWorstMeanStd
F1SCSO3.56E−1091.09E−853.62E−865.12E−86
SCSO11.11E−1574.57E−1572.84E−1571.73E−157
SCSO20000
SCSO32.23E−1619.50E−1544.75E−1544.75E−154
SC-AOA0000
F2SCSO3.48E−544.77E−532.20E−531.88E−53
SCSO11.14E−812.17E−781.09E−781.09E−78
SCSO21.08E−1165.76E−1062.88E−1062.88E−106
SCSO35.50E−835.34E−822.94E−822.39E−82
SC-AOA0000
F3SCSO1.24E−1031.66E−945.52E−957.81E−95
SCSO12.42E−1781.17E−1515.84E−1525.84E−152
SCSO20000
SCSO33.27E−1384.06E−1282.03E−1282.03E−128
SC-AOA0000
F4SCSO7.86E−723.67E−621.22E−621.73E−62
SCSO11.57E−1149.18E−1145.38E−1143.81E−114
SCSO20000
SCSO31.17E−1394.97E−1382.54E−1382.42E−138
SC-AOA0000
F5SCSO6.13E−1542.24E−1431.12E−1431.12E−143
SCSO11.22E−1551.55E−1548.36E−1557.14E−155
SCSO20000
SCSO36.00E−1577.18E−1553.62E−1553.56E−155
SC-AOA0000
F6SCSO0000
SCSO10000
SCSO20000
SCSO30000
SC-AOA0000
F7SCSO0000
SCSO10000
SCSO20000
SCSO30000
SC-AOA0000
F8SCSO1.36E−555.91E−513.15E−512.43E−51
SCSO19.86E−791.38E−781.19E−781.99E−79
SCSO24.96E−1168.15E−1166.56E−1161.60E−116
SCSO33.74E−836.79E−813.41E−813.38E−81
SC-AOA0000
F9SCSO9.20E−514.07E−481.52E−481.81E−48
SCSO15.86E−772.19E−731.10E−731.10E−73
SCSO20000
SCSO35.54E−774.07E−742.04E−742.03E−74
SC-AOA0000
F10SCSO08.29E−972.76E−973.91E−97
SCSO10000
SCSO20000
SCSO30000
SC-AOA0000
Table 8:

Experimental results of different strategies in 30 dimensions.

FunctionsAlgorithmsBestWorstMeanStd
F1SCSO3.56E−1091.09E−853.62E−865.12E−86
SCSO11.11E−1574.57E−1572.84E−1571.73E−157
SCSO20000
SCSO32.23E−1619.50E−1544.75E−1544.75E−154
SC-AOA0000
F2SCSO3.48E−544.77E−532.20E−531.88E−53
SCSO11.14E−812.17E−781.09E−781.09E−78
SCSO21.08E−1165.76E−1062.88E−1062.88E−106
SCSO35.50E−835.34E−822.94E−822.39E−82
SC-AOA0000
F3SCSO1.24E−1031.66E−945.52E−957.81E−95
SCSO12.42E−1781.17E−1515.84E−1525.84E−152
SCSO20000
SCSO33.27E−1384.06E−1282.03E−1282.03E−128
SC-AOA0000
F4SCSO7.86E−723.67E−621.22E−621.73E−62
SCSO11.57E−1149.18E−1145.38E−1143.81E−114
SCSO20000
SCSO31.17E−1394.97E−1382.54E−1382.42E−138
SC-AOA0000
F5SCSO6.13E−1542.24E−1431.12E−1431.12E−143
SCSO11.22E−1551.55E−1548.36E−1557.14E−155
SCSO20000
SCSO36.00E−1577.18E−1553.62E−1553.56E−155
SC-AOA0000
F6SCSO0000
SCSO10000
SCSO20000
SCSO30000
SC-AOA0000
F7SCSO0000
SCSO10000
SCSO20000
SCSO30000
SC-AOA0000
F8SCSO1.36E−555.91E−513.15E−512.43E−51
SCSO19.86E−791.38E−781.19E−781.99E−79
SCSO24.96E−1168.15E−1166.56E−1161.60E−116
SCSO33.74E−836.79E−813.41E−813.38E−81
SC-AOA0000
F9SCSO9.20E−514.07E−481.52E−481.81E−48
SCSO15.86E−772.19E−731.10E−731.10E−73
SCSO20000
SCSO35.54E−774.07E−742.04E−742.03E−74
SC-AOA0000
F10SCSO08.29E−972.76E−973.91E−97
SCSO10000
SCSO20000
SCSO30000
SC-AOA0000
FunctionsAlgorithmsBestWorstMeanStd
F1SCSO3.56E−1091.09E−853.62E−865.12E−86
SCSO11.11E−1574.57E−1572.84E−1571.73E−157
SCSO20000
SCSO32.23E−1619.50E−1544.75E−1544.75E−154
SC-AOA0000
F2SCSO3.48E−544.77E−532.20E−531.88E−53
SCSO11.14E−812.17E−781.09E−781.09E−78
SCSO21.08E−1165.76E−1062.88E−1062.88E−106
SCSO35.50E−835.34E−822.94E−822.39E−82
SC-AOA0000
F3SCSO1.24E−1031.66E−945.52E−957.81E−95
SCSO12.42E−1781.17E−1515.84E−1525.84E−152
SCSO20000
SCSO33.27E−1384.06E−1282.03E−1282.03E−128
SC-AOA0000
F4SCSO7.86E−723.67E−621.22E−621.73E−62
SCSO11.57E−1149.18E−1145.38E−1143.81E−114
SCSO20000
SCSO31.17E−1394.97E−1382.54E−1382.42E−138
SC-AOA0000
F5SCSO6.13E−1542.24E−1431.12E−1431.12E−143
SCSO11.22E−1551.55E−1548.36E−1557.14E−155
SCSO20000
SCSO36.00E−1577.18E−1553.62E−1553.56E−155
SC-AOA0000
F6SCSO0000
SCSO10000
SCSO20000
SCSO30000
SC-AOA0000
F7SCSO0000
SCSO10000
SCSO20000
SCSO30000
SC-AOA0000
F8SCSO1.36E−555.91E−513.15E−512.43E−51
SCSO19.86E−791.38E−781.19E−781.99E−79
SCSO24.96E−1168.15E−1166.56E−1161.60E−116
SCSO33.74E−836.79E−813.41E−813.38E−81
SC-AOA0000
F9SCSO9.20E−514.07E−481.52E−481.81E−48
SCSO15.86E−772.19E−731.10E−731.10E−73
SCSO20000
SCSO35.54E−774.07E−742.04E−742.03E−74
SC-AOA0000
F10SCSO08.29E−972.76E−973.91E−97
SCSO10000
SCSO20000
SCSO30000
SC-AOA0000

In all benchmark functions, the experimental results of Table 8 show that the proposed SC-AOA has performed better than other SCSO1, SCSO2, and SCSO3. Besides, SCSO2 is the second-best optimizer in these benchmark functions, which indicates the use of AOA position update to balance exploration and exploitation. On the one hand, global exploration in the early iteration makes the algorithm search the whole solution space, which improves the convergence speed. On the other hand, the sand cat population gathers near the optimal solution in the later iteration, local exploitation of the algorithm at this time can make the sand cat population continue to search for better solutions, which improves the convergence accuracy. Overall, combining the above three improvement strategies, the proposed SC-AOA can obtain high-level solutions quickly.

4.5. Comparison with other algorithms on CEC 2014 benchmark functions

In this section, 30 benchmark functions from CEC 2014 (Liang et al., 2013) are used to evaluate the proposed SC-AOA’s performance further. The name, the class, and the optimum of functions are given in Table 9. SCSO, WOA, HHO, GSK, AOA, AHA, DMOA, HBA, YDSE, MSMA, and EAPSO were selected to compare the optimization of CEC 2014 functions. The parameter settings of each algorithm are consistent with SCSO, D = 10. Table 10 is dedicated to conducting the experimental results in which the bold values represent the best-obtained solutions.

Table 9:

Details of 30 CEC 2014 benchmark functions.

No.NameDimClassRange|${f}_{\mathrm{min}}$|
F01Rotated high conditioned elliptic function10Unimodal functions[−100, 100]100
F02Rotated bent cigar function10[−100, 100]200
F03Rotated discus function10[−100, 100]300
F04Shifted and rotated Rosenbrock function10Multimodal functions[−100, 100]400
F05Shifted and rotated Ackley’s function10[−100, 100]500
F06Shifted and rotated Weierstrass function10[−100, 100]600
F07Shifted and rotated Griewank’s function10[−100, 100]700
F08Shifted Rastrigin function10[−100, 100]800
F09Shifted and rotated Rastrigin function10[−100, 100]900
F10Shifted Schwefel function10[−100, 100]1000
F11Shifted and rotated Schwefel function10[−100, 100]1100
F12Shifted and rotated Katsuura function10[−100, 100]1200
F13Shifted and rotated HappyCat function10[−100, 100]1300
F14Shifted and rotated HGBat function10[−100, 100]1400
F15Shifted and rotated expanded Griewank’s plus Rosenbrock’s function10[−100, 100]1500
F16Shifted and rotated expanded Scaffer’s function10[−100, 100]1600
F17Hybrid function 110Hybrid functions[−100, 100]1700
F18Hybrid function 210[−100, 100]1800
F19Hybrid function 310[−100, 100]1900
F20Hybrid function 410[−100, 100]2000
F21Hybrid function 510[−100, 100]2100
F22Hybrid function 610[−100, 100]2200
F23Composition function 110Composition functions[−100, 100]2300
F24Composition function 210[−100, 100]2400
F25Composition function 310[−100, 100]2500
F26Composition function 410[−100, 100]2600
F27Composition function 510[−100, 100]2700
F28Composition function 610[−100, 100]2800
F29Composition function 710[−100, 100]2900
F30Composition function 810[−100, 100]3000
No.NameDimClassRange|${f}_{\mathrm{min}}$|
F01Rotated high conditioned elliptic function10Unimodal functions[−100, 100]100
F02Rotated bent cigar function10[−100, 100]200
F03Rotated discus function10[−100, 100]300
F04Shifted and rotated Rosenbrock function10Multimodal functions[−100, 100]400
F05Shifted and rotated Ackley’s function10[−100, 100]500
F06Shifted and rotated Weierstrass function10[−100, 100]600
F07Shifted and rotated Griewank’s function10[−100, 100]700
F08Shifted Rastrigin function10[−100, 100]800
F09Shifted and rotated Rastrigin function10[−100, 100]900
F10Shifted Schwefel function10[−100, 100]1000
F11Shifted and rotated Schwefel function10[−100, 100]1100
F12Shifted and rotated Katsuura function10[−100, 100]1200
F13Shifted and rotated HappyCat function10[−100, 100]1300
F14Shifted and rotated HGBat function10[−100, 100]1400
F15Shifted and rotated expanded Griewank’s plus Rosenbrock’s function10[−100, 100]1500
F16Shifted and rotated expanded Scaffer’s function10[−100, 100]1600
F17Hybrid function 110Hybrid functions[−100, 100]1700
F18Hybrid function 210[−100, 100]1800
F19Hybrid function 310[−100, 100]1900
F20Hybrid function 410[−100, 100]2000
F21Hybrid function 510[−100, 100]2100
F22Hybrid function 610[−100, 100]2200
F23Composition function 110Composition functions[−100, 100]2300
F24Composition function 210[−100, 100]2400
F25Composition function 310[−100, 100]2500
F26Composition function 410[−100, 100]2600
F27Composition function 510[−100, 100]2700
F28Composition function 610[−100, 100]2800
F29Composition function 710[−100, 100]2900
F30Composition function 810[−100, 100]3000
Table 9:

Details of 30 CEC 2014 benchmark functions.

No.NameDimClassRange|${f}_{\mathrm{min}}$|
F01Rotated high conditioned elliptic function10Unimodal functions[−100, 100]100
F02Rotated bent cigar function10[−100, 100]200
F03Rotated discus function10[−100, 100]300
F04Shifted and rotated Rosenbrock function10Multimodal functions[−100, 100]400
F05Shifted and rotated Ackley’s function10[−100, 100]500
F06Shifted and rotated Weierstrass function10[−100, 100]600
F07Shifted and rotated Griewank’s function10[−100, 100]700
F08Shifted Rastrigin function10[−100, 100]800
F09Shifted and rotated Rastrigin function10[−100, 100]900
F10Shifted Schwefel function10[−100, 100]1000
F11Shifted and rotated Schwefel function10[−100, 100]1100
F12Shifted and rotated Katsuura function10[−100, 100]1200
F13Shifted and rotated HappyCat function10[−100, 100]1300
F14Shifted and rotated HGBat function10[−100, 100]1400
F15Shifted and rotated expanded Griewank’s plus Rosenbrock’s function10[−100, 100]1500
F16Shifted and rotated expanded Scaffer’s function10[−100, 100]1600
F17Hybrid function 110Hybrid functions[−100, 100]1700
F18Hybrid function 210[−100, 100]1800
F19Hybrid function 310[−100, 100]1900
F20Hybrid function 410[−100, 100]2000
F21Hybrid function 510[−100, 100]2100
F22Hybrid function 610[−100, 100]2200
F23Composition function 110Composition functions[−100, 100]2300
F24Composition function 210[−100, 100]2400
F25Composition function 310[−100, 100]2500
F26Composition function 410[−100, 100]2600
F27Composition function 510[−100, 100]2700
F28Composition function 610[−100, 100]2800
F29Composition function 710[−100, 100]2900
F30Composition function 810[−100, 100]3000
No.NameDimClassRange|${f}_{\mathrm{min}}$|
F01Rotated high conditioned elliptic function10Unimodal functions[−100, 100]100
F02Rotated bent cigar function10[−100, 100]200
F03Rotated discus function10[−100, 100]300
F04Shifted and rotated Rosenbrock function10Multimodal functions[−100, 100]400
F05Shifted and rotated Ackley’s function10[−100, 100]500
F06Shifted and rotated Weierstrass function10[−100, 100]600
F07Shifted and rotated Griewank’s function10[−100, 100]700
F08Shifted Rastrigin function10[−100, 100]800
F09Shifted and rotated Rastrigin function10[−100, 100]900
F10Shifted Schwefel function10[−100, 100]1000
F11Shifted and rotated Schwefel function10[−100, 100]1100
F12Shifted and rotated Katsuura function10[−100, 100]1200
F13Shifted and rotated HappyCat function10[−100, 100]1300
F14Shifted and rotated HGBat function10[−100, 100]1400
F15Shifted and rotated expanded Griewank’s plus Rosenbrock’s function10[−100, 100]1500
F16Shifted and rotated expanded Scaffer’s function10[−100, 100]1600
F17Hybrid function 110Hybrid functions[−100, 100]1700
F18Hybrid function 210[−100, 100]1800
F19Hybrid function 310[−100, 100]1900
F20Hybrid function 410[−100, 100]2000
F21Hybrid function 510[−100, 100]2100
F22Hybrid function 610[−100, 100]2200
F23Composition function 110Composition functions[−100, 100]2300
F24Composition function 210[−100, 100]2400
F25Composition function 310[−100, 100]2500
F26Composition function 410[−100, 100]2600
F27Composition function 510[−100, 100]2700
F28Composition function 610[−100, 100]2800
F29Composition function 710[−100, 100]2900
F30Composition function 810[−100, 100]3000
Table 10:

Experimental results on 30 CEC 2014 benchmark functions.

FunSCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSOSC-AOA
F01Mean4.60E+072.18E+077.60E+075.07E+066.23E+081.69E+071.38E+076.71E+071.40E+072.73E+071.92E+073.93E+06
Std1.72E+069.44E+061.14E+072.09E+061.09E+065.94E+066.33E+052.63E+076.59E+061.49E+067.17E+054.83E+05
F02Mean2.94E+072.03E+092.60E+092.13E+082.47E+101.40E+095.24E+081.27E+093.40E+099.42E+085.27E+068.30E+05
Std2.90E+074.82E+081.33E+094.29E+073.42E+091.34E+087.56E+062.25E+084.21E+072.65E+071.42E+065.65E+05
F03Mean3.86E+039.69E+031.43E+049.42E+031.58E+061.10E+046.12E+035.92E+042.17E+041.07E+041.66E+041.76E+03
Std2.60E+013.01E+021.76E+034.19E+029.08E+054.47E+038.73E+028.67E+033.84E+027.70E+034.47E+031.99E+01
F04Mean4.51E+025.83E+024.81E+025.11E+028.74E+035.70E+024.51E+028.29E+025.65E+024.75E+024.37E+024.27E+02
Std8.47E+007.61E+002.04E+007.94E+016.03E+026.68E+014.76E+001.19E+022.88E+011.26E+015.06E−018.47E+00
F05Mean5.20E+025.20E+025.20E+024.21E+025.21E+025.21E+025.21E+025.21E+025.20E+025.20E+025.21E+025.20E+02
Std1.04E−028.22E−021.09E−011.13E−011.12E−016.25E−028.23E−023.19E−034.70E−023.15E−025.30E−022.16E−03
F06Mean6.06E+026.08E+026.10E+025.10E+026.14E+026.08E+026.06E+026.10E+026.09E+026.07E+026.05E+026.10E+02
Std1.00E+001.07E−025.69E−014.38E−027.00E−015.59E−014.14E−012.73E−015.16E−011.61E+002.22E−013.37E−01
F07Mean7.01E+027.35E+027.83E+027.67E+029.09E+027.17E+027.10E+027.25E+027.49E+027.49E+027.01E+027.01E+02
Std2.13E−012.74E+004.08E+015.41E+017.87E−014.54E+004.68E−015.78E+005.39E+003.28E+002.17E−026.22E−02
F08Mean8.32E+028.53E+028.54E+028.30E+029.44E+028.48E+028.35E+028.79E+028.64E+028.46E+028.38E+028.24E+02
Std6.46E+001.52E+001.05E+012.05E+012.62E+019.57E+004.94E+004.98E+003.76E+007.31E−011.46E+014.66E+00
F09Mean9.28E+029.51E+029.73E+028.54E+021.04E+039.41E+029.45E+029.92E+029.70E+029.50E+029.47E+029.44E+02
Std1.47E+017.06E+001.00E+018.63E−013.91E+001.58E+001.92E+008.10E+002.80E+005.25E+001.07E+014.91E−01
F10Mean1.84E+032.12E+032.03E+032.70E+033.85E+032.10E+031.80E+033.06E+032.34E+032.00E+032.09E+031.13E+03
Std2.65E+021.76E+022.62E+024.19E+009.45E+011.53E+021.14E+011.55E+021.00E+022.18E+023.16E+021.12E+02
F11Mean2.16E+032.46E+032.49E+032.81E+033.31E+032.51E+032.49E+032.95E+032.60E+032.36E+032.34E+031.99E+03
Std5.99E+011.51E+015.77E+012.57E+026.24E+021.25E+021.20E+022.21E+021.02E+013.10E+018.70E+004.66E+02
F12Mean1.20E+031.20E+031.20E+031.10E+031.21E+031.20E+031.20E+031.20E+031.20E+031.20E+031.20E+031.20E+03
Std1.58E−012.49E−012.80E−016.18E−014.79E−012.47E−011.00E−011.25E−012.52E−011.28E−014.82E−019.92E−02
F13Mean1.30E+031.30E+031.30E+031.20E+031.30E+031.30E+031.30E+031.30E+031.30E+031.30E+031.30E+031.30E+03
Std1.03E−013.22E−014.78E−012.13E−012.30E−011.02E−034.64E−021.97E−023.26E−014.71E−021.72E−029.54E−02
F14Mean1.40E+031.40E+031.41E+031.30E+031.45E+031.40E+031.40E+031.42E+031.41E+031.40E+031.40E+031.40E+03
Std1.95E−013.23E−023.17E+007.47E−011.82E−016.85E−025.97E−032.41E+002.06E+005.21E−012.06E−023.15E−02
F15Mean1.51E+031.53E+032.16E+033.99E+044.58E+051.51E+031.51E+032.30E+032.12E+031.53E+031.51E+031.50E+03
Std4.58E+001.58E+015.97E+029.97E+033.27E+052.48E+003.56E−014.38E+025.87E+021.89E+016.10E−011.03E+00
F16Mean1.60E+031.60E+031.60E+031.50E+031.60E+031.60E+031.60E+031.60E+031.60E+031.60E+031.60E+031.60E+03
Std6.87E−013.29E−021.41E−013.28E−012.63E−011.29E−011.30E−017.70E−025.29E−021.55E−011.03E+001.49E−01
F17Mean1.83E+044.95E+044.97E+042.78E+042.15E+074.70E+042.86E+042.94E+055.67E+041.50E+052.67E+041.11E+04
Std6.14E+032.50E+031.30E+042.90E+032.64E+062.46E+046.93E+031.86E+058.20E+031.30E+051.52E+031.31E+02
F18Mean4.00E+045.58E+046.12E+042.38E+046.79E+077.89E+045.05E+041.22E+052.31E+056.89E+042.29E+041.73E+04
Std7.23E+032.85E+042.93E+032.26E+033.50E+073.75E+044.58E+037.81E+031.07E+059.48E+031.49E+041.44E+03
F19Mean1.98E+032.46E+031.69E+062.05E+038.39E+072.36E+032.06E+032.46E+046.77E+032.22E+033.46E+031.93E+03
Std5.93E+011.89E+021.69E+061.94E+022.70E+073.60E+029.87E+012.14E+043.23E+037.82E+011.54E+031.54E+01
F20Mean4.52E+049.12E+072.15E+097.23E+059.63E+132.67E+065.81E+054.91E+086.38E+074.66E+076.25E+041.66E+04
Std2.15E+048.96E+072.15E+096.24E+038.12E+132.63E+061.59E+054.05E+084.52E+071.99E+076.85E+032.62E+02
F21Mean1.04E+041.41E+056.91E+062.64E+043.55E+071.76E+054.80E+041.45E+052.13E+054.87E+041.35E+043.06E+03
Std7.75E+027.12E+046.87E+061.34E+041.18E+071.47E+051.98E+041.11E+054.53E+042.49E+042.24E+032.96E+02
F22Mean2.57E+032.74E+032.86E+032.37E+031.71E+133.12E+032.58E+034.33E+033.20E+032.50E+032.35E+032.28E+03
Std2.73E+019.92E+001.39E+026.64E+011.41E+131.66E+023.75E+015.07E+023.09E+021.39E+011.06E+024.10E+01
F23Mean2.50E+032.53E+032.50E+032.88E+033.12E+032.50E+032.50E+032.62E+032.58E+032.50E+032.54E+032.50E+03
Std0.00E+002.14E+014.68E−056.35E+013.27E+021.53E−028.85E−046.77E+005.75E+000.00E+003.83E−010.00E+00
F24Mean2.60E+032.58E+032.59E+032.47E+032.66E+032.60E+032.57E+032.62E+032.59E+032.56E+032.54E+032.60E+03
Std0.00E+007.10E+006.79E+004.67E+001.16E+010.00E+009.73E−011.44E+011.01E+015.90E−013.57E−010.00E+00
F25Mean2.70E+032.70E+032.70E+032.60E+032.75E+032.70E+032.70E+032.71E+032.70E+032.70E+032.70E+032.70E+03
Std0.00E+001.34E+001.46E−058.55E−013.01E+003.56E−041.71E−063.34E+004.15E+001.01E+001.64E+000.00E+00
F26Mean2.70E+032.70E+032.70E+032.60E+032.71E+032.70E+032.70E+032.70E+032.70E+032.70E+032.70E+032.80E+03
Std1.11E−013.83E−011.17E+003.38E−024.81E+002.81E−011.89E−013.54E−012.81E−031.66E−015.96E−020.00E+00
F27Mean2.81E+032.74E+032.90E+032.98E+033.34E+032.90E+033.06E+033.10E+032.93E+032.73E+033.18E+032.90E+03
Std9.29E+012.80E+017.70E−046.38E+018.04E+011.42E−011.11E+024.61E−022.33E+014.60E+004.36E+000.00E+00
F28Mean3.00E+033.65E+033.00E+033.21E+035.04E+033.00E+033.30E+033.14E+033.66E+033.22E+033.43E+033.00E+03
Std0.00E+005.08E+012.12E−054.31E+013.32E+021.11E−014.51E+004.69E+019.87E+011.57E+001.45E+020.00E+00
F29Mean3.10E+032.75E+074.35E+064.83E+062.75E+085.62E+037.69E+064.83E+063.22E+079.31E+065.53E+063.10E+03
Std0.00E+003.98E+064.34E+064.60E+051.05E+082.47E+034.02E+054.60E+053.47E+068.82E+052.46E+050.00E+00
F30Mean3.20E+032.30E+062.44E+055.62E+034.85E+085.97E+032.72E+062.97E+041.04E+062.28E+061.55E+063.20E+03
Std0.00E+009.50E+052.40E+053.76E+023.93E+076.78E+021.25E+061.64E+042.25E+052.79E+051.41E+060.00E+00
FunSCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSOSC-AOA
F01Mean4.60E+072.18E+077.60E+075.07E+066.23E+081.69E+071.38E+076.71E+071.40E+072.73E+071.92E+073.93E+06
Std1.72E+069.44E+061.14E+072.09E+061.09E+065.94E+066.33E+052.63E+076.59E+061.49E+067.17E+054.83E+05
F02Mean2.94E+072.03E+092.60E+092.13E+082.47E+101.40E+095.24E+081.27E+093.40E+099.42E+085.27E+068.30E+05
Std2.90E+074.82E+081.33E+094.29E+073.42E+091.34E+087.56E+062.25E+084.21E+072.65E+071.42E+065.65E+05
F03Mean3.86E+039.69E+031.43E+049.42E+031.58E+061.10E+046.12E+035.92E+042.17E+041.07E+041.66E+041.76E+03
Std2.60E+013.01E+021.76E+034.19E+029.08E+054.47E+038.73E+028.67E+033.84E+027.70E+034.47E+031.99E+01
F04Mean4.51E+025.83E+024.81E+025.11E+028.74E+035.70E+024.51E+028.29E+025.65E+024.75E+024.37E+024.27E+02
Std8.47E+007.61E+002.04E+007.94E+016.03E+026.68E+014.76E+001.19E+022.88E+011.26E+015.06E−018.47E+00
F05Mean5.20E+025.20E+025.20E+024.21E+025.21E+025.21E+025.21E+025.21E+025.20E+025.20E+025.21E+025.20E+02
Std1.04E−028.22E−021.09E−011.13E−011.12E−016.25E−028.23E−023.19E−034.70E−023.15E−025.30E−022.16E−03
F06Mean6.06E+026.08E+026.10E+025.10E+026.14E+026.08E+026.06E+026.10E+026.09E+026.07E+026.05E+026.10E+02
Std1.00E+001.07E−025.69E−014.38E−027.00E−015.59E−014.14E−012.73E−015.16E−011.61E+002.22E−013.37E−01
F07Mean7.01E+027.35E+027.83E+027.67E+029.09E+027.17E+027.10E+027.25E+027.49E+027.49E+027.01E+027.01E+02
Std2.13E−012.74E+004.08E+015.41E+017.87E−014.54E+004.68E−015.78E+005.39E+003.28E+002.17E−026.22E−02
F08Mean8.32E+028.53E+028.54E+028.30E+029.44E+028.48E+028.35E+028.79E+028.64E+028.46E+028.38E+028.24E+02
Std6.46E+001.52E+001.05E+012.05E+012.62E+019.57E+004.94E+004.98E+003.76E+007.31E−011.46E+014.66E+00
F09Mean9.28E+029.51E+029.73E+028.54E+021.04E+039.41E+029.45E+029.92E+029.70E+029.50E+029.47E+029.44E+02
Std1.47E+017.06E+001.00E+018.63E−013.91E+001.58E+001.92E+008.10E+002.80E+005.25E+001.07E+014.91E−01
F10Mean1.84E+032.12E+032.03E+032.70E+033.85E+032.10E+031.80E+033.06E+032.34E+032.00E+032.09E+031.13E+03
Std2.65E+021.76E+022.62E+024.19E+009.45E+011.53E+021.14E+011.55E+021.00E+022.18E+023.16E+021.12E+02
F11Mean2.16E+032.46E+032.49E+032.81E+033.31E+032.51E+032.49E+032.95E+032.60E+032.36E+032.34E+031.99E+03
Std5.99E+011.51E+015.77E+012.57E+026.24E+021.25E+021.20E+022.21E+021.02E+013.10E+018.70E+004.66E+02
F12Mean1.20E+031.20E+031.20E+031.10E+031.21E+031.20E+031.20E+031.20E+031.20E+031.20E+031.20E+031.20E+03
Std1.58E−012.49E−012.80E−016.18E−014.79E−012.47E−011.00E−011.25E−012.52E−011.28E−014.82E−019.92E−02
F13Mean1.30E+031.30E+031.30E+031.20E+031.30E+031.30E+031.30E+031.30E+031.30E+031.30E+031.30E+031.30E+03
Std1.03E−013.22E−014.78E−012.13E−012.30E−011.02E−034.64E−021.97E−023.26E−014.71E−021.72E−029.54E−02
F14Mean1.40E+031.40E+031.41E+031.30E+031.45E+031.40E+031.40E+031.42E+031.41E+031.40E+031.40E+031.40E+03
Std1.95E−013.23E−023.17E+007.47E−011.82E−016.85E−025.97E−032.41E+002.06E+005.21E−012.06E−023.15E−02
F15Mean1.51E+031.53E+032.16E+033.99E+044.58E+051.51E+031.51E+032.30E+032.12E+031.53E+031.51E+031.50E+03
Std4.58E+001.58E+015.97E+029.97E+033.27E+052.48E+003.56E−014.38E+025.87E+021.89E+016.10E−011.03E+00
F16Mean1.60E+031.60E+031.60E+031.50E+031.60E+031.60E+031.60E+031.60E+031.60E+031.60E+031.60E+031.60E+03
Std6.87E−013.29E−021.41E−013.28E−012.63E−011.29E−011.30E−017.70E−025.29E−021.55E−011.03E+001.49E−01
F17Mean1.83E+044.95E+044.97E+042.78E+042.15E+074.70E+042.86E+042.94E+055.67E+041.50E+052.67E+041.11E+04
Std6.14E+032.50E+031.30E+042.90E+032.64E+062.46E+046.93E+031.86E+058.20E+031.30E+051.52E+031.31E+02
F18Mean4.00E+045.58E+046.12E+042.38E+046.79E+077.89E+045.05E+041.22E+052.31E+056.89E+042.29E+041.73E+04
Std7.23E+032.85E+042.93E+032.26E+033.50E+073.75E+044.58E+037.81E+031.07E+059.48E+031.49E+041.44E+03
F19Mean1.98E+032.46E+031.69E+062.05E+038.39E+072.36E+032.06E+032.46E+046.77E+032.22E+033.46E+031.93E+03
Std5.93E+011.89E+021.69E+061.94E+022.70E+073.60E+029.87E+012.14E+043.23E+037.82E+011.54E+031.54E+01
F20Mean4.52E+049.12E+072.15E+097.23E+059.63E+132.67E+065.81E+054.91E+086.38E+074.66E+076.25E+041.66E+04
Std2.15E+048.96E+072.15E+096.24E+038.12E+132.63E+061.59E+054.05E+084.52E+071.99E+076.85E+032.62E+02
F21Mean1.04E+041.41E+056.91E+062.64E+043.55E+071.76E+054.80E+041.45E+052.13E+054.87E+041.35E+043.06E+03
Std7.75E+027.12E+046.87E+061.34E+041.18E+071.47E+051.98E+041.11E+054.53E+042.49E+042.24E+032.96E+02
F22Mean2.57E+032.74E+032.86E+032.37E+031.71E+133.12E+032.58E+034.33E+033.20E+032.50E+032.35E+032.28E+03
Std2.73E+019.92E+001.39E+026.64E+011.41E+131.66E+023.75E+015.07E+023.09E+021.39E+011.06E+024.10E+01
F23Mean2.50E+032.53E+032.50E+032.88E+033.12E+032.50E+032.50E+032.62E+032.58E+032.50E+032.54E+032.50E+03
Std0.00E+002.14E+014.68E−056.35E+013.27E+021.53E−028.85E−046.77E+005.75E+000.00E+003.83E−010.00E+00
F24Mean2.60E+032.58E+032.59E+032.47E+032.66E+032.60E+032.57E+032.62E+032.59E+032.56E+032.54E+032.60E+03
Std0.00E+007.10E+006.79E+004.67E+001.16E+010.00E+009.73E−011.44E+011.01E+015.90E−013.57E−010.00E+00
F25Mean2.70E+032.70E+032.70E+032.60E+032.75E+032.70E+032.70E+032.71E+032.70E+032.70E+032.70E+032.70E+03
Std0.00E+001.34E+001.46E−058.55E−013.01E+003.56E−041.71E−063.34E+004.15E+001.01E+001.64E+000.00E+00
F26Mean2.70E+032.70E+032.70E+032.60E+032.71E+032.70E+032.70E+032.70E+032.70E+032.70E+032.70E+032.80E+03
Std1.11E−013.83E−011.17E+003.38E−024.81E+002.81E−011.89E−013.54E−012.81E−031.66E−015.96E−020.00E+00
F27Mean2.81E+032.74E+032.90E+032.98E+033.34E+032.90E+033.06E+033.10E+032.93E+032.73E+033.18E+032.90E+03
Std9.29E+012.80E+017.70E−046.38E+018.04E+011.42E−011.11E+024.61E−022.33E+014.60E+004.36E+000.00E+00
F28Mean3.00E+033.65E+033.00E+033.21E+035.04E+033.00E+033.30E+033.14E+033.66E+033.22E+033.43E+033.00E+03
Std0.00E+005.08E+012.12E−054.31E+013.32E+021.11E−014.51E+004.69E+019.87E+011.57E+001.45E+020.00E+00
F29Mean3.10E+032.75E+074.35E+064.83E+062.75E+085.62E+037.69E+064.83E+063.22E+079.31E+065.53E+063.10E+03
Std0.00E+003.98E+064.34E+064.60E+051.05E+082.47E+034.02E+054.60E+053.47E+068.82E+052.46E+050.00E+00
F30Mean3.20E+032.30E+062.44E+055.62E+034.85E+085.97E+032.72E+062.97E+041.04E+062.28E+061.55E+063.20E+03
Std0.00E+009.50E+052.40E+053.76E+023.93E+076.78E+021.25E+061.64E+042.25E+052.79E+051.41E+060.00E+00
Table 10:

Experimental results on 30 CEC 2014 benchmark functions.

FunSCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSOSC-AOA
F01Mean4.60E+072.18E+077.60E+075.07E+066.23E+081.69E+071.38E+076.71E+071.40E+072.73E+071.92E+073.93E+06
Std1.72E+069.44E+061.14E+072.09E+061.09E+065.94E+066.33E+052.63E+076.59E+061.49E+067.17E+054.83E+05
F02Mean2.94E+072.03E+092.60E+092.13E+082.47E+101.40E+095.24E+081.27E+093.40E+099.42E+085.27E+068.30E+05
Std2.90E+074.82E+081.33E+094.29E+073.42E+091.34E+087.56E+062.25E+084.21E+072.65E+071.42E+065.65E+05
F03Mean3.86E+039.69E+031.43E+049.42E+031.58E+061.10E+046.12E+035.92E+042.17E+041.07E+041.66E+041.76E+03
Std2.60E+013.01E+021.76E+034.19E+029.08E+054.47E+038.73E+028.67E+033.84E+027.70E+034.47E+031.99E+01
F04Mean4.51E+025.83E+024.81E+025.11E+028.74E+035.70E+024.51E+028.29E+025.65E+024.75E+024.37E+024.27E+02
Std8.47E+007.61E+002.04E+007.94E+016.03E+026.68E+014.76E+001.19E+022.88E+011.26E+015.06E−018.47E+00
F05Mean5.20E+025.20E+025.20E+024.21E+025.21E+025.21E+025.21E+025.21E+025.20E+025.20E+025.21E+025.20E+02
Std1.04E−028.22E−021.09E−011.13E−011.12E−016.25E−028.23E−023.19E−034.70E−023.15E−025.30E−022.16E−03
F06Mean6.06E+026.08E+026.10E+025.10E+026.14E+026.08E+026.06E+026.10E+026.09E+026.07E+026.05E+026.10E+02
Std1.00E+001.07E−025.69E−014.38E−027.00E−015.59E−014.14E−012.73E−015.16E−011.61E+002.22E−013.37E−01
F07Mean7.01E+027.35E+027.83E+027.67E+029.09E+027.17E+027.10E+027.25E+027.49E+027.49E+027.01E+027.01E+02
Std2.13E−012.74E+004.08E+015.41E+017.87E−014.54E+004.68E−015.78E+005.39E+003.28E+002.17E−026.22E−02
F08Mean8.32E+028.53E+028.54E+028.30E+029.44E+028.48E+028.35E+028.79E+028.64E+028.46E+028.38E+028.24E+02
Std6.46E+001.52E+001.05E+012.05E+012.62E+019.57E+004.94E+004.98E+003.76E+007.31E−011.46E+014.66E+00
F09Mean9.28E+029.51E+029.73E+028.54E+021.04E+039.41E+029.45E+029.92E+029.70E+029.50E+029.47E+029.44E+02
Std1.47E+017.06E+001.00E+018.63E−013.91E+001.58E+001.92E+008.10E+002.80E+005.25E+001.07E+014.91E−01
F10Mean1.84E+032.12E+032.03E+032.70E+033.85E+032.10E+031.80E+033.06E+032.34E+032.00E+032.09E+031.13E+03
Std2.65E+021.76E+022.62E+024.19E+009.45E+011.53E+021.14E+011.55E+021.00E+022.18E+023.16E+021.12E+02
F11Mean2.16E+032.46E+032.49E+032.81E+033.31E+032.51E+032.49E+032.95E+032.60E+032.36E+032.34E+031.99E+03
Std5.99E+011.51E+015.77E+012.57E+026.24E+021.25E+021.20E+022.21E+021.02E+013.10E+018.70E+004.66E+02
F12Mean1.20E+031.20E+031.20E+031.10E+031.21E+031.20E+031.20E+031.20E+031.20E+031.20E+031.20E+031.20E+03
Std1.58E−012.49E−012.80E−016.18E−014.79E−012.47E−011.00E−011.25E−012.52E−011.28E−014.82E−019.92E−02
F13Mean1.30E+031.30E+031.30E+031.20E+031.30E+031.30E+031.30E+031.30E+031.30E+031.30E+031.30E+031.30E+03
Std1.03E−013.22E−014.78E−012.13E−012.30E−011.02E−034.64E−021.97E−023.26E−014.71E−021.72E−029.54E−02
F14Mean1.40E+031.40E+031.41E+031.30E+031.45E+031.40E+031.40E+031.42E+031.41E+031.40E+031.40E+031.40E+03
Std1.95E−013.23E−023.17E+007.47E−011.82E−016.85E−025.97E−032.41E+002.06E+005.21E−012.06E−023.15E−02
F15Mean1.51E+031.53E+032.16E+033.99E+044.58E+051.51E+031.51E+032.30E+032.12E+031.53E+031.51E+031.50E+03
Std4.58E+001.58E+015.97E+029.97E+033.27E+052.48E+003.56E−014.38E+025.87E+021.89E+016.10E−011.03E+00
F16Mean1.60E+031.60E+031.60E+031.50E+031.60E+031.60E+031.60E+031.60E+031.60E+031.60E+031.60E+031.60E+03
Std6.87E−013.29E−021.41E−013.28E−012.63E−011.29E−011.30E−017.70E−025.29E−021.55E−011.03E+001.49E−01
F17Mean1.83E+044.95E+044.97E+042.78E+042.15E+074.70E+042.86E+042.94E+055.67E+041.50E+052.67E+041.11E+04
Std6.14E+032.50E+031.30E+042.90E+032.64E+062.46E+046.93E+031.86E+058.20E+031.30E+051.52E+031.31E+02
F18Mean4.00E+045.58E+046.12E+042.38E+046.79E+077.89E+045.05E+041.22E+052.31E+056.89E+042.29E+041.73E+04
Std7.23E+032.85E+042.93E+032.26E+033.50E+073.75E+044.58E+037.81E+031.07E+059.48E+031.49E+041.44E+03
F19Mean1.98E+032.46E+031.69E+062.05E+038.39E+072.36E+032.06E+032.46E+046.77E+032.22E+033.46E+031.93E+03
Std5.93E+011.89E+021.69E+061.94E+022.70E+073.60E+029.87E+012.14E+043.23E+037.82E+011.54E+031.54E+01
F20Mean4.52E+049.12E+072.15E+097.23E+059.63E+132.67E+065.81E+054.91E+086.38E+074.66E+076.25E+041.66E+04
Std2.15E+048.96E+072.15E+096.24E+038.12E+132.63E+061.59E+054.05E+084.52E+071.99E+076.85E+032.62E+02
F21Mean1.04E+041.41E+056.91E+062.64E+043.55E+071.76E+054.80E+041.45E+052.13E+054.87E+041.35E+043.06E+03
Std7.75E+027.12E+046.87E+061.34E+041.18E+071.47E+051.98E+041.11E+054.53E+042.49E+042.24E+032.96E+02
F22Mean2.57E+032.74E+032.86E+032.37E+031.71E+133.12E+032.58E+034.33E+033.20E+032.50E+032.35E+032.28E+03
Std2.73E+019.92E+001.39E+026.64E+011.41E+131.66E+023.75E+015.07E+023.09E+021.39E+011.06E+024.10E+01
F23Mean2.50E+032.53E+032.50E+032.88E+033.12E+032.50E+032.50E+032.62E+032.58E+032.50E+032.54E+032.50E+03
Std0.00E+002.14E+014.68E−056.35E+013.27E+021.53E−028.85E−046.77E+005.75E+000.00E+003.83E−010.00E+00
F24Mean2.60E+032.58E+032.59E+032.47E+032.66E+032.60E+032.57E+032.62E+032.59E+032.56E+032.54E+032.60E+03
Std0.00E+007.10E+006.79E+004.67E+001.16E+010.00E+009.73E−011.44E+011.01E+015.90E−013.57E−010.00E+00
F25Mean2.70E+032.70E+032.70E+032.60E+032.75E+032.70E+032.70E+032.71E+032.70E+032.70E+032.70E+032.70E+03
Std0.00E+001.34E+001.46E−058.55E−013.01E+003.56E−041.71E−063.34E+004.15E+001.01E+001.64E+000.00E+00
F26Mean2.70E+032.70E+032.70E+032.60E+032.71E+032.70E+032.70E+032.70E+032.70E+032.70E+032.70E+032.80E+03
Std1.11E−013.83E−011.17E+003.38E−024.81E+002.81E−011.89E−013.54E−012.81E−031.66E−015.96E−020.00E+00
F27Mean2.81E+032.74E+032.90E+032.98E+033.34E+032.90E+033.06E+033.10E+032.93E+032.73E+033.18E+032.90E+03
Std9.29E+012.80E+017.70E−046.38E+018.04E+011.42E−011.11E+024.61E−022.33E+014.60E+004.36E+000.00E+00
F28Mean3.00E+033.65E+033.00E+033.21E+035.04E+033.00E+033.30E+033.14E+033.66E+033.22E+033.43E+033.00E+03
Std0.00E+005.08E+012.12E−054.31E+013.32E+021.11E−014.51E+004.69E+019.87E+011.57E+001.45E+020.00E+00
F29Mean3.10E+032.75E+074.35E+064.83E+062.75E+085.62E+037.69E+064.83E+063.22E+079.31E+065.53E+063.10E+03
Std0.00E+003.98E+064.34E+064.60E+051.05E+082.47E+034.02E+054.60E+053.47E+068.82E+052.46E+050.00E+00
F30Mean3.20E+032.30E+062.44E+055.62E+034.85E+085.97E+032.72E+062.97E+041.04E+062.28E+061.55E+063.20E+03
Std0.00E+009.50E+052.40E+053.76E+023.93E+076.78E+021.25E+061.64E+042.25E+052.79E+051.41E+060.00E+00
FunSCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSOSC-AOA
F01Mean4.60E+072.18E+077.60E+075.07E+066.23E+081.69E+071.38E+076.71E+071.40E+072.73E+071.92E+073.93E+06
Std1.72E+069.44E+061.14E+072.09E+061.09E+065.94E+066.33E+052.63E+076.59E+061.49E+067.17E+054.83E+05
F02Mean2.94E+072.03E+092.60E+092.13E+082.47E+101.40E+095.24E+081.27E+093.40E+099.42E+085.27E+068.30E+05
Std2.90E+074.82E+081.33E+094.29E+073.42E+091.34E+087.56E+062.25E+084.21E+072.65E+071.42E+065.65E+05
F03Mean3.86E+039.69E+031.43E+049.42E+031.58E+061.10E+046.12E+035.92E+042.17E+041.07E+041.66E+041.76E+03
Std2.60E+013.01E+021.76E+034.19E+029.08E+054.47E+038.73E+028.67E+033.84E+027.70E+034.47E+031.99E+01
F04Mean4.51E+025.83E+024.81E+025.11E+028.74E+035.70E+024.51E+028.29E+025.65E+024.75E+024.37E+024.27E+02
Std8.47E+007.61E+002.04E+007.94E+016.03E+026.68E+014.76E+001.19E+022.88E+011.26E+015.06E−018.47E+00
F05Mean5.20E+025.20E+025.20E+024.21E+025.21E+025.21E+025.21E+025.21E+025.20E+025.20E+025.21E+025.20E+02
Std1.04E−028.22E−021.09E−011.13E−011.12E−016.25E−028.23E−023.19E−034.70E−023.15E−025.30E−022.16E−03
F06Mean6.06E+026.08E+026.10E+025.10E+026.14E+026.08E+026.06E+026.10E+026.09E+026.07E+026.05E+026.10E+02
Std1.00E+001.07E−025.69E−014.38E−027.00E−015.59E−014.14E−012.73E−015.16E−011.61E+002.22E−013.37E−01
F07Mean7.01E+027.35E+027.83E+027.67E+029.09E+027.17E+027.10E+027.25E+027.49E+027.49E+027.01E+027.01E+02
Std2.13E−012.74E+004.08E+015.41E+017.87E−014.54E+004.68E−015.78E+005.39E+003.28E+002.17E−026.22E−02
F08Mean8.32E+028.53E+028.54E+028.30E+029.44E+028.48E+028.35E+028.79E+028.64E+028.46E+028.38E+028.24E+02
Std6.46E+001.52E+001.05E+012.05E+012.62E+019.57E+004.94E+004.98E+003.76E+007.31E−011.46E+014.66E+00
F09Mean9.28E+029.51E+029.73E+028.54E+021.04E+039.41E+029.45E+029.92E+029.70E+029.50E+029.47E+029.44E+02
Std1.47E+017.06E+001.00E+018.63E−013.91E+001.58E+001.92E+008.10E+002.80E+005.25E+001.07E+014.91E−01
F10Mean1.84E+032.12E+032.03E+032.70E+033.85E+032.10E+031.80E+033.06E+032.34E+032.00E+032.09E+031.13E+03
Std2.65E+021.76E+022.62E+024.19E+009.45E+011.53E+021.14E+011.55E+021.00E+022.18E+023.16E+021.12E+02
F11Mean2.16E+032.46E+032.49E+032.81E+033.31E+032.51E+032.49E+032.95E+032.60E+032.36E+032.34E+031.99E+03
Std5.99E+011.51E+015.77E+012.57E+026.24E+021.25E+021.20E+022.21E+021.02E+013.10E+018.70E+004.66E+02
F12Mean1.20E+031.20E+031.20E+031.10E+031.21E+031.20E+031.20E+031.20E+031.20E+031.20E+031.20E+031.20E+03
Std1.58E−012.49E−012.80E−016.18E−014.79E−012.47E−011.00E−011.25E−012.52E−011.28E−014.82E−019.92E−02
F13Mean1.30E+031.30E+031.30E+031.20E+031.30E+031.30E+031.30E+031.30E+031.30E+031.30E+031.30E+031.30E+03
Std1.03E−013.22E−014.78E−012.13E−012.30E−011.02E−034.64E−021.97E−023.26E−014.71E−021.72E−029.54E−02
F14Mean1.40E+031.40E+031.41E+031.30E+031.45E+031.40E+031.40E+031.42E+031.41E+031.40E+031.40E+031.40E+03
Std1.95E−013.23E−023.17E+007.47E−011.82E−016.85E−025.97E−032.41E+002.06E+005.21E−012.06E−023.15E−02
F15Mean1.51E+031.53E+032.16E+033.99E+044.58E+051.51E+031.51E+032.30E+032.12E+031.53E+031.51E+031.50E+03
Std4.58E+001.58E+015.97E+029.97E+033.27E+052.48E+003.56E−014.38E+025.87E+021.89E+016.10E−011.03E+00
F16Mean1.60E+031.60E+031.60E+031.50E+031.60E+031.60E+031.60E+031.60E+031.60E+031.60E+031.60E+031.60E+03
Std6.87E−013.29E−021.41E−013.28E−012.63E−011.29E−011.30E−017.70E−025.29E−021.55E−011.03E+001.49E−01
F17Mean1.83E+044.95E+044.97E+042.78E+042.15E+074.70E+042.86E+042.94E+055.67E+041.50E+052.67E+041.11E+04
Std6.14E+032.50E+031.30E+042.90E+032.64E+062.46E+046.93E+031.86E+058.20E+031.30E+051.52E+031.31E+02
F18Mean4.00E+045.58E+046.12E+042.38E+046.79E+077.89E+045.05E+041.22E+052.31E+056.89E+042.29E+041.73E+04
Std7.23E+032.85E+042.93E+032.26E+033.50E+073.75E+044.58E+037.81E+031.07E+059.48E+031.49E+041.44E+03
F19Mean1.98E+032.46E+031.69E+062.05E+038.39E+072.36E+032.06E+032.46E+046.77E+032.22E+033.46E+031.93E+03
Std5.93E+011.89E+021.69E+061.94E+022.70E+073.60E+029.87E+012.14E+043.23E+037.82E+011.54E+031.54E+01
F20Mean4.52E+049.12E+072.15E+097.23E+059.63E+132.67E+065.81E+054.91E+086.38E+074.66E+076.25E+041.66E+04
Std2.15E+048.96E+072.15E+096.24E+038.12E+132.63E+061.59E+054.05E+084.52E+071.99E+076.85E+032.62E+02
F21Mean1.04E+041.41E+056.91E+062.64E+043.55E+071.76E+054.80E+041.45E+052.13E+054.87E+041.35E+043.06E+03
Std7.75E+027.12E+046.87E+061.34E+041.18E+071.47E+051.98E+041.11E+054.53E+042.49E+042.24E+032.96E+02
F22Mean2.57E+032.74E+032.86E+032.37E+031.71E+133.12E+032.58E+034.33E+033.20E+032.50E+032.35E+032.28E+03
Std2.73E+019.92E+001.39E+026.64E+011.41E+131.66E+023.75E+015.07E+023.09E+021.39E+011.06E+024.10E+01
F23Mean2.50E+032.53E+032.50E+032.88E+033.12E+032.50E+032.50E+032.62E+032.58E+032.50E+032.54E+032.50E+03
Std0.00E+002.14E+014.68E−056.35E+013.27E+021.53E−028.85E−046.77E+005.75E+000.00E+003.83E−010.00E+00
F24Mean2.60E+032.58E+032.59E+032.47E+032.66E+032.60E+032.57E+032.62E+032.59E+032.56E+032.54E+032.60E+03
Std0.00E+007.10E+006.79E+004.67E+001.16E+010.00E+009.73E−011.44E+011.01E+015.90E−013.57E−010.00E+00
F25Mean2.70E+032.70E+032.70E+032.60E+032.75E+032.70E+032.70E+032.71E+032.70E+032.70E+032.70E+032.70E+03
Std0.00E+001.34E+001.46E−058.55E−013.01E+003.56E−041.71E−063.34E+004.15E+001.01E+001.64E+000.00E+00
F26Mean2.70E+032.70E+032.70E+032.60E+032.71E+032.70E+032.70E+032.70E+032.70E+032.70E+032.70E+032.80E+03
Std1.11E−013.83E−011.17E+003.38E−024.81E+002.81E−011.89E−013.54E−012.81E−031.66E−015.96E−020.00E+00
F27Mean2.81E+032.74E+032.90E+032.98E+033.34E+032.90E+033.06E+033.10E+032.93E+032.73E+033.18E+032.90E+03
Std9.29E+012.80E+017.70E−046.38E+018.04E+011.42E−011.11E+024.61E−022.33E+014.60E+004.36E+000.00E+00
F28Mean3.00E+033.65E+033.00E+033.21E+035.04E+033.00E+033.30E+033.14E+033.66E+033.22E+033.43E+033.00E+03
Std0.00E+005.08E+012.12E−054.31E+013.32E+021.11E−014.51E+004.69E+019.87E+011.57E+001.45E+020.00E+00
F29Mean3.10E+032.75E+074.35E+064.83E+062.75E+085.62E+037.69E+064.83E+063.22E+079.31E+065.53E+063.10E+03
Std0.00E+003.98E+064.34E+064.60E+051.05E+082.47E+034.02E+054.60E+053.47E+068.82E+052.46E+050.00E+00
F30Mean3.20E+032.30E+062.44E+055.62E+034.85E+085.97E+032.72E+062.97E+041.04E+062.28E+061.55E+063.20E+03
Std0.00E+009.50E+052.40E+053.76E+023.93E+076.78E+021.25E+061.64E+042.25E+052.79E+051.41E+060.00E+00

From Table 10, it is clear that the optimal values obtained by SC-AOA are better than the comparison algorithms. Specifically, SC-AOA obtains better optimal solutions than the other algorithms for the three unimodal functions from F01 to F03. Moreover, the multimodal function is used to verify the global exploration of the algorithm, and the optimal solutions obtained by SC-AOA on F04, F07, F08, F10, F11, and F15 are smaller than the other algorithms in terms of the mean. However, both hybrid and composition functions are more challenging functions than unimodal and multimodal functions, and from the obtained results, SC-AOA obtains good optimal solutions except for F24 to F27. Meanwhile, SC-AOA obtained the smallest standard deviation (Std) values in most of the benchmark functions, indicating that SC-AOA has good stability and robustness. Therefore, SC-AOA is in the first position compared with the other algorithms.

4.6. Comparison with other algorithms on CEC 2017 benchmark functions

In this section, 28 benchmark functions from CEC 2017 (G. Wu et al., 2017) are used to evaluate the proposed SC-AOA’s performance further. The name, the class, and the optimum of functions are given in Table 11. SCSO, WOA, HHO, GSK, AOA, AHA, DMOA, HBA, YDSE, MSMA, and EAPSO were selected to compare the optimization of CEC 2017 functions. The parameter settings of each algorithm are consistent with SCSO, D = 30. Table 12 is dedicated to conducting the experimental results in which the bold values represent the best-obtained solutions.

Table 11:

Details of 28 CEC 2017 benchmark functions.

No.NameDimClassRange|${f}_{\mathrm{min}}$|
F01Shifted and rotated bent cigar function30Unimodal functions[−100, 100]100
F03Shifted and rotated Zakharov function30[−100, 100]300
F04Shifted and rotated Rosenbrock’s function30Multimodal functions[−100, 100]400
F05Shifted and rotated Rastrigin’s function30[−100, 100]500
F06Shifted and rotated expanded Scaffer’s F6 function30[−100, 100]600
F07Shifted and rotated Lunacek bi_Rastrigin function30[−100, 100]700
F08Shifted and rotated non-continuous Rastrigin’s function30[−100, 100]800
F09Shifted and rotated Levy function30[−100, 100]900
F10Shifted and rotated Schwefel’s function30[−100, 100]1000
F11Hybrid function 1 (N = 3)30Hybrid functions[−100, 100]1100
F12Hybrid function 2 (N = 3)30[−100, 100]1200
F13Hybrid function 3 (N = 3)30[−100, 100]1300
F14Hybrid function 4 (N = 4)30[−100, 100]1400
F15Hybrid function 5 (N = 4)30[−100, 100]1500
F16Hybrid function 6 (N = 4)30[−100, 100]1600
F17Hybrid function 7 (N = 5)30[−100, 100]1700
F18Hybrid function 8 (N = 5)30[−100, 100]1800
F19Hybrid function 9 (N = 5)30[−100, 100]1900
F20Hybrid function 10 (N = 6)30[−100, 100]2000
F21Composition function 1 (N = 3)30Composition functions[−100, 100]2100
F22Composition function 2 (N = 3)30[−100, 100]2200
F23Composition function 3 (N = 4)30[−100, 100]2300
F24Composition function 4 (N = 4)30[−100, 100]2400
F25Composition function 5 (N = 5)30[−100, 100]2500
F26Composition function 6 (N = 5)30[−100, 100]2600
F27Composition function 7 (N = 6)30[−100, 100]2700
F28Composition function 8 (N = 6)30[−100, 100]2800
F29Composition function 9 (N = 3)30[−100, 100]2900
No.NameDimClassRange|${f}_{\mathrm{min}}$|
F01Shifted and rotated bent cigar function30Unimodal functions[−100, 100]100
F03Shifted and rotated Zakharov function30[−100, 100]300
F04Shifted and rotated Rosenbrock’s function30Multimodal functions[−100, 100]400
F05Shifted and rotated Rastrigin’s function30[−100, 100]500
F06Shifted and rotated expanded Scaffer’s F6 function30[−100, 100]600
F07Shifted and rotated Lunacek bi_Rastrigin function30[−100, 100]700
F08Shifted and rotated non-continuous Rastrigin’s function30[−100, 100]800
F09Shifted and rotated Levy function30[−100, 100]900
F10Shifted and rotated Schwefel’s function30[−100, 100]1000
F11Hybrid function 1 (N = 3)30Hybrid functions[−100, 100]1100
F12Hybrid function 2 (N = 3)30[−100, 100]1200
F13Hybrid function 3 (N = 3)30[−100, 100]1300
F14Hybrid function 4 (N = 4)30[−100, 100]1400
F15Hybrid function 5 (N = 4)30[−100, 100]1500
F16Hybrid function 6 (N = 4)30[−100, 100]1600
F17Hybrid function 7 (N = 5)30[−100, 100]1700
F18Hybrid function 8 (N = 5)30[−100, 100]1800
F19Hybrid function 9 (N = 5)30[−100, 100]1900
F20Hybrid function 10 (N = 6)30[−100, 100]2000
F21Composition function 1 (N = 3)30Composition functions[−100, 100]2100
F22Composition function 2 (N = 3)30[−100, 100]2200
F23Composition function 3 (N = 4)30[−100, 100]2300
F24Composition function 4 (N = 4)30[−100, 100]2400
F25Composition function 5 (N = 5)30[−100, 100]2500
F26Composition function 6 (N = 5)30[−100, 100]2600
F27Composition function 7 (N = 6)30[−100, 100]2700
F28Composition function 8 (N = 6)30[−100, 100]2800
F29Composition function 9 (N = 3)30[−100, 100]2900
Table 11:

Details of 28 CEC 2017 benchmark functions.

No.NameDimClassRange|${f}_{\mathrm{min}}$|
F01Shifted and rotated bent cigar function30Unimodal functions[−100, 100]100
F03Shifted and rotated Zakharov function30[−100, 100]300
F04Shifted and rotated Rosenbrock’s function30Multimodal functions[−100, 100]400
F05Shifted and rotated Rastrigin’s function30[−100, 100]500
F06Shifted and rotated expanded Scaffer’s F6 function30[−100, 100]600
F07Shifted and rotated Lunacek bi_Rastrigin function30[−100, 100]700
F08Shifted and rotated non-continuous Rastrigin’s function30[−100, 100]800
F09Shifted and rotated Levy function30[−100, 100]900
F10Shifted and rotated Schwefel’s function30[−100, 100]1000
F11Hybrid function 1 (N = 3)30Hybrid functions[−100, 100]1100
F12Hybrid function 2 (N = 3)30[−100, 100]1200
F13Hybrid function 3 (N = 3)30[−100, 100]1300
F14Hybrid function 4 (N = 4)30[−100, 100]1400
F15Hybrid function 5 (N = 4)30[−100, 100]1500
F16Hybrid function 6 (N = 4)30[−100, 100]1600
F17Hybrid function 7 (N = 5)30[−100, 100]1700
F18Hybrid function 8 (N = 5)30[−100, 100]1800
F19Hybrid function 9 (N = 5)30[−100, 100]1900
F20Hybrid function 10 (N = 6)30[−100, 100]2000
F21Composition function 1 (N = 3)30Composition functions[−100, 100]2100
F22Composition function 2 (N = 3)30[−100, 100]2200
F23Composition function 3 (N = 4)30[−100, 100]2300
F24Composition function 4 (N = 4)30[−100, 100]2400
F25Composition function 5 (N = 5)30[−100, 100]2500
F26Composition function 6 (N = 5)30[−100, 100]2600
F27Composition function 7 (N = 6)30[−100, 100]2700
F28Composition function 8 (N = 6)30[−100, 100]2800
F29Composition function 9 (N = 3)30[−100, 100]2900
No.NameDimClassRange|${f}_{\mathrm{min}}$|
F01Shifted and rotated bent cigar function30Unimodal functions[−100, 100]100
F03Shifted and rotated Zakharov function30[−100, 100]300
F04Shifted and rotated Rosenbrock’s function30Multimodal functions[−100, 100]400
F05Shifted and rotated Rastrigin’s function30[−100, 100]500
F06Shifted and rotated expanded Scaffer’s F6 function30[−100, 100]600
F07Shifted and rotated Lunacek bi_Rastrigin function30[−100, 100]700
F08Shifted and rotated non-continuous Rastrigin’s function30[−100, 100]800
F09Shifted and rotated Levy function30[−100, 100]900
F10Shifted and rotated Schwefel’s function30[−100, 100]1000
F11Hybrid function 1 (N = 3)30Hybrid functions[−100, 100]1100
F12Hybrid function 2 (N = 3)30[−100, 100]1200
F13Hybrid function 3 (N = 3)30[−100, 100]1300
F14Hybrid function 4 (N = 4)30[−100, 100]1400
F15Hybrid function 5 (N = 4)30[−100, 100]1500
F16Hybrid function 6 (N = 4)30[−100, 100]1600
F17Hybrid function 7 (N = 5)30[−100, 100]1700
F18Hybrid function 8 (N = 5)30[−100, 100]1800
F19Hybrid function 9 (N = 5)30[−100, 100]1900
F20Hybrid function 10 (N = 6)30[−100, 100]2000
F21Composition function 1 (N = 3)30Composition functions[−100, 100]2100
F22Composition function 2 (N = 3)30[−100, 100]2200
F23Composition function 3 (N = 4)30[−100, 100]2300
F24Composition function 4 (N = 4)30[−100, 100]2400
F25Composition function 5 (N = 5)30[−100, 100]2500
F26Composition function 6 (N = 5)30[−100, 100]2600
F27Composition function 7 (N = 6)30[−100, 100]2700
F28Composition function 8 (N = 6)30[−100, 100]2800
F29Composition function 9 (N = 3)30[−100, 100]2900
Table 12:

Experimental results of different algorithms on 28 CEC 2017 benchmark functions.

FunSCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSOSC-AOA
F01Mean3.16E+094.18E+104.99E+102.62E+101.16E+113.72E+101.62E+106.78E+106.34E+102.68E+104.53E+091.84E+08
Std1.35E+098.80E+094.76E+094.39E+093.99E+091.90E+094.05E+081.22E+093.20E+096.08E+091.96E+097.83E+07
F03Mean6.15E+027.37E+031.09E+044.99E+034.63E+047.21E+032.01E+032.01E+041.31E+042.52E+038.66E+024.31E+02
Std3.27E+011.20E+031.14E+034.80E+021.56E+049.82E+022.77E+027.48E+031.50E+033.77E+029.31E+016.77E+00
F04Mean3.86E+034.86E+046.88E+044.77E+041.36E+054.53E+042.16E+047.80E+046.78E+043.37E+048.20E+031.38E+03
Std5.88E+028.02E+031.03E+035.91E+021.02E+046.86E+039.87E+015.26E+034.32E+033.18E+022.05E+031.65E+02
F05Mean5.00E+025.00E+025.00E+024.00E+025.00E+025.00E+025.00E+025.00E+025.00E+025.00E+025.00E+025.00E+02
Std1.02E−038.71E−032.33E−033.74E−039.60E−031.20E−021.47E−031.58E−031.60E−032.92E−042.48E−024.05E−04
F06Mean1.43E+045.54E+044.25E+046.28E+041.65E+055.67E+042.99E+042.38E+046.20E+047.94E+048.67E+048.92E+03
Std6.10E+022.34E+031.39E+031.61E+032.03E+047.37E+033.49E+021.27E+041.31E+048.52E+039.98E+037.31E+03
F07Mean7.00E+027.03E+027.02E+026.03E+027.13E+027.02E+027.01E+027.08E+027.04E+027.02E+027.00E+027.00E+02
Std7.57E−022.81E−019.37E−025.57E−019.90E−013.68E−022.53E−011.08E+003.88E−011.66E−011.08E−011.06E−02
F08Mean8.14E+028.31E+028.41E+027.23E+028.92E+028.27E+028.12E+028.44E+028.48E+028.20E+028.08E+028.05E+02
Std2.70E+006.48E+004.62E−014.98E+003.45E+001.86E+009.79E−025.47E+005.46E+005.90E+001.75E+004.92E−01
F09Mean6.13E+038.17E+037.94E+037.64E+031.08E+044.04E+038.26E+036.67E+038.10E+038.30E+034.42E+034.03E+03
Std2.20E+028.33E+015.13E+021.04E+023.32E+024.20E+028.41E+011.39E+022.09E+021.20E+022.09E+024.02E+02
F10Mean2.21E+052.35E+067.84E+062.82E+052.45E+091.09E+061.67E+065.50E+079.62E+069.71E+062.90E+056.19E+04
Std2.57E+041.30E+066.96E+061.33E+057.67E+082.80E+057.92E+054.68E+066.51E+061.64E+065.19E+041.65E+04
F11Mean1.83E+085.11E+099.54E+093.94E+092.44E+103.84E+091.81E+097.90E+096.87E+093.68E+093.34E+088.74E+06
Std1.54E+071.19E+083.45E+091.67E+091.80E+099.84E+082.96E+087.50E+081.00E+071.90E+091.95E+083.90E+06
F12Mean5.20E+072.37E+091.12E+102.56E+093.53E+101.83E+091.18E+096.86E+097.36E+092.65E+098.43E+077.89E+06
Std1.80E+069.94E+075.49E+094.77E+081.06E+103.46E+082.43E+072.13E+092.38E+081.33E+091.14E+071.78E+06
F13Mean8.40E+052.09E+066.69E+061.31E+061.62E+081.54E+062.28E+063.60E+072.29E+064.10E+062.72E+065.04E+06
Std5.38E+054.38E+051.19E+067.03E+052.18E+069.71E+043.90E+053.19E+067.42E+052.14E+051.70E+066.88E+05
F14Mean3.74E+071.92E+085.20E+093.25E+082.56E+102.12E+093.14E+085.96E+093.35E+091.19E+091.06E+076.54E+05
Std3.40E+072.23E+073.97E+094.71E+066.09E+091.98E+086.44E+072.38E+096.70E+083.51E+081.12E+062.95E+04
F15Mean8.24E+051.20E+082.32E+095.46E+062.55E+101.49E+081.46E+075.09E+083.18E+084.79E+073.82E+061.11E+06
Std5.85E+055.27E+073.70E+081.04E+069.93E+091.30E+084.63E+061.06E+082.02E+081.31E+072.01E+062.70E+03
F16Mean1.02E+051.50E+122.65E+141.84E+088.84E+153.32E+112.07E+098.25E+113.68E+112.46E+101.20E+059.91E+03
Std3.32E+043.69E+112.65E+141.36E+088.52E+153.13E+111.74E+096.90E+111.96E+102.08E+101.07E+043.83E+03
F17Mean1.11E+058.78E+052.06E+053.47E+052.31E+086.55E+069.59E+051.04E+071.21E+061.33E+065.12E+057.58E+06
Std4.04E+037.71E+045.09E+041.10E+052.02E+086.32E+063.49E+057.67E+066.12E+056.81E+051.08E+057.53E+06
F18Mean6.52E+093.40E+102.79E+117.69E+091.93E+162.68E+102.01E+104.13E+111.17E+121.15E+116.60E+092.91E+07
Std6.18E+091.53E+101.64E+112.33E+091.65E+164.89E+094.83E+092.53E+112.19E+117.82E+106.36E+092.44E+07
F19Mean5.35E+037.87E+039.80E+035.64E+033.03E+047.34E+034.77E+031.18E+041.13E+046.24E+037.26E+032.52E+03
Std1.18E+035.73E+026.93E+021.30E+034.77E+031.66E+033.21E+021.60E+031.42E+039.31E+011.68E+021.56E+01
F20Mean6.29E+032.39E+045.08E+048.83E+031.34E+054.69E+041.46E+045.63E+043.15E+041.04E+047.31E+032.74E+03
Std2.89E+032.05E+034.30E+036.22E+023.92E+031.15E+046.72E+022.84E+047.97E+024.39E+031.59E+032.72E+01
F21Mean2.58E+033.33E+035.11E+032.75E+031.07E+043.43E+032.54E+034.11E+033.85E+032.65E+032.40E+032.35E+03
Std1.77E+023.33E+022.12E+021.68E+013.79E+021.63E+026.60E+003.98E+021.74E+025.17E+018.33E+003.55E+00
F22Mean6.69E+033.11E+046.06E+044.34E+041.24E+054.62E+042.17E+046.14E+045.90E+042.76E+041.40E+044.14E+03
Std4.81E+024.11E+036.40E+035.10E+022.52E+041.03E+041.21E+032.42E+037.99E+032.96E+036.41E+027.95E+01
F23Mean7.48E+032.54E+042.90E+041.68E+046.79E+042.95E+041.41E+044.27E+043.47E+042.57E+047.46E+033.37E+03
Std8.57E+022.18E+031.19E+021.31E+031.63E+033.96E+038.73E+024.56E+031.78E+033.29E+039.70E+021.40E+02
F24Mean3.07E+034.13E+035.77E+033.94E+031.94E+043.94E+033.51E+039.39E+037.33E+033.99E+033.03E+032.92E+03
Std1.39E+026.39E+021.10E+031.73E+021.60E+031.73E+025.85E+011.60E+021.06E+021.66E+021.85E+013.59E+01
F25Mean3.74E+037.81E+031.23E+045.05E+032.87E+047.21E+034.23E+038.82E+039.53E+033.45E+033.39E+033.48E+03
Std6.53E+001.61E+031.48E+028.27E+023.43E+032.10E+034.01E+014.70E+021.00E+031.59E+001.93E+016.79E+01
F26Mean3.36E+033.85E+033.87E+033.54E+036.92E+033.95E+033.47E+034.03E+034.05E+033.34E+033.17E+033.19E+03
Std9.02E+011.24E+024.36E+011.01E+028.52E+021.67E+028.70E+003.08E+011.27E+022.15E+011.67E+014.65E+01
F27Mean3.30E+034.87E+035.42E+034.43E+031.32E+044.83E+033.61E+036.10E+035.70E+034.60E+033.32E+033.19E+03
Std6.22E+014.00E+026.06E+022.42E+022.13E+035.59E+026.58E+002.79E+021.52E+023.09E+023.09E+002.67E+01
F28Mean9.57E+076.09E+092.56E+133.07E+094.83E+155.78E+111.71E+094.59E+116.17E+108.15E+092.50E+094.62E+06
Std9.38E+071.98E+092.19E+132.32E+096.93E+145.77E+112.03E+081.86E+113.71E+105.88E+092.45E+093.79E+06
F29Mean1.19E+081.33E+102.24E+113.00E+091.28E+144.63E+094.04E+096.84E+103.00E+101.93E+109.33E+073.14E+06
Std7.89E+065.25E+092.17E+111.21E+091.01E+141.81E+094.83E+084.71E+101.72E+101.20E+102.33E+074.39E+05
FunSCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSOSC-AOA
F01Mean3.16E+094.18E+104.99E+102.62E+101.16E+113.72E+101.62E+106.78E+106.34E+102.68E+104.53E+091.84E+08
Std1.35E+098.80E+094.76E+094.39E+093.99E+091.90E+094.05E+081.22E+093.20E+096.08E+091.96E+097.83E+07
F03Mean6.15E+027.37E+031.09E+044.99E+034.63E+047.21E+032.01E+032.01E+041.31E+042.52E+038.66E+024.31E+02
Std3.27E+011.20E+031.14E+034.80E+021.56E+049.82E+022.77E+027.48E+031.50E+033.77E+029.31E+016.77E+00
F04Mean3.86E+034.86E+046.88E+044.77E+041.36E+054.53E+042.16E+047.80E+046.78E+043.37E+048.20E+031.38E+03
Std5.88E+028.02E+031.03E+035.91E+021.02E+046.86E+039.87E+015.26E+034.32E+033.18E+022.05E+031.65E+02
F05Mean5.00E+025.00E+025.00E+024.00E+025.00E+025.00E+025.00E+025.00E+025.00E+025.00E+025.00E+025.00E+02
Std1.02E−038.71E−032.33E−033.74E−039.60E−031.20E−021.47E−031.58E−031.60E−032.92E−042.48E−024.05E−04
F06Mean1.43E+045.54E+044.25E+046.28E+041.65E+055.67E+042.99E+042.38E+046.20E+047.94E+048.67E+048.92E+03
Std6.10E+022.34E+031.39E+031.61E+032.03E+047.37E+033.49E+021.27E+041.31E+048.52E+039.98E+037.31E+03
F07Mean7.00E+027.03E+027.02E+026.03E+027.13E+027.02E+027.01E+027.08E+027.04E+027.02E+027.00E+027.00E+02
Std7.57E−022.81E−019.37E−025.57E−019.90E−013.68E−022.53E−011.08E+003.88E−011.66E−011.08E−011.06E−02
F08Mean8.14E+028.31E+028.41E+027.23E+028.92E+028.27E+028.12E+028.44E+028.48E+028.20E+028.08E+028.05E+02
Std2.70E+006.48E+004.62E−014.98E+003.45E+001.86E+009.79E−025.47E+005.46E+005.90E+001.75E+004.92E−01
F09Mean6.13E+038.17E+037.94E+037.64E+031.08E+044.04E+038.26E+036.67E+038.10E+038.30E+034.42E+034.03E+03
Std2.20E+028.33E+015.13E+021.04E+023.32E+024.20E+028.41E+011.39E+022.09E+021.20E+022.09E+024.02E+02
F10Mean2.21E+052.35E+067.84E+062.82E+052.45E+091.09E+061.67E+065.50E+079.62E+069.71E+062.90E+056.19E+04
Std2.57E+041.30E+066.96E+061.33E+057.67E+082.80E+057.92E+054.68E+066.51E+061.64E+065.19E+041.65E+04
F11Mean1.83E+085.11E+099.54E+093.94E+092.44E+103.84E+091.81E+097.90E+096.87E+093.68E+093.34E+088.74E+06
Std1.54E+071.19E+083.45E+091.67E+091.80E+099.84E+082.96E+087.50E+081.00E+071.90E+091.95E+083.90E+06
F12Mean5.20E+072.37E+091.12E+102.56E+093.53E+101.83E+091.18E+096.86E+097.36E+092.65E+098.43E+077.89E+06
Std1.80E+069.94E+075.49E+094.77E+081.06E+103.46E+082.43E+072.13E+092.38E+081.33E+091.14E+071.78E+06
F13Mean8.40E+052.09E+066.69E+061.31E+061.62E+081.54E+062.28E+063.60E+072.29E+064.10E+062.72E+065.04E+06
Std5.38E+054.38E+051.19E+067.03E+052.18E+069.71E+043.90E+053.19E+067.42E+052.14E+051.70E+066.88E+05
F14Mean3.74E+071.92E+085.20E+093.25E+082.56E+102.12E+093.14E+085.96E+093.35E+091.19E+091.06E+076.54E+05
Std3.40E+072.23E+073.97E+094.71E+066.09E+091.98E+086.44E+072.38E+096.70E+083.51E+081.12E+062.95E+04
F15Mean8.24E+051.20E+082.32E+095.46E+062.55E+101.49E+081.46E+075.09E+083.18E+084.79E+073.82E+061.11E+06
Std5.85E+055.27E+073.70E+081.04E+069.93E+091.30E+084.63E+061.06E+082.02E+081.31E+072.01E+062.70E+03
F16Mean1.02E+051.50E+122.65E+141.84E+088.84E+153.32E+112.07E+098.25E+113.68E+112.46E+101.20E+059.91E+03
Std3.32E+043.69E+112.65E+141.36E+088.52E+153.13E+111.74E+096.90E+111.96E+102.08E+101.07E+043.83E+03
F17Mean1.11E+058.78E+052.06E+053.47E+052.31E+086.55E+069.59E+051.04E+071.21E+061.33E+065.12E+057.58E+06
Std4.04E+037.71E+045.09E+041.10E+052.02E+086.32E+063.49E+057.67E+066.12E+056.81E+051.08E+057.53E+06
F18Mean6.52E+093.40E+102.79E+117.69E+091.93E+162.68E+102.01E+104.13E+111.17E+121.15E+116.60E+092.91E+07
Std6.18E+091.53E+101.64E+112.33E+091.65E+164.89E+094.83E+092.53E+112.19E+117.82E+106.36E+092.44E+07
F19Mean5.35E+037.87E+039.80E+035.64E+033.03E+047.34E+034.77E+031.18E+041.13E+046.24E+037.26E+032.52E+03
Std1.18E+035.73E+026.93E+021.30E+034.77E+031.66E+033.21E+021.60E+031.42E+039.31E+011.68E+021.56E+01
F20Mean6.29E+032.39E+045.08E+048.83E+031.34E+054.69E+041.46E+045.63E+043.15E+041.04E+047.31E+032.74E+03
Std2.89E+032.05E+034.30E+036.22E+023.92E+031.15E+046.72E+022.84E+047.97E+024.39E+031.59E+032.72E+01
F21Mean2.58E+033.33E+035.11E+032.75E+031.07E+043.43E+032.54E+034.11E+033.85E+032.65E+032.40E+032.35E+03
Std1.77E+023.33E+022.12E+021.68E+013.79E+021.63E+026.60E+003.98E+021.74E+025.17E+018.33E+003.55E+00
F22Mean6.69E+033.11E+046.06E+044.34E+041.24E+054.62E+042.17E+046.14E+045.90E+042.76E+041.40E+044.14E+03
Std4.81E+024.11E+036.40E+035.10E+022.52E+041.03E+041.21E+032.42E+037.99E+032.96E+036.41E+027.95E+01
F23Mean7.48E+032.54E+042.90E+041.68E+046.79E+042.95E+041.41E+044.27E+043.47E+042.57E+047.46E+033.37E+03
Std8.57E+022.18E+031.19E+021.31E+031.63E+033.96E+038.73E+024.56E+031.78E+033.29E+039.70E+021.40E+02
F24Mean3.07E+034.13E+035.77E+033.94E+031.94E+043.94E+033.51E+039.39E+037.33E+033.99E+033.03E+032.92E+03
Std1.39E+026.39E+021.10E+031.73E+021.60E+031.73E+025.85E+011.60E+021.06E+021.66E+021.85E+013.59E+01
F25Mean3.74E+037.81E+031.23E+045.05E+032.87E+047.21E+034.23E+038.82E+039.53E+033.45E+033.39E+033.48E+03
Std6.53E+001.61E+031.48E+028.27E+023.43E+032.10E+034.01E+014.70E+021.00E+031.59E+001.93E+016.79E+01
F26Mean3.36E+033.85E+033.87E+033.54E+036.92E+033.95E+033.47E+034.03E+034.05E+033.34E+033.17E+033.19E+03
Std9.02E+011.24E+024.36E+011.01E+028.52E+021.67E+028.70E+003.08E+011.27E+022.15E+011.67E+014.65E+01
F27Mean3.30E+034.87E+035.42E+034.43E+031.32E+044.83E+033.61E+036.10E+035.70E+034.60E+033.32E+033.19E+03
Std6.22E+014.00E+026.06E+022.42E+022.13E+035.59E+026.58E+002.79E+021.52E+023.09E+023.09E+002.67E+01
F28Mean9.57E+076.09E+092.56E+133.07E+094.83E+155.78E+111.71E+094.59E+116.17E+108.15E+092.50E+094.62E+06
Std9.38E+071.98E+092.19E+132.32E+096.93E+145.77E+112.03E+081.86E+113.71E+105.88E+092.45E+093.79E+06
F29Mean1.19E+081.33E+102.24E+113.00E+091.28E+144.63E+094.04E+096.84E+103.00E+101.93E+109.33E+073.14E+06
Std7.89E+065.25E+092.17E+111.21E+091.01E+141.81E+094.83E+084.71E+101.72E+101.20E+102.33E+074.39E+05
Table 12:

Experimental results of different algorithms on 28 CEC 2017 benchmark functions.

FunSCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSOSC-AOA
F01Mean3.16E+094.18E+104.99E+102.62E+101.16E+113.72E+101.62E+106.78E+106.34E+102.68E+104.53E+091.84E+08
Std1.35E+098.80E+094.76E+094.39E+093.99E+091.90E+094.05E+081.22E+093.20E+096.08E+091.96E+097.83E+07
F03Mean6.15E+027.37E+031.09E+044.99E+034.63E+047.21E+032.01E+032.01E+041.31E+042.52E+038.66E+024.31E+02
Std3.27E+011.20E+031.14E+034.80E+021.56E+049.82E+022.77E+027.48E+031.50E+033.77E+029.31E+016.77E+00
F04Mean3.86E+034.86E+046.88E+044.77E+041.36E+054.53E+042.16E+047.80E+046.78E+043.37E+048.20E+031.38E+03
Std5.88E+028.02E+031.03E+035.91E+021.02E+046.86E+039.87E+015.26E+034.32E+033.18E+022.05E+031.65E+02
F05Mean5.00E+025.00E+025.00E+024.00E+025.00E+025.00E+025.00E+025.00E+025.00E+025.00E+025.00E+025.00E+02
Std1.02E−038.71E−032.33E−033.74E−039.60E−031.20E−021.47E−031.58E−031.60E−032.92E−042.48E−024.05E−04
F06Mean1.43E+045.54E+044.25E+046.28E+041.65E+055.67E+042.99E+042.38E+046.20E+047.94E+048.67E+048.92E+03
Std6.10E+022.34E+031.39E+031.61E+032.03E+047.37E+033.49E+021.27E+041.31E+048.52E+039.98E+037.31E+03
F07Mean7.00E+027.03E+027.02E+026.03E+027.13E+027.02E+027.01E+027.08E+027.04E+027.02E+027.00E+027.00E+02
Std7.57E−022.81E−019.37E−025.57E−019.90E−013.68E−022.53E−011.08E+003.88E−011.66E−011.08E−011.06E−02
F08Mean8.14E+028.31E+028.41E+027.23E+028.92E+028.27E+028.12E+028.44E+028.48E+028.20E+028.08E+028.05E+02
Std2.70E+006.48E+004.62E−014.98E+003.45E+001.86E+009.79E−025.47E+005.46E+005.90E+001.75E+004.92E−01
F09Mean6.13E+038.17E+037.94E+037.64E+031.08E+044.04E+038.26E+036.67E+038.10E+038.30E+034.42E+034.03E+03
Std2.20E+028.33E+015.13E+021.04E+023.32E+024.20E+028.41E+011.39E+022.09E+021.20E+022.09E+024.02E+02
F10Mean2.21E+052.35E+067.84E+062.82E+052.45E+091.09E+061.67E+065.50E+079.62E+069.71E+062.90E+056.19E+04
Std2.57E+041.30E+066.96E+061.33E+057.67E+082.80E+057.92E+054.68E+066.51E+061.64E+065.19E+041.65E+04
F11Mean1.83E+085.11E+099.54E+093.94E+092.44E+103.84E+091.81E+097.90E+096.87E+093.68E+093.34E+088.74E+06
Std1.54E+071.19E+083.45E+091.67E+091.80E+099.84E+082.96E+087.50E+081.00E+071.90E+091.95E+083.90E+06
F12Mean5.20E+072.37E+091.12E+102.56E+093.53E+101.83E+091.18E+096.86E+097.36E+092.65E+098.43E+077.89E+06
Std1.80E+069.94E+075.49E+094.77E+081.06E+103.46E+082.43E+072.13E+092.38E+081.33E+091.14E+071.78E+06
F13Mean8.40E+052.09E+066.69E+061.31E+061.62E+081.54E+062.28E+063.60E+072.29E+064.10E+062.72E+065.04E+06
Std5.38E+054.38E+051.19E+067.03E+052.18E+069.71E+043.90E+053.19E+067.42E+052.14E+051.70E+066.88E+05
F14Mean3.74E+071.92E+085.20E+093.25E+082.56E+102.12E+093.14E+085.96E+093.35E+091.19E+091.06E+076.54E+05
Std3.40E+072.23E+073.97E+094.71E+066.09E+091.98E+086.44E+072.38E+096.70E+083.51E+081.12E+062.95E+04
F15Mean8.24E+051.20E+082.32E+095.46E+062.55E+101.49E+081.46E+075.09E+083.18E+084.79E+073.82E+061.11E+06
Std5.85E+055.27E+073.70E+081.04E+069.93E+091.30E+084.63E+061.06E+082.02E+081.31E+072.01E+062.70E+03
F16Mean1.02E+051.50E+122.65E+141.84E+088.84E+153.32E+112.07E+098.25E+113.68E+112.46E+101.20E+059.91E+03
Std3.32E+043.69E+112.65E+141.36E+088.52E+153.13E+111.74E+096.90E+111.96E+102.08E+101.07E+043.83E+03
F17Mean1.11E+058.78E+052.06E+053.47E+052.31E+086.55E+069.59E+051.04E+071.21E+061.33E+065.12E+057.58E+06
Std4.04E+037.71E+045.09E+041.10E+052.02E+086.32E+063.49E+057.67E+066.12E+056.81E+051.08E+057.53E+06
F18Mean6.52E+093.40E+102.79E+117.69E+091.93E+162.68E+102.01E+104.13E+111.17E+121.15E+116.60E+092.91E+07
Std6.18E+091.53E+101.64E+112.33E+091.65E+164.89E+094.83E+092.53E+112.19E+117.82E+106.36E+092.44E+07
F19Mean5.35E+037.87E+039.80E+035.64E+033.03E+047.34E+034.77E+031.18E+041.13E+046.24E+037.26E+032.52E+03
Std1.18E+035.73E+026.93E+021.30E+034.77E+031.66E+033.21E+021.60E+031.42E+039.31E+011.68E+021.56E+01
F20Mean6.29E+032.39E+045.08E+048.83E+031.34E+054.69E+041.46E+045.63E+043.15E+041.04E+047.31E+032.74E+03
Std2.89E+032.05E+034.30E+036.22E+023.92E+031.15E+046.72E+022.84E+047.97E+024.39E+031.59E+032.72E+01
F21Mean2.58E+033.33E+035.11E+032.75E+031.07E+043.43E+032.54E+034.11E+033.85E+032.65E+032.40E+032.35E+03
Std1.77E+023.33E+022.12E+021.68E+013.79E+021.63E+026.60E+003.98E+021.74E+025.17E+018.33E+003.55E+00
F22Mean6.69E+033.11E+046.06E+044.34E+041.24E+054.62E+042.17E+046.14E+045.90E+042.76E+041.40E+044.14E+03
Std4.81E+024.11E+036.40E+035.10E+022.52E+041.03E+041.21E+032.42E+037.99E+032.96E+036.41E+027.95E+01
F23Mean7.48E+032.54E+042.90E+041.68E+046.79E+042.95E+041.41E+044.27E+043.47E+042.57E+047.46E+033.37E+03
Std8.57E+022.18E+031.19E+021.31E+031.63E+033.96E+038.73E+024.56E+031.78E+033.29E+039.70E+021.40E+02
F24Mean3.07E+034.13E+035.77E+033.94E+031.94E+043.94E+033.51E+039.39E+037.33E+033.99E+033.03E+032.92E+03
Std1.39E+026.39E+021.10E+031.73E+021.60E+031.73E+025.85E+011.60E+021.06E+021.66E+021.85E+013.59E+01
F25Mean3.74E+037.81E+031.23E+045.05E+032.87E+047.21E+034.23E+038.82E+039.53E+033.45E+033.39E+033.48E+03
Std6.53E+001.61E+031.48E+028.27E+023.43E+032.10E+034.01E+014.70E+021.00E+031.59E+001.93E+016.79E+01
F26Mean3.36E+033.85E+033.87E+033.54E+036.92E+033.95E+033.47E+034.03E+034.05E+033.34E+033.17E+033.19E+03
Std9.02E+011.24E+024.36E+011.01E+028.52E+021.67E+028.70E+003.08E+011.27E+022.15E+011.67E+014.65E+01
F27Mean3.30E+034.87E+035.42E+034.43E+031.32E+044.83E+033.61E+036.10E+035.70E+034.60E+033.32E+033.19E+03
Std6.22E+014.00E+026.06E+022.42E+022.13E+035.59E+026.58E+002.79E+021.52E+023.09E+023.09E+002.67E+01
F28Mean9.57E+076.09E+092.56E+133.07E+094.83E+155.78E+111.71E+094.59E+116.17E+108.15E+092.50E+094.62E+06
Std9.38E+071.98E+092.19E+132.32E+096.93E+145.77E+112.03E+081.86E+113.71E+105.88E+092.45E+093.79E+06
F29Mean1.19E+081.33E+102.24E+113.00E+091.28E+144.63E+094.04E+096.84E+103.00E+101.93E+109.33E+073.14E+06
Std7.89E+065.25E+092.17E+111.21E+091.01E+141.81E+094.83E+084.71E+101.72E+101.20E+102.33E+074.39E+05
FunSCSOWOAHHOGSKAOAAHADMOAHBAYDSEMSMAEAPSOSC-AOA
F01Mean3.16E+094.18E+104.99E+102.62E+101.16E+113.72E+101.62E+106.78E+106.34E+102.68E+104.53E+091.84E+08
Std1.35E+098.80E+094.76E+094.39E+093.99E+091.90E+094.05E+081.22E+093.20E+096.08E+091.96E+097.83E+07
F03Mean6.15E+027.37E+031.09E+044.99E+034.63E+047.21E+032.01E+032.01E+041.31E+042.52E+038.66E+024.31E+02
Std3.27E+011.20E+031.14E+034.80E+021.56E+049.82E+022.77E+027.48E+031.50E+033.77E+029.31E+016.77E+00
F04Mean3.86E+034.86E+046.88E+044.77E+041.36E+054.53E+042.16E+047.80E+046.78E+043.37E+048.20E+031.38E+03
Std5.88E+028.02E+031.03E+035.91E+021.02E+046.86E+039.87E+015.26E+034.32E+033.18E+022.05E+031.65E+02
F05Mean5.00E+025.00E+025.00E+024.00E+025.00E+025.00E+025.00E+025.00E+025.00E+025.00E+025.00E+025.00E+02
Std1.02E−038.71E−032.33E−033.74E−039.60E−031.20E−021.47E−031.58E−031.60E−032.92E−042.48E−024.05E−04
F06Mean1.43E+045.54E+044.25E+046.28E+041.65E+055.67E+042.99E+042.38E+046.20E+047.94E+048.67E+048.92E+03
Std6.10E+022.34E+031.39E+031.61E+032.03E+047.37E+033.49E+021.27E+041.31E+048.52E+039.98E+037.31E+03
F07Mean7.00E+027.03E+027.02E+026.03E+027.13E+027.02E+027.01E+027.08E+027.04E+027.02E+027.00E+027.00E+02
Std7.57E−022.81E−019.37E−025.57E−019.90E−013.68E−022.53E−011.08E+003.88E−011.66E−011.08E−011.06E−02
F08Mean8.14E+028.31E+028.41E+027.23E+028.92E+028.27E+028.12E+028.44E+028.48E+028.20E+028.08E+028.05E+02
Std2.70E+006.48E+004.62E−014.98E+003.45E+001.86E+009.79E−025.47E+005.46E+005.90E+001.75E+004.92E−01
F09Mean6.13E+038.17E+037.94E+037.64E+031.08E+044.04E+038.26E+036.67E+038.10E+038.30E+034.42E+034.03E+03
Std2.20E+028.33E+015.13E+021.04E+023.32E+024.20E+028.41E+011.39E+022.09E+021.20E+022.09E+024.02E+02
F10Mean2.21E+052.35E+067.84E+062.82E+052.45E+091.09E+061.67E+065.50E+079.62E+069.71E+062.90E+056.19E+04
Std2.57E+041.30E+066.96E+061.33E+057.67E+082.80E+057.92E+054.68E+066.51E+061.64E+065.19E+041.65E+04
F11Mean1.83E+085.11E+099.54E+093.94E+092.44E+103.84E+091.81E+097.90E+096.87E+093.68E+093.34E+088.74E+06
Std1.54E+071.19E+083.45E+091.67E+091.80E+099.84E+082.96E+087.50E+081.00E+071.90E+091.95E+083.90E+06
F12Mean5.20E+072.37E+091.12E+102.56E+093.53E+101.83E+091.18E+096.86E+097.36E+092.65E+098.43E+077.89E+06
Std1.80E+069.94E+075.49E+094.77E+081.06E+103.46E+082.43E+072.13E+092.38E+081.33E+091.14E+071.78E+06
F13Mean8.40E+052.09E+066.69E+061.31E+061.62E+081.54E+062.28E+063.60E+072.29E+064.10E+062.72E+065.04E+06
Std5.38E+054.38E+051.19E+067.03E+052.18E+069.71E+043.90E+053.19E+067.42E+052.14E+051.70E+066.88E+05
F14Mean3.74E+071.92E+085.20E+093.25E+082.56E+102.12E+093.14E+085.96E+093.35E+091.19E+091.06E+076.54E+05
Std3.40E+072.23E+073.97E+094.71E+066.09E+091.98E+086.44E+072.38E+096.70E+083.51E+081.12E+062.95E+04
F15Mean8.24E+051.20E+082.32E+095.46E+062.55E+101.49E+081.46E+075.09E+083.18E+084.79E+073.82E+061.11E+06
Std5.85E+055.27E+073.70E+081.04E+069.93E+091.30E+084.63E+061.06E+082.02E+081.31E+072.01E+062.70E+03
F16Mean1.02E+051.50E+122.65E+141.84E+088.84E+153.32E+112.07E+098.25E+113.68E+112.46E+101.20E+059.91E+03
Std3.32E+043.69E+112.65E+141.36E+088.52E+153.13E+111.74E+096.90E+111.96E+102.08E+101.07E+043.83E+03
F17Mean1.11E+058.78E+052.06E+053.47E+052.31E+086.55E+069.59E+051.04E+071.21E+061.33E+065.12E+057.58E+06
Std4.04E+037.71E+045.09E+041.10E+052.02E+086.32E+063.49E+057.67E+066.12E+056.81E+051.08E+057.53E+06
F18Mean6.52E+093.40E+102.79E+117.69E+091.93E+162.68E+102.01E+104.13E+111.17E+121.15E+116.60E+092.91E+07
Std6.18E+091.53E+101.64E+112.33E+091.65E+164.89E+094.83E+092.53E+112.19E+117.82E+106.36E+092.44E+07
F19Mean5.35E+037.87E+039.80E+035.64E+033.03E+047.34E+034.77E+031.18E+041.13E+046.24E+037.26E+032.52E+03
Std1.18E+035.73E+026.93E+021.30E+034.77E+031.66E+033.21E+021.60E+031.42E+039.31E+011.68E+021.56E+01
F20Mean6.29E+032.39E+045.08E+048.83E+031.34E+054.69E+041.46E+045.63E+043.15E+041.04E+047.31E+032.74E+03
Std2.89E+032.05E+034.30E+036.22E+023.92E+031.15E+046.72E+022.84E+047.97E+024.39E+031.59E+032.72E+01
F21Mean2.58E+033.33E+035.11E+032.75E+031.07E+043.43E+032.54E+034.11E+033.85E+032.65E+032.40E+032.35E+03
Std1.77E+023.33E+022.12E+021.68E+013.79E+021.63E+026.60E+003.98E+021.74E+025.17E+018.33E+003.55E+00
F22Mean6.69E+033.11E+046.06E+044.34E+041.24E+054.62E+042.17E+046.14E+045.90E+042.76E+041.40E+044.14E+03
Std4.81E+024.11E+036.40E+035.10E+022.52E+041.03E+041.21E+032.42E+037.99E+032.96E+036.41E+027.95E+01
F23Mean7.48E+032.54E+042.90E+041.68E+046.79E+042.95E+041.41E+044.27E+043.47E+042.57E+047.46E+033.37E+03
Std8.57E+022.18E+031.19E+021.31E+031.63E+033.96E+038.73E+024.56E+031.78E+033.29E+039.70E+021.40E+02
F24Mean3.07E+034.13E+035.77E+033.94E+031.94E+043.94E+033.51E+039.39E+037.33E+033.99E+033.03E+032.92E+03
Std1.39E+026.39E+021.10E+031.73E+021.60E+031.73E+025.85E+011.60E+021.06E+021.66E+021.85E+013.59E+01
F25Mean3.74E+037.81E+031.23E+045.05E+032.87E+047.21E+034.23E+038.82E+039.53E+033.45E+033.39E+033.48E+03
Std6.53E+001.61E+031.48E+028.27E+023.43E+032.10E+034.01E+014.70E+021.00E+031.59E+001.93E+016.79E+01
F26Mean3.36E+033.85E+033.87E+033.54E+036.92E+033.95E+033.47E+034.03E+034.05E+033.34E+033.17E+033.19E+03
Std9.02E+011.24E+024.36E+011.01E+028.52E+021.67E+028.70E+003.08E+011.27E+022.15E+011.67E+014.65E+01
F27Mean3.30E+034.87E+035.42E+034.43E+031.32E+044.83E+033.61E+036.10E+035.70E+034.60E+033.32E+033.19E+03
Std6.22E+014.00E+026.06E+022.42E+022.13E+035.59E+026.58E+002.79E+021.52E+023.09E+023.09E+002.67E+01
F28Mean9.57E+076.09E+092.56E+133.07E+094.83E+155.78E+111.71E+094.59E+116.17E+108.15E+092.50E+094.62E+06
Std9.38E+071.98E+092.19E+132.32E+096.93E+145.77E+112.03E+081.86E+113.71E+105.88E+092.45E+093.79E+06
F29Mean1.19E+081.33E+102.24E+113.00E+091.28E+144.63E+094.04E+096.84E+103.00E+101.93E+109.33E+073.14E+06
Std7.89E+065.25E+092.17E+111.21E+091.01E+141.81E+094.83E+084.71E+101.72E+101.20E+102.33E+074.39E+05

Table 12 gives the mean and the standard deviation (Std) of fitness obtained by each algorithm on 28 CEC 2017. In terms of mean, the proposed SC-AOA gets the best results on 71.43% of functions, proving that the proposed SC-AOA has better convergence accuracy. In terms of standard deviation (Std), the proposed SC-AOA obtains lower values on 53.57% of functions, which further proves that the proposed SC-AOA has better robustness. Furthermore, for unimodal functions, the proposed SC-AOA shows apparent advantages. The proposed SC-AOA provides very competitive results for the multimodal functions with the other algorithms except for F05, F07, and F08. For the hybrid functions, the proposed SC-AOA is better than the other algorithms on the F11, F12, F14, F16, and F18 to F20 functions regardless of the mean or standard deviation (Std). For composition functions, in terms of mean, the proposed SC-AOA also provides very competitive results with the other algorithms.

4.7. Comparison with other algorithms on CEC 2022 benchmark functions

In this section, 12 benchmark functions from CEC 2022 (Luo et al., 2022) are used to evaluate the proposed SC-AOA’s performance further. The name, the class, and the optimum of functions are given in Table 13. SCSO, WOA, HHO, GSK, AOA, AHA, DMOA, HBA, YDSE, MSMA, and EAPSO were selected to compare the optimization of CEC 2022 functions. The parameter settings of each algorithm are consistent with SCSO, D = 10.

Table 13:

Details of 12 CEC 2022 benchmark functions.

No.NameDimClassRange|${f}_{\mathrm{min}}$|
F01Shifted and full rotated Zakharov function10Unimodal functions[−100, 100]300
F02Shifted and full Rosenbrock’s function10Basic functions[−100, 100]400
F03Shifted and full rotated expanded Scaffer’s F6 function10[−100, 100]600
F04Shifted and full rotated non-continuous Rastrigin’s function10[−100, 100]800
F05Shifted and rotated Levy function10[−100, 100]900
F06Hybrid function 1 (N = 3)10Hybrid functions[−100, 100]1800
F07Hybrid function 2 (N = 6)10[−100, 100]2000
F08Hybrid function 3 (N = 5)10[−100, 100]2200
F09Composition function 1 (N = 5)10Composition functions[−100, 100]2300
F10Composition function 2 (N = 4)10[−100, 100]2400
F11Composition function 3 (N = 5)10[−100, 100]2600
F12Composition function 4 (N = 6)10[−100, 100]2700
No.NameDimClassRange|${f}_{\mathrm{min}}$|
F01Shifted and full rotated Zakharov function10Unimodal functions[−100, 100]300
F02Shifted and full Rosenbrock’s function10Basic functions[−100, 100]400
F03Shifted and full rotated expanded Scaffer’s F6 function10[−100, 100]600
F04Shifted and full rotated non-continuous Rastrigin’s function10[−100, 100]800
F05Shifted and rotated Levy function10[−100, 100]900
F06Hybrid function 1 (N = 3)10Hybrid functions[−100, 100]1800
F07Hybrid function 2 (N = 6)10[−100, 100]2000
F08Hybrid function 3 (N = 5)10[−100, 100]2200
F09Composition function 1 (N = 5)10Composition functions[−100, 100]2300
F10Composition function 2 (N = 4)10[−100, 100]2400
F11Composition function 3 (N = 5)10[−100, 100]2600
F12Composition function 4 (N = 6)10[−100, 100]2700
Table 13:

Details of 12 CEC 2022 benchmark functions.

No.NameDimClassRange|${f}_{\mathrm{min}}$|
F01Shifted and full rotated Zakharov function10Unimodal functions[−100, 100]300
F02Shifted and full Rosenbrock’s function10Basic functions[−100, 100]400
F03Shifted and full rotated expanded Scaffer’s F6 function10[−100, 100]600
F04Shifted and full rotated non-continuous Rastrigin’s function10[−100, 100]800
F05Shifted and rotated Levy function10[−100, 100]900
F06Hybrid function 1 (N = 3)10Hybrid functions[−100, 100]1800
F07Hybrid function 2 (N = 6)10[−100, 100]2000
F08Hybrid function 3 (N = 5)10[−100, 100]2200
F09Composition function 1 (N = 5)10Composition functions[−100, 100]2300
F10Composition function 2 (N = 4)10[−100, 100]2400
F11Composition function 3 (N = 5)10[−100, 100]2600
F12Composition function 4 (N = 6)10[−100, 100]2700
No.NameDimClassRange|${f}_{\mathrm{min}}$|
F01Shifted and full rotated Zakharov function10Unimodal functions[−100, 100]300
F02Shifted and full Rosenbrock’s function10Basic functions[−100, 100]400
F03Shifted and full rotated expanded Scaffer’s F6 function10[−100, 100]600
F04Shifted and full rotated non-continuous Rastrigin’s function10[−100, 100]800
F05Shifted and rotated Levy function10[−100, 100]900
F06Hybrid function 1 (N = 3)10Hybrid functions[−100, 100]1800
F07Hybrid function 2 (N = 6)10[−100, 100]2000
F08Hybrid function 3 (N = 5)10[−100, 100]2200
F09Composition function 1 (N = 5)10Composition functions[−100, 100]2300
F10Composition function 2 (N = 4)10[−100, 100]2400
F11Composition function 3 (N = 5)10[−100, 100]2600
F12Composition function 4 (N = 6)10[−100, 100]2700

Fig. 5 shows the convergence curves of 12 algorithms for solving CEC 2022. From Fig. 5, it can be seen that the results obtained by SC-AOA are significantly better than the comparison algorithms, and it is worth mentioning that the F01 to F05 benchmark functions are calculated to the global optimum.

The convergence curve of CEC 2022.
Figure 5:

The convergence curve of CEC 2022.

5. Applications SC-AOA on Engineering Problems

Eight engineering design problems are used in this section of the experiments to assess further the efficiency of SC-AOA. They are welded beam design problem, pressure vessel design problem, three-bar truss design problem, tension/compression spring design problem, speed reducer, tubular column, piston lever, and heat exchanger. Then, it is compared with the literature (Abualigah et al., 2021a, b; Agushaka et al., 2022; Chen et al., 2019; Das et al., 2020; dos Santos Coelho, 2010; Gupta & Deep, 2019, 2020; Hu, Yang, et al., 2023; Kennedy & Eberhart, 1995; S. Li et al., 2020; Meng et al., 2014; Mirjalili, 2015b, 2016; Mirjalili & Lewis, 2016; Mirjalili et al., 2017; Nadimi-Shahraki et al., 2020; Rashedi et al., 2009; Seyyedabbasi & Kiani, 2023; Yang et al., 2021). The descriptions and mathematical models of all engineering problems are detailed below. Besides, the maximum iteration is 1000, the population size is 30.

5.1. Welded beam design problem

The objective of the welded beam design problem is to minimize the production cost of the welded beam (Coello, 2000). The problem has seven constraints such as |${g}_1( X )$|⁠, |${g}_2( X )$|⁠, |${g}_3( X )$|⁠, |${g}_4( X )$|⁠, |${g}_5( X )$|⁠, |${g}_6( X ),{\rm{\ }}\mathrm{and}\ {g}_7( X )$|⁠, and four decision variables including the width of the weld (⁠|${x}_1$|⁠), the length of the bar (⁠|${x}_2$|⁠), the height of the bar (⁠|${x}_3$|⁠), and the width of the bar (⁠|${x}_4$|⁠). The welded beam design problem is demonstrated in Fig. 6. Mathematically, this problem is defined as Equations (1926).

Welded beam design problem.
Figure 6:

Welded beam design problem.

Minimize:

(19)

Subject to:

(20)
(21)
(22)
(23)
(24)
(25)
(26)

Where:

Variable range:

Table 14 and Fig. 7 present the results of all the compared algorithms and SC-AOA to solve the welded beam design problem. From them, it can be seen that SC-AOA is a better algorithm compared with other compared algorithms by giving a more reliable solution where the optimal variables at |$[ {{x}_1,{x}_2,{x}_3,{x}_4} ]$|= [0.1668, 3.3980, 9.9995, 0.1680] with the best objective value |${f}_{\mathrm{min}}( x )$| = 1.5108. Although SC-AOA is not best for the optimization results of the properties of a single welded beam, its overall production cost is better than other compared algorithms, which further verifies the applicability and effectiveness of SC-AOA in practical applications.

The results of welded beam design problem.
Figure 7:

The results of welded beam design problem.

Table 14:

Results of welded beam design problem compared with other algorithms.

Algorithms|${x}_1$||${x}_2$||${x}_3$||${x}_4$||${f}_{\mathrm{min}}( x )$|
CSO (Seyyedabbasi & Kiani, 2023)0.20443.31258.99410.21081.7321
WOA (Seyyedabbasi & Kiani, 2023)0.29193.50484.99720.67283.1610
SSA (Seyyedabbasi & Kiani, 2023)0.17343.93399.05650.20561.7374
GSA (Seyyedabbasi & Kiani, 2023)0.15454.65169.54670.25532.3093
PSO (Seyyedabbasi & Kiani, 2023)0.20593.25089.03320.20591.6963
BWO (Seyyedabbasi & Kiani, 2023)0.55842.55825.56550.60673.5709
GWO (Seyyedabbasi & Kiani, 2023)0.20293.31729.04040.20581.7100
SCSO0.17903.31239.54450.18441.5833
SC-AOA0.16683.39809.99950.16801.5108
Algorithms|${x}_1$||${x}_2$||${x}_3$||${x}_4$||${f}_{\mathrm{min}}( x )$|
CSO (Seyyedabbasi & Kiani, 2023)0.20443.31258.99410.21081.7321
WOA (Seyyedabbasi & Kiani, 2023)0.29193.50484.99720.67283.1610
SSA (Seyyedabbasi & Kiani, 2023)0.17343.93399.05650.20561.7374
GSA (Seyyedabbasi & Kiani, 2023)0.15454.65169.54670.25532.3093
PSO (Seyyedabbasi & Kiani, 2023)0.20593.25089.03320.20591.6963
BWO (Seyyedabbasi & Kiani, 2023)0.55842.55825.56550.60673.5709
GWO (Seyyedabbasi & Kiani, 2023)0.20293.31729.04040.20581.7100
SCSO0.17903.31239.54450.18441.5833
SC-AOA0.16683.39809.99950.16801.5108
Table 14:

Results of welded beam design problem compared with other algorithms.

Algorithms|${x}_1$||${x}_2$||${x}_3$||${x}_4$||${f}_{\mathrm{min}}( x )$|
CSO (Seyyedabbasi & Kiani, 2023)0.20443.31258.99410.21081.7321
WOA (Seyyedabbasi & Kiani, 2023)0.29193.50484.99720.67283.1610
SSA (Seyyedabbasi & Kiani, 2023)0.17343.93399.05650.20561.7374
GSA (Seyyedabbasi & Kiani, 2023)0.15454.65169.54670.25532.3093
PSO (Seyyedabbasi & Kiani, 2023)0.20593.25089.03320.20591.6963
BWO (Seyyedabbasi & Kiani, 2023)0.55842.55825.56550.60673.5709
GWO (Seyyedabbasi & Kiani, 2023)0.20293.31729.04040.20581.7100
SCSO0.17903.31239.54450.18441.5833
SC-AOA0.16683.39809.99950.16801.5108
Algorithms|${x}_1$||${x}_2$||${x}_3$||${x}_4$||${f}_{\mathrm{min}}( x )$|
CSO (Seyyedabbasi & Kiani, 2023)0.20443.31258.99410.21081.7321
WOA (Seyyedabbasi & Kiani, 2023)0.29193.50484.99720.67283.1610
SSA (Seyyedabbasi & Kiani, 2023)0.17343.93399.05650.20561.7374
GSA (Seyyedabbasi & Kiani, 2023)0.15454.65169.54670.25532.3093
PSO (Seyyedabbasi & Kiani, 2023)0.20593.25089.03320.20591.6963
BWO (Seyyedabbasi & Kiani, 2023)0.55842.55825.56550.60673.5709
GWO (Seyyedabbasi & Kiani, 2023)0.20293.31729.04040.20581.7100
SCSO0.17903.31239.54450.18441.5833
SC-AOA0.16683.39809.99950.16801.5108

5.2. Pressure vessel design problem

The pressure vessel design problem aims to reduce the overall weight of a particular cylindrical pressure vessel (Sandgren, 1990). The problem has four constraints such as |${g}_1( X )$|⁠, |${g}_2( X )$|⁠, |${g}_3( X )$|⁠, and |${\rm{\ }}{g}_4( X )$|⁠, and four decision variables including the width of the shell (⁠|${x}_1$|⁠), the width of the head (⁠|${x}_2$|⁠), internal radius (⁠|${x}_3$|⁠), and the height of the cylindrical part without studying the head (⁠|${x}_4$|⁠). The pressure vessel design problem is demonstrated in Fig. 8. Mathematically, this problem is defined as Equations (2731).

Pressure vessel design problem.
Figure 8:

Pressure vessel design problem.

Minimize:

(27)

Subject to:

(28)
(29)
(30)
(31)

Variable range:

Table 15 and Fig. 9 present the results of all the compared algorithms and SC-AOA to solve the pressure vessel design problem. From them, it can be seen that SC-AOA is a better algorithm compared with other compared algorithms by giving a more reliable solution where the optimal variables at |$[ {{x}_1,{x}_2,{x}_3,{x}_4} ]$| = [0.7813, 0.3979, 40.4768, 197.8236] with the best objective value |${f}_{\mathrm{min}}( x )$| = 5926.15.

The results of the pressure vessel design problem.
Figure 9:

The results of the pressure vessel design problem.

Table 15:

Results of pressure vessel design problem compared with other algorithms.

Algorithms|${x}_1$||${x}_2$||${x}_3$||${x}_4$||${f}_{\mathrm{min}}( x )$|
CSO (Seyyedabbasi & Kiani, 2023)0.99530.492251.510687.17746389.35
WOA (Seyyedabbasi & Kiani, 2023)0.80931.215141.1110189.26928497.55
SSA (Seyyedabbasi & Kiani, 2023)0.91010.449947.1576122.65496152.18
GSA (Seyyedabbasi & Kiani, 2023)1.092114.134956.586571.865084 851.85
PSO (Seyyedabbasi & Kiani, 2023)1.02060.504552.880377.01866442.20
BWO (Seyyedabbasi & Kiani, 2023)4.061820.322558.725477.2508159 345.50
GWO (Seyyedabbasi & Kiani, 2023)0.80550.399241.7309181.29375938.51
SCSO0.84740.404142.1820175.60346185.83
SC-AOA0.78130.397940.4768197.82365926.15
Algorithms|${x}_1$||${x}_2$||${x}_3$||${x}_4$||${f}_{\mathrm{min}}( x )$|
CSO (Seyyedabbasi & Kiani, 2023)0.99530.492251.510687.17746389.35
WOA (Seyyedabbasi & Kiani, 2023)0.80931.215141.1110189.26928497.55
SSA (Seyyedabbasi & Kiani, 2023)0.91010.449947.1576122.65496152.18
GSA (Seyyedabbasi & Kiani, 2023)1.092114.134956.586571.865084 851.85
PSO (Seyyedabbasi & Kiani, 2023)1.02060.504552.880377.01866442.20
BWO (Seyyedabbasi & Kiani, 2023)4.061820.322558.725477.2508159 345.50
GWO (Seyyedabbasi & Kiani, 2023)0.80550.399241.7309181.29375938.51
SCSO0.84740.404142.1820175.60346185.83
SC-AOA0.78130.397940.4768197.82365926.15
Table 15:

Results of pressure vessel design problem compared with other algorithms.

Algorithms|${x}_1$||${x}_2$||${x}_3$||${x}_4$||${f}_{\mathrm{min}}( x )$|
CSO (Seyyedabbasi & Kiani, 2023)0.99530.492251.510687.17746389.35
WOA (Seyyedabbasi & Kiani, 2023)0.80931.215141.1110189.26928497.55
SSA (Seyyedabbasi & Kiani, 2023)0.91010.449947.1576122.65496152.18
GSA (Seyyedabbasi & Kiani, 2023)1.092114.134956.586571.865084 851.85
PSO (Seyyedabbasi & Kiani, 2023)1.02060.504552.880377.01866442.20
BWO (Seyyedabbasi & Kiani, 2023)4.061820.322558.725477.2508159 345.50
GWO (Seyyedabbasi & Kiani, 2023)0.80550.399241.7309181.29375938.51
SCSO0.84740.404142.1820175.60346185.83
SC-AOA0.78130.397940.4768197.82365926.15
Algorithms|${x}_1$||${x}_2$||${x}_3$||${x}_4$||${f}_{\mathrm{min}}( x )$|
CSO (Seyyedabbasi & Kiani, 2023)0.99530.492251.510687.17746389.35
WOA (Seyyedabbasi & Kiani, 2023)0.80931.215141.1110189.26928497.55
SSA (Seyyedabbasi & Kiani, 2023)0.91010.449947.1576122.65496152.18
GSA (Seyyedabbasi & Kiani, 2023)1.092114.134956.586571.865084 851.85
PSO (Seyyedabbasi & Kiani, 2023)1.02060.504552.880377.01866442.20
BWO (Seyyedabbasi & Kiani, 2023)4.061820.322558.725477.2508159 345.50
GWO (Seyyedabbasi & Kiani, 2023)0.80550.399241.7309181.29375938.51
SCSO0.84740.404142.1820175.60346185.83
SC-AOA0.78130.397940.4768197.82365926.15

5.3. Three-bar truss design problem

The three-bar truss design problem aims to reduce the overall weight of a particular three-bar truss (Save, 1983). The problem has three constraints such as |${g}_1( X )$|⁠, |${g}_2( X )$|⁠, and |${g}_3( X )$|⁠, and two decision variables including the cross-sectional areas of member 1 (⁠|${x}_1$|⁠) and the cross-sectional areas of member 2 (⁠|${x}_2$|⁠). The three-bar truss design problem is demonstrated in Fig. 10. Mathematically, this problem is defined as Equations (3235).

Three-bar truss design problem.
Figure 10:

Three-bar truss design problem.

Minimize:

(32)

Subject to:

(33)
(34)
(35)

Where:

Variable range:

Table 16 and Fig. 11 show the results of all the compared algorithms and SC-AOA to solve the three-bar truss design problem. From them, it can be seen that SC-AOA is a better algorithm compared with other compared algorithms by giving a more reliable solution where the optimal variables at |$[ {{x}_1,{x}_2} ]$| = [0.78 878, 0.40 794] with the best objective value |${f}_{\mathrm{min}}( x )$| = 263.8958. Although SC-AOA is not best for the optimization results of the properties of a single three-bar truss, its overall weight of a particular three-bar truss is better than other compared algorithms, which further verifies the applicability and effectiveness of SC-AOA in practical applications.

The results of the three-bar truss design problem.
Figure 11:

The results of the three-bar truss design problem.

Table 16:

Results of the three-bar truss design problem compared with other algorithms.

Algorithms|${x}_1$||${x}_2$||${f}_{\mathrm{min}}( x )$|
AOA (Abualigah et al., 2021a)0.793690.39 426263.9154
WOA (Chen et al., 2019)0.789050.40718263.8959
SCA (Gupta & Deep, 2019)0.819150.36956263.8972
GSA (Seyyedabbasi & Kiani, 2023)0.747070.53067264.7698
PSO (Gupta & Deep, 2020)0.589590.20568263.8994
MFO (Mirjalili, 2015b)0.788240.40946263.8959
GWO (Chen et al., 2019)0.789800.40507263.8974
SCSO0.802170.37135264.0241
SC-AOA0.788780.40794263.8958
Algorithms|${x}_1$||${x}_2$||${f}_{\mathrm{min}}( x )$|
AOA (Abualigah et al., 2021a)0.793690.39 426263.9154
WOA (Chen et al., 2019)0.789050.40718263.8959
SCA (Gupta & Deep, 2019)0.819150.36956263.8972
GSA (Seyyedabbasi & Kiani, 2023)0.747070.53067264.7698
PSO (Gupta & Deep, 2020)0.589590.20568263.8994
MFO (Mirjalili, 2015b)0.788240.40946263.8959
GWO (Chen et al., 2019)0.789800.40507263.8974
SCSO0.802170.37135264.0241
SC-AOA0.788780.40794263.8958
Table 16:

Results of the three-bar truss design problem compared with other algorithms.

Algorithms|${x}_1$||${x}_2$||${f}_{\mathrm{min}}( x )$|
AOA (Abualigah et al., 2021a)0.793690.39 426263.9154
WOA (Chen et al., 2019)0.789050.40718263.8959
SCA (Gupta & Deep, 2019)0.819150.36956263.8972
GSA (Seyyedabbasi & Kiani, 2023)0.747070.53067264.7698
PSO (Gupta & Deep, 2020)0.589590.20568263.8994
MFO (Mirjalili, 2015b)0.788240.40946263.8959
GWO (Chen et al., 2019)0.789800.40507263.8974
SCSO0.802170.37135264.0241
SC-AOA0.788780.40794263.8958
Algorithms|${x}_1$||${x}_2$||${f}_{\mathrm{min}}( x )$|
AOA (Abualigah et al., 2021a)0.793690.39 426263.9154
WOA (Chen et al., 2019)0.789050.40718263.8959
SCA (Gupta & Deep, 2019)0.819150.36956263.8972
GSA (Seyyedabbasi & Kiani, 2023)0.747070.53067264.7698
PSO (Gupta & Deep, 2020)0.589590.20568263.8994
MFO (Mirjalili, 2015b)0.788240.40946263.8959
GWO (Chen et al., 2019)0.789800.40507263.8974
SCSO0.802170.37135264.0241
SC-AOA0.788780.40794263.8958

5.4. Tension/compression spring design problem

The goal of the tension/compression spring design problem is to reduce the overall weight of a particular spring (Coello, 2000). The problem has four constraints such as |${g}_1( X )$|⁠, |${g}_2( X )$|⁠, |${g}_3( X )$|⁠, and |${g}_4( X )$|⁠, and three decision variables including wire diameter (⁠|${x}_1$|⁠), mean coil diameter (⁠|${x}_2$|⁠), and the number of active coils (⁠|${x}_3$|⁠). The tension/compression spring design problem is demonstrated in Fig. 12. Mathematically, this problem is defined as Equations (3640).

Tension/compression spring design problem.
Figure 12:

Tension/compression spring design problem.

Minimize:

(36)

Subject to:

(37)
(38)
(39)
(40)

Variable range:

Table 17 and Fig. 13 show the results of all the compared algorithms and SC-AOA to solve the tension/compression spring design problem. From them, it can be seen that SC-AOA is a better algorithm compared with other compared algorithms by giving a more reliable solution where the optimal variables at |$[ {{x}_1,{x}_2,{x}_3} ]$| = [0.0520, 0.3650, 10.8197] with the best objective value |${f}_{\mathrm{min}}( x )$| = 1.2667714E−02. Although SC-AOA is not best for the optimization results of the properties of a single tension/compression spring, its overall weight of a particular spring is better than other compared algorithms, which further verifies the applicability and effectiveness of SC-AOA in practical applications.

The results of the tension/compression spring design problem.
Figure 13:

The results of the tension/compression spring design problem.

Table 17:

Results of tension/compression spring design problem compared with other algorithms.

Algorithms|${x}_1$||${x}_2$||${x}_3$||${f}_{\mathrm{min}}( x )$|
CSO (Seyyedabbasi & Kiani, 2023)0.06710.84822.40741.6829585E−02
WOA (Seyyedabbasi & Kiani, 2023)0.05540.45267.28861.2901922E−02
SSA (Seyyedabbasi & Kiani, 2023)0.05000.312214.74631.3069754E−02
GSA (Seyyedabbasi & Kiani, 2023)0.06060.27494.86741.7762975E−02
PSO (Seyyedabbasi & Kiani, 2023)0.05000.317514.03731.2717021E−02
BWO (Seyyedabbasi & Kiani, 2023)0.05000.312214.79631.3109512E−02
GWO (Seyyedabbasi & Kiani, 2023)0.05000.317414.03731.2727747E−02
SCSO0.05510.44497.52081.2870623E−02
SC-AOA0.05200.365010.81971.2667714E−02
Algorithms|${x}_1$||${x}_2$||${x}_3$||${f}_{\mathrm{min}}( x )$|
CSO (Seyyedabbasi & Kiani, 2023)0.06710.84822.40741.6829585E−02
WOA (Seyyedabbasi & Kiani, 2023)0.05540.45267.28861.2901922E−02
SSA (Seyyedabbasi & Kiani, 2023)0.05000.312214.74631.3069754E−02
GSA (Seyyedabbasi & Kiani, 2023)0.06060.27494.86741.7762975E−02
PSO (Seyyedabbasi & Kiani, 2023)0.05000.317514.03731.2717021E−02
BWO (Seyyedabbasi & Kiani, 2023)0.05000.312214.79631.3109512E−02
GWO (Seyyedabbasi & Kiani, 2023)0.05000.317414.03731.2727747E−02
SCSO0.05510.44497.52081.2870623E−02
SC-AOA0.05200.365010.81971.2667714E−02
Table 17:

Results of tension/compression spring design problem compared with other algorithms.

Algorithms|${x}_1$||${x}_2$||${x}_3$||${f}_{\mathrm{min}}( x )$|
CSO (Seyyedabbasi & Kiani, 2023)0.06710.84822.40741.6829585E−02
WOA (Seyyedabbasi & Kiani, 2023)0.05540.45267.28861.2901922E−02
SSA (Seyyedabbasi & Kiani, 2023)0.05000.312214.74631.3069754E−02
GSA (Seyyedabbasi & Kiani, 2023)0.06060.27494.86741.7762975E−02
PSO (Seyyedabbasi & Kiani, 2023)0.05000.317514.03731.2717021E−02
BWO (Seyyedabbasi & Kiani, 2023)0.05000.312214.79631.3109512E−02
GWO (Seyyedabbasi & Kiani, 2023)0.05000.317414.03731.2727747E−02
SCSO0.05510.44497.52081.2870623E−02
SC-AOA0.05200.365010.81971.2667714E−02
Algorithms|${x}_1$||${x}_2$||${x}_3$||${f}_{\mathrm{min}}( x )$|
CSO (Seyyedabbasi & Kiani, 2023)0.06710.84822.40741.6829585E−02
WOA (Seyyedabbasi & Kiani, 2023)0.05540.45267.28861.2901922E−02
SSA (Seyyedabbasi & Kiani, 2023)0.05000.312214.74631.3069754E−02
GSA (Seyyedabbasi & Kiani, 2023)0.06060.27494.86741.7762975E−02
PSO (Seyyedabbasi & Kiani, 2023)0.05000.317514.03731.2717021E−02
BWO (Seyyedabbasi & Kiani, 2023)0.05000.312214.79631.3109512E−02
GWO (Seyyedabbasi & Kiani, 2023)0.05000.317414.03731.2727747E−02
SCSO0.05510.44497.52081.2870623E−02
SC-AOA0.05200.365010.81971.2667714E−02

5.5. Speed reducer

This problem aims to design a speed reducer with minimum weight (Agushaka et al., 2022). In this model, the constraints include |${g}_1( X )$| to |${\rm{\ }}{g}_{11}( X )$|⁠, and the speed reducer problem has seven variables: face width (⁠|${x}_1$|⁠), the module of teeth (⁠|${x}_2$|⁠), number of teeth in the pinion (⁠|${x}_3$|⁠), length of the first shaft between bearings (⁠|${x}_4$|⁠), size of the other shaft between bearings (⁠|${x}_5$|⁠), the diameter of the first shaft (⁠|${x}_6$|⁠), and diameter of the other shaft (⁠|${x}_7$|⁠); |${f}_{\mathrm{min}}( x )$| is the minimum weight of speed reducer. Equations (4152) compute the mathematical formulation.

Minimize:

(41)

Subject to:

(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)

Variable range:

Table 18 and Fig. 14 show the results of all the compared methods and SC-AOA to solve the speed reducer problem. From them, it can be seen that SC-AOA is a better method compared with other methods by giving a more reliable solution where the optimal variables at |$[ {{x}_1,{x}_2,{x}_3,{x}_4,{x}_5,{x}_6,{x}_7} ]$| = [3.5003, 0.7000, 17.0000, 7.3023, 7.8025, 3.3502, 5.2870] with the best objective value |${f}_{\mathrm{min}}( x )$| = 2996.7149.

The results of the speed reducer problem.
Figure 14:

The results of the speed reducer problem.

Table 18:

Results of speed reducer problem compared with other algorithms.

Algorithms|${x}_1$||${x}_2$||${x}_3$||${x}_4$||${x}_5$||${x}_6$||${x}_7$||${f}_{\mathrm{min}}( x )$|
WOA (Mirjalili & Lewis, 2016)3.53310.700117.62777.74448.01773.52275.32403218.4224
MTDE (Nadimi-Shahraki et al., 2020)3.54810.702917.15577.80838.05143.44745.34283128.9722
DMOA (Agushaka et al., 2022)3.59770.708317.00007.72538.02503.40585.30643109.5646
SCA (Mirjalili, 2016)3.58280.700017.00907.73298.09063.45675.33973103.3247
AO (Abualigah et al., 2021b)3.53720.700017.03527.57807.99103.40485.31043053.4297
CSO (Meng et al., 2014)3.53420.707717.00007.30007.80003.35075.28673045.7023
SSA (Mirjalili et al., 2017)3.51090.700017.00007.67288.05343.43905.28683033.4752
SCSO3.50040.700017.00027.98518.00343.36135.28683009.9659
SC-AOA3.50030.700017.00007.30237.80253.35025.28702996.7149
Algorithms|${x}_1$||${x}_2$||${x}_3$||${x}_4$||${x}_5$||${x}_6$||${x}_7$||${f}_{\mathrm{min}}( x )$|
WOA (Mirjalili & Lewis, 2016)3.53310.700117.62777.74448.01773.52275.32403218.4224
MTDE (Nadimi-Shahraki et al., 2020)3.54810.702917.15577.80838.05143.44745.34283128.9722
DMOA (Agushaka et al., 2022)3.59770.708317.00007.72538.02503.40585.30643109.5646
SCA (Mirjalili, 2016)3.58280.700017.00907.73298.09063.45675.33973103.3247
AO (Abualigah et al., 2021b)3.53720.700017.03527.57807.99103.40485.31043053.4297
CSO (Meng et al., 2014)3.53420.707717.00007.30007.80003.35075.28673045.7023
SSA (Mirjalili et al., 2017)3.51090.700017.00007.67288.05343.43905.28683033.4752
SCSO3.50040.700017.00027.98518.00343.36135.28683009.9659
SC-AOA3.50030.700017.00007.30237.80253.35025.28702996.7149
Table 18:

Results of speed reducer problem compared with other algorithms.

Algorithms|${x}_1$||${x}_2$||${x}_3$||${x}_4$||${x}_5$||${x}_6$||${x}_7$||${f}_{\mathrm{min}}( x )$|
WOA (Mirjalili & Lewis, 2016)3.53310.700117.62777.74448.01773.52275.32403218.4224
MTDE (Nadimi-Shahraki et al., 2020)3.54810.702917.15577.80838.05143.44745.34283128.9722
DMOA (Agushaka et al., 2022)3.59770.708317.00007.72538.02503.40585.30643109.5646
SCA (Mirjalili, 2016)3.58280.700017.00907.73298.09063.45675.33973103.3247
AO (Abualigah et al., 2021b)3.53720.700017.03527.57807.99103.40485.31043053.4297
CSO (Meng et al., 2014)3.53420.707717.00007.30007.80003.35075.28673045.7023
SSA (Mirjalili et al., 2017)3.51090.700017.00007.67288.05343.43905.28683033.4752
SCSO3.50040.700017.00027.98518.00343.36135.28683009.9659
SC-AOA3.50030.700017.00007.30237.80253.35025.28702996.7149
Algorithms|${x}_1$||${x}_2$||${x}_3$||${x}_4$||${x}_5$||${x}_6$||${x}_7$||${f}_{\mathrm{min}}( x )$|
WOA (Mirjalili & Lewis, 2016)3.53310.700117.62777.74448.01773.52275.32403218.4224
MTDE (Nadimi-Shahraki et al., 2020)3.54810.702917.15577.80838.05143.44745.34283128.9722
DMOA (Agushaka et al., 2022)3.59770.708317.00007.72538.02503.40585.30643109.5646
SCA (Mirjalili, 2016)3.58280.700017.00907.73298.09063.45675.33973103.3247
AO (Abualigah et al., 2021b)3.53720.700017.03527.57807.99103.40485.31043053.4297
CSO (Meng et al., 2014)3.53420.707717.00007.30007.80003.35075.28673045.7023
SSA (Mirjalili et al., 2017)3.51090.700017.00007.67288.05343.43905.28683033.4752
SCSO3.50040.700017.00027.98518.00343.36135.28683009.9659
SC-AOA3.50030.700017.00007.30237.80253.35025.28702996.7149

5.6. Tubular column

This problem aims to design a tubular column with minimum cost (Bayzidi et al., 2021). In this model, the constraints include |${g}_1( X )$| to |${\rm{\ }}{g}_6( X )$|⁠, and the tubular column problem has two variables, |${f}_{\mathrm{min}}( x )$| is the minimum cost of the tubular column. Equations (5359) compute the mathematical formulation.

Minimize:

(53)

Subject to:

(54)
(55)
(56)
(57)
(58)
(59)

Variable range:

P = 2500 kgf, L = 250 cm, E = 0.85|$\times {10}^6$| kgf/|${\mathrm{cm}}^2$|⁠, and |${\sigma }_y = 500$| kgf/|${\mathrm{cm}}^2$|

Table 19 and Fig. 15 show the results of all the compared methods and SC-AOA to solve the tubular column problem. From them, it can be seen that SC-AOA is a better method than other methods by giving a more reliable solution where the optimal variables at |$[ {{x}_1,{x}_2} ]$| = [5.45 115, 0.29 197] with the best objective value |${f}_{\mathrm{min}}( x )$| = 26.49 954.

The results of the tubular column problem.
Figure 15:

The results of the tubular column problem.

Table 19:

Results of tubular column problem compared with other algorithms.

Algorithms|${x}_1$||${x}_2$||${f}_{\mathrm{min}}( x )$|
AOA (Abualigah et al., 2021a)6.011720.32 39830.63003
PSO (Kennedy and Eberhart, 1995)5.555240.2979127.30199
MTDE (Nadimi-Shahraki et al., 2020)5.500070.2981627.05308
WOA (Mirjalili & Lewis, 2016)5.463490.2972126.81767
CSO (Meng et al., 2014)5.443230.2978326.74054
SCA (Mirjalili, 2016)5.455570.2939126.62401
GSA (Rashedi et al., 2009)5.460880.2918426.53972
SCSO5.451010.2919926.50032
SC-AOA5.451150.2919726.49 954
Algorithms|${x}_1$||${x}_2$||${f}_{\mathrm{min}}( x )$|
AOA (Abualigah et al., 2021a)6.011720.32 39830.63003
PSO (Kennedy and Eberhart, 1995)5.555240.2979127.30199
MTDE (Nadimi-Shahraki et al., 2020)5.500070.2981627.05308
WOA (Mirjalili & Lewis, 2016)5.463490.2972126.81767
CSO (Meng et al., 2014)5.443230.2978326.74054
SCA (Mirjalili, 2016)5.455570.2939126.62401
GSA (Rashedi et al., 2009)5.460880.2918426.53972
SCSO5.451010.2919926.50032
SC-AOA5.451150.2919726.49 954
Table 19:

Results of tubular column problem compared with other algorithms.

Algorithms|${x}_1$||${x}_2$||${f}_{\mathrm{min}}( x )$|
AOA (Abualigah et al., 2021a)6.011720.32 39830.63003
PSO (Kennedy and Eberhart, 1995)5.555240.2979127.30199
MTDE (Nadimi-Shahraki et al., 2020)5.500070.2981627.05308
WOA (Mirjalili & Lewis, 2016)5.463490.2972126.81767
CSO (Meng et al., 2014)5.443230.2978326.74054
SCA (Mirjalili, 2016)5.455570.2939126.62401
GSA (Rashedi et al., 2009)5.460880.2918426.53972
SCSO5.451010.2919926.50032
SC-AOA5.451150.2919726.49 954
Algorithms|${x}_1$||${x}_2$||${f}_{\mathrm{min}}( x )$|
AOA (Abualigah et al., 2021a)6.011720.32 39830.63003
PSO (Kennedy and Eberhart, 1995)5.555240.2979127.30199
MTDE (Nadimi-Shahraki et al., 2020)5.500070.2981627.05308
WOA (Mirjalili & Lewis, 2016)5.463490.2972126.81767
CSO (Meng et al., 2014)5.443230.2978326.74054
SCA (Mirjalili, 2016)5.455570.2939126.62401
GSA (Rashedi et al., 2009)5.460880.2918426.53972
SCSO5.451010.2919926.50032
SC-AOA5.451150.2919726.49 954

5.7. Piston lever

This problem aims to design a piston lever with minimum oil volume (Bayzidi et al., 2021). In this model, the constraints include |${g}_1( X )$| to |${\rm{\ }}{g}_4( X )$|⁠. The piston lever problem has four variables, |${f}_{\mathrm{min}}( x )$| is the minimum oil volume of the piston lever. Equations (6064) compute the mathematical formulation.

Minimize:

(60)

Subject to:

(61)
(62)
(63)
(64)

Variable range:

Table 20 and Fig. 16 show the results of all the compared methods and SC-AOA to solve the piston lever problem. From them, it can be seen that SC-AOA is a better method compared with other compared methods by giving a more reliable solution where the optimal variables at |$[ {{x}_1,{x}_2,{x}_3,{x}_4} ]$| = [0.0500, 1.0081, 2.0163, 500.0000] with the best objective value |${f}_{\mathrm{min}}( x )$| = 1.0574.

The results of the piston lever problem.
Figure 16:

The results of the piston lever problem.

Table 20:

Results of piston lever problem compared with other algorithms.

Algorithms|${x}_1$||${x}_2$||${x}_3$||${x}_4$||${f}_{\mathrm{min}}( x )$|
SMA (S. Li et al., 2020)375.0120375.51042.679175.0000127.7078
WOA (Mirjalili & Lewis, 2016)286.3177324.73902.999880.0354127.0274
HGS (Yang et al., 2021)225.0275226.12283.240793.000079.9897
G-QPSO (dos Santos Coelho, 2010)0.06002.40364.2907116.419711.2143
SCA (Mirjalili, 2016)0.07702.12854.1300119.56099.2201
SPBO (Das et al., 2020)0.05002.10384.0820120.00008.6546
AO (Abualigah et al., 2021b)0.05002.06294.0953119.97998.5485
SCSO0.06061.00872.0163500.00001.0821
SC-AOA0.05001.00812.0163500.00001.0574
Algorithms|${x}_1$||${x}_2$||${x}_3$||${x}_4$||${f}_{\mathrm{min}}( x )$|
SMA (S. Li et al., 2020)375.0120375.51042.679175.0000127.7078
WOA (Mirjalili & Lewis, 2016)286.3177324.73902.999880.0354127.0274
HGS (Yang et al., 2021)225.0275226.12283.240793.000079.9897
G-QPSO (dos Santos Coelho, 2010)0.06002.40364.2907116.419711.2143
SCA (Mirjalili, 2016)0.07702.12854.1300119.56099.2201
SPBO (Das et al., 2020)0.05002.10384.0820120.00008.6546
AO (Abualigah et al., 2021b)0.05002.06294.0953119.97998.5485
SCSO0.06061.00872.0163500.00001.0821
SC-AOA0.05001.00812.0163500.00001.0574
Table 20:

Results of piston lever problem compared with other algorithms.

Algorithms|${x}_1$||${x}_2$||${x}_3$||${x}_4$||${f}_{\mathrm{min}}( x )$|
SMA (S. Li et al., 2020)375.0120375.51042.679175.0000127.7078
WOA (Mirjalili & Lewis, 2016)286.3177324.73902.999880.0354127.0274
HGS (Yang et al., 2021)225.0275226.12283.240793.000079.9897
G-QPSO (dos Santos Coelho, 2010)0.06002.40364.2907116.419711.2143
SCA (Mirjalili, 2016)0.07702.12854.1300119.56099.2201
SPBO (Das et al., 2020)0.05002.10384.0820120.00008.6546
AO (Abualigah et al., 2021b)0.05002.06294.0953119.97998.5485
SCSO0.06061.00872.0163500.00001.0821
SC-AOA0.05001.00812.0163500.00001.0574
Algorithms|${x}_1$||${x}_2$||${x}_3$||${x}_4$||${f}_{\mathrm{min}}( x )$|
SMA (S. Li et al., 2020)375.0120375.51042.679175.0000127.7078
WOA (Mirjalili & Lewis, 2016)286.3177324.73902.999880.0354127.0274
HGS (Yang et al., 2021)225.0275226.12283.240793.000079.9897
G-QPSO (dos Santos Coelho, 2010)0.06002.40364.2907116.419711.2143
SCA (Mirjalili, 2016)0.07702.12854.1300119.56099.2201
SPBO (Das et al., 2020)0.05002.10384.0820120.00008.6546
AO (Abualigah et al., 2021b)0.05002.06294.0953119.97998.5485
SCSO0.06061.00872.0163500.00001.0821
SC-AOA0.05001.00812.0163500.00001.0574

5.8. Heat exchanger

Heat exchanger design is a benchmark minimization problem (Jaberipour & Khorram, 2010). This model’s constraints include |${g}_1( X )$| to |${\rm{\ }}{g}_6( X )$|⁠, and the heat exchanger problem has eight variables. |${f}_{\mathrm{min}}( x )$| is the minimum heat exchanger. Equations (6571) compute the mathematical formulation.

Minimize:

(65)

Subject to:

(66)
(67)
(68)
(69)
(70)
(71)

Variable range:

Table 21 and Fig. 17 show the results of all the compared methods and SC-AOA to solve the heat exchanger problem. From them, it can be seen that SC-AOA is a better method compared with other methods by giving a more reliable solution where the optimal variables at |$[ {{x}_1,{x}_2,{x}_3,{x}_4,{x}_5,{x}_6,{x}_7,{x}_8} ]$| = [591.648, 1029.181, 5698.745, 168.644, 272.094, 212.269, 295.258, 372.091] with the best objective value |${f}_{\mathrm{min}}( x )$| = 7319.574.

The results of the heat exchanger design problem.
Figure 17:

The results of the heat exchanger design problem.

Table 21:

Results of heat exchanger problem compared with other algorithms.

Algorithms|${x}_1$||${x}_2$||${x}_3$||${x}_4$||${x}_5$||${x}_6$||${x}_7$||${x}_8$||${f}_{\mathrm{min}}( x )$|
CSA (Hu, Yang, et al., 2023)113.1721464.2866189.89086.719251.34669.698235.122352.4067873.336
DE (Hu, Yang, et al., 2023)994.5203005.6771936.261187.010423.267257.443307.973540.42812 369.616
HHO (Hu, Yang, et al., 2023)763.7182559.8544379.135168.297324.764202.140244.906424.8047741.080
SMA (Hu, Yang, et al., 2023)100.0001000.0006383.214120.619244.671272.990275.804344.6717483.223
TSA (Hu, Yang, et al., 2023)812.3171672.4024541.214194.187315.700198.150287.592417.3237415.845
SCA (Hu, Yang, et al., 2023)135.3772735.9775747.55026.810281.90017.525161.182378.3319025.695
SSA (Hu, Yang, et al., 2023)1391.7111116.4534909.168171.968284.506228.035297.968394.2478654.104
SCSO681.7081095.7057098.66855.789216.447193.680239.109316.3238876.081
SC-AOA591.6481029.1815698.745168.644272.094212.269295.258372.0917319.574
Algorithms|${x}_1$||${x}_2$||${x}_3$||${x}_4$||${x}_5$||${x}_6$||${x}_7$||${x}_8$||${f}_{\mathrm{min}}( x )$|
CSA (Hu, Yang, et al., 2023)113.1721464.2866189.89086.719251.34669.698235.122352.4067873.336
DE (Hu, Yang, et al., 2023)994.5203005.6771936.261187.010423.267257.443307.973540.42812 369.616
HHO (Hu, Yang, et al., 2023)763.7182559.8544379.135168.297324.764202.140244.906424.8047741.080
SMA (Hu, Yang, et al., 2023)100.0001000.0006383.214120.619244.671272.990275.804344.6717483.223
TSA (Hu, Yang, et al., 2023)812.3171672.4024541.214194.187315.700198.150287.592417.3237415.845
SCA (Hu, Yang, et al., 2023)135.3772735.9775747.55026.810281.90017.525161.182378.3319025.695
SSA (Hu, Yang, et al., 2023)1391.7111116.4534909.168171.968284.506228.035297.968394.2478654.104
SCSO681.7081095.7057098.66855.789216.447193.680239.109316.3238876.081
SC-AOA591.6481029.1815698.745168.644272.094212.269295.258372.0917319.574
Table 21:

Results of heat exchanger problem compared with other algorithms.

Algorithms|${x}_1$||${x}_2$||${x}_3$||${x}_4$||${x}_5$||${x}_6$||${x}_7$||${x}_8$||${f}_{\mathrm{min}}( x )$|
CSA (Hu, Yang, et al., 2023)113.1721464.2866189.89086.719251.34669.698235.122352.4067873.336
DE (Hu, Yang, et al., 2023)994.5203005.6771936.261187.010423.267257.443307.973540.42812 369.616
HHO (Hu, Yang, et al., 2023)763.7182559.8544379.135168.297324.764202.140244.906424.8047741.080
SMA (Hu, Yang, et al., 2023)100.0001000.0006383.214120.619244.671272.990275.804344.6717483.223
TSA (Hu, Yang, et al., 2023)812.3171672.4024541.214194.187315.700198.150287.592417.3237415.845
SCA (Hu, Yang, et al., 2023)135.3772735.9775747.55026.810281.90017.525161.182378.3319025.695
SSA (Hu, Yang, et al., 2023)1391.7111116.4534909.168171.968284.506228.035297.968394.2478654.104
SCSO681.7081095.7057098.66855.789216.447193.680239.109316.3238876.081
SC-AOA591.6481029.1815698.745168.644272.094212.269295.258372.0917319.574
Algorithms|${x}_1$||${x}_2$||${x}_3$||${x}_4$||${x}_5$||${x}_6$||${x}_7$||${x}_8$||${f}_{\mathrm{min}}( x )$|
CSA (Hu, Yang, et al., 2023)113.1721464.2866189.89086.719251.34669.698235.122352.4067873.336
DE (Hu, Yang, et al., 2023)994.5203005.6771936.261187.010423.267257.443307.973540.42812 369.616
HHO (Hu, Yang, et al., 2023)763.7182559.8544379.135168.297324.764202.140244.906424.8047741.080
SMA (Hu, Yang, et al., 2023)100.0001000.0006383.214120.619244.671272.990275.804344.6717483.223
TSA (Hu, Yang, et al., 2023)812.3171672.4024541.214194.187315.700198.150287.592417.3237415.845
SCA (Hu, Yang, et al., 2023)135.3772735.9775747.55026.810281.90017.525161.182378.3319025.695
SSA (Hu, Yang, et al., 2023)1391.7111116.4534909.168171.968284.506228.035297.968394.2478654.104
SCSO681.7081095.7057098.66855.789216.447193.680239.109316.3238876.081
SC-AOA591.6481029.1815698.745168.644272.094212.269295.258372.0917319.574

6. Conclusions and Future Works

This study proposes a hybrid version of SCSO and AOA called SC-AOA to maintain an appropriate collaboration between the operators’ exploration and exploitation. In the proposed SC-AOA, first, the refracted opposition-based learning strategy is introduced to initialize the population to enhance diversity and traversal. Then, an AOA is added to update the agent’s position, which can be balanced exploration and exploitation. Furthermore, the crisscross strategy is used to enhance convergence accuracy. To verify the efficiency of SC-AOA, it is compared with 11 state-of-the-art algorithms on 10 classical benchmark functions, CEC 2014 functions, CEC 2017 functions, and CEC 2022 functions. The robustness of the proposed SC-AOA regarding scalability is also examined by increasing the dimension of the issues from 30 to 500. The analysis of results through non-parametric statistical tests and convergence curves shows better performance in SC-AOA than the other algorithms. Furthermore, SC-AOA is applied to eight challenging engineering problems. The results show that SC-AOA can find feasible solutions for all engineering instances and far outperforms most compared algorithms regarding solution accuracy. Therefore, SC-AOA is a promising algorithm for solving complex constrained optimization problems.

From the results gained by experimental performance evaluation, statistical analysis, and solutions found for engineering problems, the conclusions can be taken as follows:

  • The results obtained by 10 classical benchmark functions, 30 CEC 2014 functions, 28 CEC 2017 functions, 12 CEC 2022 functions, and statistical tests verify the SC-AOA performance compared to other well-known methods.

  • The comprehensive evaluation of SC-AOA in solving different dimensional problems shows that SC-AOA is highly portable and has great potential to handle different dimensional problems.

  • The high efficiency of SC-AOA for eight engineering problems shows that SC-AOA is an excellent method for dealing with complicated contemporary problems.

However, like other optimization methods, the proposed SC-AOA also has some limitations that need to be improved. If the improved strategy is more complex, it will incur a higher computational cost, so high consumption is still the main limitation.

In future work, three main directions can be followed. First, the focus will be on reducing operating costs while maintaining the accuracy of the solution. In practical applications, we use SC-AOA to solve feature selection, reduce dimensionality, and improve model performance. Next, the binary and multi-objective versions of SC-AOA can be utilized to solve more complex problems. Finally, this work will motivate other researchers to work on new metaheuristics and optimization concepts.

Funding

This research was supported by the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (grant number: CUSF-DH-D-2023053).

Data availability

All data generated or analyzed during this study are included in this published article.

Conflict of interest statement

None declared.

References

Abd Elaziz
M.
,
Oliva
D.
,
Xiong
S.
(
2017
).
An improved opposition-based sine cosine algorithm for global optimization
.
Expert Systems with Applications
,
90
,
484
500
. .

Abdel-Basset
M.
,
El-Shahat
D.
,
Jameel
M.
,
Abouhawwash
M.
(
2023
).
Young’s double-slit experiment optimizer: A novel metaheuristic optimization algorithm for global and constraint optimization problems
.
Computer Methods in Applied Mechanics and Engineering
,
403
,
115652
. .

Abualigah
L.
,
Diabat
A.
,
Mirjalili
S.
,
Abd Elaziz
M.
,
Gandomi
A. H.
(
2021a
).
The arithmetic optimization algorithm
.
Computer Methods in Applied Mechanics and Engineering
,
376
,
113609
. .

Abualigah
L.
,
Diabat
A.
,
Svetinovic
D.
,
Elaziz
M. A.
(
2023
).
Boosted Harris hawks gravitational force algorithm for global optimization and industrial engineering problems
.
Journal of Intelligent Manufacturing
,
34
(
6
),
2693
2728
. .

Abualigah
L.
,
Yousri
D.
,
Abd Elaziz
M.
,
Ewees
A. A.
,
Al-Qaness
M. A.
,
Gandomi
A. H.
(
2021b
).
Aquila optimizer: A novel meta-heuristic optimization algorithm
.
Computers & Industrial Engineering
,
157
,
107250
. .

Agushaka
J. O.
,
Ezugwu
A. E.
,
Abualigah
L.
(
2022
).
Dwarf mongoose optimization algorithm
.
Computer Methods in Applied Mechanics and Engineering
,
391
,
114570
. .

Agushaka
J. O.
,
Ezugwu
A. E.
,
Abualigah
L.
(
2023
).
Gazelle optimization algorithm: A novel nature-inspired metaheuristic optimizer
.
Neural Computing and Applications
,
35
(
5
),
4099
4131
. .

Alex Stanley Raja
T.
,
Kumar
C.
,
Sivaraju
S. S.
,
Jaisiva
S.
(
2023
).
Performance analysis and validation of intelligent tool based on Brownian random walk-based sand cat swarm optimization algorithm for parameter identification of various solar photovoltaic mathematical models
.
International Journal of Numerical Modelling: Electronic Networks, Devices and Fields
,
e3163
. .

Askarzadeh
A.
(
2016
).
A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
.
Computers & Structures
,
169
,
1
12
. .

Azizi
M.
,
Talatahari
S.
,
Gandomi
A. H.
(
2023
).
Fire hawk optimizer: A novel metaheuristic algorithm
.
Artificial Intelligence Review
,
56
(
1
),
287
363
. .

Bayzidi
H.
,
Talatahari
S.
,
Saraee
M.
,
Lamarche
C. P.
(
2021
).
Social network search for solving engineering optimization problems
.
Computational Intelligence and Neuroscience
,
2021
,
8548639
. .

ÇetınbaŞ
İ.
,
Tamyürek
B.
,
Demırtaş
M.
(
2022
).
The hybrid Harris hawks optimizer-arithmetic optimization algorithm: A new hybrid algorithm for sizing optimization and design of microgrids
.
IEEE Access
,
10
,
19254
19283
. .

Chauhan
S.
,
Vashishtha
G.
,
Kumar
A.
(
2022
).
A symbiosis of arithmetic optimizer with slime mould algorithm for improving global optimization and conventional design problem
.
The Journal of Supercomputing
,
78
(
5
),
6234
6274
. .

Chen
H.
,
Xu
Y.
,
Wang
M.
,
Zhao
X.
(
2019
).
A balanced whale optimization algorithm for constrained engineering design problems
.
Applied Mathematical Modelling
,
71
,
45
59
. .

Chopra
N.
,
Ansari
M. M.
(
2022
).
Golden jackal optimization: A novel nature-inspired optimizer for engineering applications
.
Expert Systems with Applications
,
198
,
116924
. .

Coello
C. A. C.
(
2000
).
Use of a self-adaptive penalty approach for engineering optimization problems
.
Computers in Industry
,
41
(
2
),
113
127
. .

Das
B.
,
Mukherjee
V.
,
Das
D.
(
2020
).
Student psychology based optimization algorithm: A new population based optimization algorithm for solving optimization problems
.
Advances in Engineering Software
,
146
,
102804
. .

Deng
L.
,
Liu
S.
(
2023
).
A multi-strategy improved slime mould algorithm for global optimization and engineering design problems
.
Computer Methods in Applied Mechanics and Engineering
,
404
,
115764
. .

dos Santos Coelho
L.
(
2010
).
Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems
.
Expert Systems with Applications
,
37
(
2
),
1676
1683
. .

Erdemir
E.
(
2023
).
Hybrid algorithm proposal for optimizing benchmarking problems: Salp swarm algorithm enhanced by arithmetic optimization algorithm
.
International Journal of Industrial Engineering Computations
,
14
(
2
),
309
322
. .

Ezugwu
A. E.
,
Agushaka
J. O.
,
Abualigah
L.
,
Mirjalili
S.
,
Gandomi
A. H.
(
2022
).
Prairie dog optimization algorithm
.
Neural Computing and Applications
,
34
(
22
),
20017
20065
. .

Gandomi
A. H.
,
Alavi
A. H.
(
2012
).
Krill herd: A new bio-inspired optimization algorithm
.
Communications in Nonlinear Science and Numerical Simulation
,
17
(
12
),
4831
4845
. .

Gupta
S.
,
Deep
K.
(
2019
).
A hybrid self-adaptive sine cosine algorithm with opposition based learning
.
Expert Systems with Applications
,
119
,
210
230
. .

Gupta
S.
,
Deep
K.
(
2020
).
A memory-based grey wolf optimizer for global optimization tasks
.
Applied Soft Computing
,
93
,
106367
. .

Gupta
S.
,
Deep
K.
,
Moayedi
H.
,
Foong
L. K.
,
Assad
A.
(
2021
).
Sine cosine grey wolf optimizer to solve engineering design problems
.
Engineering with Computers
,
37
,
3123
3149
. .

Hashim
F. A.
,
Houssein
E. H.
,
Hussain
K.
,
Mabrouk
M. S.
,
Al-Atabany
W.
(
2022
).
Honey badger algorithm: New metaheuristic algorithm for solving optimization problems
.
Mathematics and Computers in Simulation
,
192
,
84
110
. .

Heidari
A. A.
,
Mirjalili
S.
,
Faris
H.
,
Aljarah
I.
,
Mafarja
M.
,
Chen
H.
(
2019
).
Harris hawks optimization: Algorithm and applications
.
Future Generation Computer Systems
,
97
,
849
872
. .

Hu
G.
,
Yang
R.
,
Qin
X.
,
Wei
G.
(
2023
).
MCSA: Multi-strategy boosted chameleon-inspired optimization algorithm for engineering applications
.
Computer Methods in Applied Mechanics and Engineering
,
403
,
115676
. .

Hu
G.
,
Zheng
Y.
,
Abualigah
L.
,
Hussien
A. G.
(
2023
).
DETDO: An adaptive hybrid dandelion optimizer for engineering optimization
.
Advanced Engineering Informatics
,
57
,
102004
. .

Hu
P.
,
Pan
J. S.
,
Chu
S. C.
(
2020
).
Improved binary grey wolf optimizer and its application for feature selection
.
Knowledge-Based Systems
,
195
,
105746
. .

Hu
Y.
,
Xiong
R.
,
Li
J.
,
Zhou
C.
,
Wu
Q.
(
2023
).
An improved sand cat swarm operation and its application in engineering
.
IEEE Access
,
11
,
68664
68681
. .

Jaberipour
M.
,
Khorram
E.
(
2010
).
Two improved harmony search algorithms for solving engineering optimization problems
.
Communications in Nonlinear Science and Numerical Simulation
,
15
(
11
),
3316
3331
. .

Jia
H. M.
,
Wen
Q. X.
,
Wu
D.
,
Wang
Z.
,
Wang
Y. H.
,
Wen
C. S.
,
Abualigah
L.
(
2023
).
Modified beluga whale optimization with multi-strategies for solving engineering problems
.
Journal of Computational Design and Engineering
,
qwad089
. .

Kaveh
A.
,
Farhoudi
N.
(
2013
).
A new optimization method: Dolphin echolocation
.
Advances in Engineering Software
,
59
,
53
70
. .

Kennedy
J.
,
Eberhart
R.
(
1995
).
Particle swarm optimization
. In
Proceedings of ICNN’95-International Conference on Neural Networks
(Vol.
4
, pp.
1942
1948
.).
IEEE
. .

Khairuzzaman
A. K. M.
,
Chaudhury
S.
(
2017
).
Multilevel thresholding using grey wolf optimizer for image segmentation
.
Expert Systems with Applications
,
86
,
64
76
. .

Kiani
F.
,
Anka
F. A.
,
Erenel
F.
(
2023b
).
PSCSO: Enhanced sand cat swarm optimization inspired by the political system to solve complex problems
.
Advances in Engineering Software
,
178
,
103423
. .

Kiani
F.
,
Nematzadeh
S.
,
Anka
F. A.
,
Findikli
M. A.
(
2023a
).
Chaotic sand cat swarm optimization
.
Mathematics
,
11
(
10
),
2340
. .

Li
S.
,
Chen
H.
,
Wang
M.
,
Heidari
A. A.
,
Mirjalili
S.
(
2020
).
Slime mould algorithm: A new method for stochastic optimization
.
Future Generation Computer Systems
,
111
,
300
323
. .

Li
M. W.
,
Xu
D. Y.
,
Geng
J.
,
Hong
W. C.
(
2022
).
A hybrid approach for forecasting ship motion using CNN–GRU–AM and GCWOA
.
Applied Soft Computing
,
114
,
108084
. .

Li
X.
,
Zhang
J.
,
Yin
M.
(
2014
).
Animal migration optimization: An optimization algorithm inspired by animal migration behavior
.
Neural Computing and Applications
,
24
,
1867
1877
. .

Liang
J. J.
,
Qu
B. Y.
,
Suganthan
P. N.
(
2013
).
Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization
.
Technical report
.
Computational Intelligence Laboratory, Zhengzhou University and Nanyang Technological University
.

Luo
W.
,
Lin
X.
,
Li
C.
,
Yang
S.
,
Shi
Y.
(
2022
).
Benchmark functions for CEC 2022 competition on seeking multiple optima in dynamic environments
.
preprint
().

Ma
B.
,
Hu
Y. T.
,
Lu
P. M.
,
Liu
Y. G.
(
2023
).
Running city game optimizer: A game-based metaheuristic optimization algorithm for global optimization
.
Journal of Computational Design and Engineering
,
10
(
1
),
65
107
. .

Mahajan
S.
,
Abualigah
L.
,
Pandit
A. K.
(
2022b
).
Hybrid arithmetic optimization algorithm with hunger games search for global optimization
.
Multimedia Tools and Applications
,
81
(
20
),
28755
28778
. .

Mahajan
S.
,
Abualigah
L.
,
Pandit
A. K.
,
Altalhi
M.
(
2022a
).
Hybrid aquila optimizer with arithmetic optimization algorithm for global optimization tasks
.
Soft Computing
,
26
(
10
),
4863
4881
. .

Medjahed
S. A.
,
Saadi
T. A.
,
Benyettou
A.
,
Ouali
M.
(
2016
).
Gray wolf optimizer for hyperspectral band selection
.
Applied Soft Computing
,
40
,
178
186
. .

Meng
A. B.
,
Chen
Y. C.
,
Yin
H.
,
Chen
S. Z.
(
2014
).
Crisscross optimization algorithm and its application
.
Knowledge-Based Systems
,
67
,
218
229
. .

Mirjalili
S.
(
2015a
).
The ant lion optimizer
.
Advances in Engineering Software
,
83
,
80
98
. .

Mirjalili
S.
(
2015b
).
Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
.
Knowledge-Based Systems
,
89
,
228
249
. .

Mirjalili
S.
(
2016
).
SCA: A sine cosine algorithm for solving optimization problems
.
Knowledge-Based Systems
,
96
,
120
133
. .

Mirjalili
S.
,
Gandomi
A. H.
,
Mirjalili
S. Z.
,
Saremi
S.
,
Faris
H.
,
Mirjalili
S. M.
(
2017
).
Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
.
Advances in Engineering Software
,
114
,
163
191
. .

Mirjalili
S.
,
Lewis
A.
(
2016
).
The whale optimization algorithm
.
Advances in Engineering Software
,
95
,
51
67
. .

Mohamed
A. W.
,
Hadi
A. A.
,
Mohamed
A. K.
(
2020
).
Gaining-sharing knowledge based algorithm for solving optimization problems: A novel nature-inspired algorithm
.
International Journal of Machine Learning and Cybernetics
,
11
(
7
),
1501
1529
. .

Nadimi-Shahraki
M. H.
,
Taghian
S.
,
Mirjalili
S.
,
Faris
H.
(
2020
).
MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems
.
Applied Soft Computing
,
97
,
106761
. .

Naik
A. K.
,
Kuppili
V.
,
Edla
D. R.
(
2020
).
Efficient feature selection using one-pass generalized classifier neural network and binary bat algorithm with a novel fitness function
.
Soft Computing
,
24
(
6
),
4575
4587
. .

Neshat
M.
,
Sepidnam
G.
,
Sargolzaei
M.
(
2013
).
Swallow swarm optimization algorithm: A new method to optimization
.
Neural Computing and Applications
,
23
(
2
),
429
454
. .

Pan
W. T.
(
2012
).
A new fruit fly optimization algorithm: Taking the financial distress model as an example
.
Knowledge-Based Systems
,
26
,
69
74
. .

Panwar
K.
,
Deep
K.
(
2021
).
Discrete grey wolf optimizer for symmetric travelling salesman problem
.
Applied Soft Computing
,
105
,
107298
. .

Qtaish
A.
,
Albashish
D.
,
Braik
M.
,
Alshammari
M. T.
,
Alreshidi
A.
,
Alreshidi
E. J.
(
2023
).
Memory-based sand cat swarm optimization for feature selection in medical diagnosis
.
Electronics
,
12
(
9
),
2042
. .

Qu
C.
,
Gai
W.
,
Zhang
J.
,
Zhong
M.
(
2020b
).
A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning
.
Knowledge-Based Systems
,
194
,
105530
. .

Qu
C.
,
Gai
W.
,
Zhong
M.
,
Zhang
J.
(
2020a
).
A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning
.
Applied Soft Computing
,
89
,
106099
. .

Rajput
S. S.
,
Bohat
V. K.
,
Arya
K. V.
(
2019
).
Grey wolf optimization algorithm for facial image super-resolution
.
Applied Intelligence
,
49
,
1324
1338
. .

Rao
R. V.
,
Savsani
V. J.
,
Vakharia
D. P.
(
2011
).
Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems
.
Computer-Aided Design
,
43
(
3
),
303
315
. .

Rashedi
E.
,
Nezamabadi-Pour
H.
,
Saryazdi
S.
(
2009
).
GSA: A gravitational search algorithm
.
Information Sciences
,
179
(
13
),
2232
2248
. .

Sandgren
E.
(
1990
).
Nonlinear integer and discrete programming in mechanical design optimization
.
Journal of Mechanical Design
,
112
(
2
),
223
229
. .

Save
M. A.
(
1983
).
Remarks on minimum-volume designs of a three-bar truss
.
Journal of Structural Mechanics
,
11
(
1
),
101
110
.

Seyyedabbasi
A.
(
2023
).
A reinforcement learning-based metaheuristic algorithm for solving global optimization problems
.
Advances in Engineering Software
,
178
,
103411
. .

Seyyedabbasi
A.
,
Kiani
F.
(
2023
).
Sand cat swarm optimization: A nature-inspired algorithm to solve global optimization problems
.
Engineering with Computers
,
39
(
4
),
2627
2651
. .

Sharma
T. K.
,
Pant
M.
(
2017
).
Opposition based learning ingrained shuffled frog-leaping algorithm
.
Journal of Computational Science
,
21
,
307
315
. .

Shetty
R. P.
,
Sathyabhama
A.
,
Pai
P. S.
(
2021
).
An efficient online sequential extreme learning machine model based on feature selection and parameter optimization using cuckoo search algorithm for multi-step wind speed forecasting
.
Soft Computing
,
25
,
1277
1295
. .

Singh
S.
,
Bansal
J. C.
(
2022
).
Mutation-driven grey wolf optimizer with modified search mechanism
.
Expert Systems with Applications
,
194
,
116450
. .

Talpur
N.
,
Abdulkadir
S. J.
,
Hasan
M. H.
,
Alhussian
H.
,
Alwadain
A.
(
2023
).
A novel rapper-based optimization algorithm for the feature selection and classification
.
Computers, Materials & Continua
,
74
(
3
),
5799
5820
. .

Thota
R.
,
Sinha
N.
(
2023
).
A novel hybrid arithmetic-based grey wolf optimization method for tracking the global maximum power point of photovoltaic systems under unequal irradiance patterns
.
Arabian Journal for Science and Engineering
,
48
,
15321
15335
. .

Tizhoosh
H. R.
(
2005
).
Opposition-based learning: A new scheme for machine intelligence
. In
Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06)
(Vol.
1
, pp.
695
701
.).
IEEE
.

Wang
Z.
,
Ding
H.
,
Yang
Z.
,
Li
B.
,
Guan
Z.
,
Bao
L.
(
2022
).
Rank-driven salp swarm algorithm with orthogonal opposition-based learning for global optimization
.
Applied Intelligence
,
52
(
7
),
7922
7964
. .

Wang
X.
,
Liu
Q.
,
Zhang
L.
(
2023
).
An adaptive sand cat swarm algorithm based on cauchy mutation and optimal neighborhood disturbance strategy
.
Biomimetics
,
8
(
2
),
191
. .

Wolpert
D. H.
,
Macready
W. G.
(
1997
).
No Free Lunch theorems for optimization
.
IEEE Transactions on Evolutionary Computation
,
1
(
1
),
67
82
. .

Wu
G.
,
Mallipeddi
R.
,
Suganthan
P. N.
(
2017
).
Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization
.
Technical report
.
National University of Defense Technology, Kyungpook National University, and Nanyang Technological University
.

Wu
D.
,
Rao
H.
,
Wen
C.
,
Jia
H.
,
Liu
Q.
,
Abualigah
L.
(
2022
).
Modified sand cat swarm optimization algorithm for solving constrained engineering optimization problems
.
Mathematics
,
10
(
22
),
4350
. .

Yang
Y.
,
Chen
H.
,
Heidari
A. A.
,
Gandomi
A. H.
(
2021
).
Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts
.
Expert Systems with Applications
,
177
,
114864
. .

Yin
S.
,
Luo
Q.
,
Zhou
Y.
(
2022
).
EOSMA: An equilibrium optimizer slime mould algorithm for engineering design problems
.
Arabian Journal for Science and Engineering
,
47
(
8
),
10115
10146
. .

Yu
X.
,
Xu
W.
,
Li
C.
(
2021
).
Opposition-based learning grey wolf optimizer for global optimization
.
Knowledge-Based Systems
,
226
,
107139
. .

Zare
M.
,
Ghasemi
M.
,
Zahedi
A.
,
Golalipour
K.
,
Mohammadi
S. K.
,
Mirjalili
S.
,
Abualigah
L.
(
2023
).
A global best-guided firefly algorithm for engineering problems
.
Journal of Bionic Engineering
,
20
,
2359
2388
. .

Zhang
Y.
(
2023
).
Elite archives-driven particle swarm optimization for large scale numerical optimization and its engineering applications
.
Swarm and Evolutionary Computation
,
76
,
101212
. .

Zhao
W.
,
Wang
L.
,
Mirjalili
S.
(
2022
).
Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications
.
Computer Methods in Applied Mechanics and Engineering
,
388
,
114194
. .

Zhao
F.
,
Zhang
L.
,
Zhang
Y.
,
Ma
W.
,
Zhang
C.
,
Song
H.
(
2020
).
An improved water wave optimisation algorithm enhanced by CMA-ES and opposition-based learning
.
Connection Science
,
32
(
2
),
132
161
. .

Zheng
R.
,
Hussien
A. G.
,
Qaddoura
R.
,
Jia
H. M.
,
Abualigah
L.
,
Wang
S.
,
Saber
A.
(
2023
).
A multi-strategy enhanced African vultures optimization algorithm for global optimization problems
.
Journal of Computational Design and Engineering
,
10
(
1
),
329
356
. .

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected]