Abstract

The production scheduling (PS) problem is a challenging task that involves assigning manufacturing resources to jobs while ensuring that all constraints are satisfied. The key difficulty in PS is determining the appropriate order of operations. In this study, we propose a novel optimization algorithm called the quantum-inspired African vultures optimization algorithm with an elite mutation strategy (QEMAVOA) to address this issue. QEMAVOA is an enhanced version of the African vulture optimization algorithm that incorporates three new improvement strategies. Firstly, to enhance QEMAVOA’s diversification ability, the population diversity is enriched by the introduction of quantum double-chain encoding in the initialization phase of QEMAVOA. Secondly, the implementation of the quantum rotating gate will balance QEMAVOA’s diversification and exploitation capabilities, leading the vulture to a better solution. Finally, with the purpose of improving the exploitability of QEMAVOA, the elite mutation strategy is introduced. To evaluate the performance of QEMAVOA, we apply it to two benchmark scheduling problems: flexible job shop scheduling problem and parallel machine scheduling. The results are compared to those of existing algorithms in the literature. The test results reveal that QEMAVOA surpasses comparison algorithms in accuracy, stability, and speed of convergence.

Highlights
  • A novel quantum-inspired algorithm called quantum-inspired African vultures optimization algorithm with an elite mutation strategy (QEMAVOA) is proposed.

  • A quantum double-chain encoding strategy is employed to increase the exploration ability of QEMAVOA.

  • A quantum rotating gate strategy is employed to balance the exploration and exploitation abilities of QEMAVOA.

  • An elite mutation strategy is employed to increase the exploitation ability of QEMAVOA.

  • It yields superior results over competitors on parallel machine scheduling and flexible job shop scheduling problems.

1. Introduction

In engineering sciences, sustainability in manufacturing is becoming an urgent need for today’s manufacturing companies. In the context of Industry 4.0, the organizational model of production systems has undergone significant changes, leading to a transformation in the approach to production scheduling (PS). As a result, PS has been a topic of extensive research in the literature and is recognized as one of the key challenges in manufacturing systems (Jiang et al., 2022). PS involves the efficient allocation of resources to activities over time to meet all time and resource capacity constraints and optimize different objectives (Fazel Zarandi et al., 2020). PS can provide optimal resourcing for different issues (Bhosale & Pawar, 2020). The two most well-known PS problems are the parallel machine scheduling (PMS) and the flexible job shop scheduling problem (FJSP).

The problem of planning a sequence of tasks that are independent of each other on a polymorphic parallel machine is called the PMS problem. PMS is a famous NP-hard combinatorial optimization issue whose time complexity for finding a workable solution rises exponentially with the size of the issue. Based on the complexity of this problem, heuristic algorithms provide new ideas for finding suitable solutions. Before this work, a considerable body of literature demonstrated the effectiveness of metaheuristic algorithms in solving PMS problems within given time constraints (Al-qaness et al., 2021; Arık et al., 2022; Ewees et al., 2021; Fang et al., 2022; Lei & Yang, 2022; Lei et al., 2021; Zhang et al., 2021). In these studies, the irrelevant PMS problem with setup time is dealt with. The NP-hard problem of reducing the manufacturing span based on the machine environment, task characteristics, and optimality requirements is the irrelevant PMS problem (Graham et al., 1979). Due to the complexity of this problem and the inadequacy of exact algorithms when dealing with problems of medium to large size, quantum-inspired African vultures optimization algorithm with an elite mutation strategy (QEMAVOA) is offered in this study to identify high-quality PMS solutions.

The FJSP has evolved from the job shop scheduling problem (JSP), which is comprised of two sub-problems: operation sequencing and machine assignment. The operation sequencing problem is responsible for scheduling all operations on all machines, while machine assignment involves selecting machines for each job from a list of machine candidates (Boyer et al., 2021; Li et al., 2022). FJSP finds widespread use in specific industries such as semiconductor manufacturing, flow scheduling, automotive assembly, agent processing systems, and shipbuilding system (Boyer et al., 2021; Cho et al., 2022; Li et al., 2022; Pal et al., 2023; Sun et al., 2023; Vali et al., 2022). Due to its complexity, FJSP has been shown to be NP-hard, and traditional mathematical optimization methods have been proven to be difficult to solve in a timely manner (Li et al., 2022). In recent years, population intelligence and evolutionary algorithms have increasingly been used to solve the FJSP problem (Boyer et al., 2021; Oh et al., 2022). Given the complexity of FJSP, this study proposes QEMAVOA to determine a high-quality solution to the FJSP problem.

The African vulture optimization algorithm (AVOA) was proposed by Abdollahzadeh et al. (2021). Wang et al. (2022) developed the adaptive AVOA and applied it to the optimization of solid oxide fuel cell stacks. Kumar and Mary (2021) introduced an AVOA (i.e., I-AVO) based on orthogonal and opposition learning and applied it to photovoltaic systems. Bagal et al. (2021) introduced an AVOA (i.e., MAVO) based on the collective orientation factor and applied it to oxide fuel cell stack optimization. Chen and Zhang (2022) introduced an AVOA (i.e., IAVO) based on orthogonal learning and Lévy flight and applied it to fuel cell models. Fan et al. (2021) introduced an upgraded AVOA with time-varying mechanisms and chaotic mapping (i.e., TAVOA), contrasted it with the original algorithm in the benchmark function, and proved its superiority over the original AVOA using an engineering example. Diab et al. (2022) applied AVOA to a photovoltaic system by comparing it with the honey badger algorithm. Soliman et al. (2022) offer a novel hybrid African vulture-gray wolf optimizer (i.e., AV-GWO) technique for accurately predicting the electrical characteristics of the photovoltaic three-diode model. Gharehchopogh et al. (2022) propose a new algorithm created by a hybrid of harmony search (HA) and AVOA that is proposed and applied to the data clustering problem. Zheng et al. (2023) propose a multi-strategy enhanced AVOA for global optimization problems, applying it to classify multilayer perceptions using XOR and cancer datasets.

Combining ideas from quantum physics, computer science, and classical information theory, quantum computing (QC) represents an exciting new field (Steane, 1998). Recently, an increasing number of academics are combining QC techniques with heuristic algorithms and attempting to exploit them in a variety of sectors. Yu et al. (2021) incorporate the water circulation mechanism and quantum rotating gate (QRG) strategy into the slime mould algorithm (SMA). Deng et al. (2021) enhanced the differential evolution (DE) algorithm with a quantum double-chain encoding (QDCE) scheme and QRG. They used it in conjunction with a mutation method to solve large-scale, difficult issues (Deng et al., 2021). Cai et al. (2021) proposed an improved quantum-inspired cooperative co-evolutionary algorithm (MSQCCEA) and applied MSQCCEA to the airport gate optimization problem to verify the superiority of MSQCCEA in airport management decisions. Dias et al. (2021) proposed a quantum-inspired neural co-evolution (QNCo) model for the agent coordination problem, and tested the adapted model on prey-predator and multi-robot tasks and cell phone coverage, verifying that QNCo has superior performance. Dahi and Alba (2022) introduced a quantum heuristic metaheuristic for the mobility management problem and integrated it with a complete investigation of quantum hardware to give a new perspective on quantum heuristic metaheuristics. Cui et al. (2022) analyzed the shortcomings of the K-means algorithm and proposed a quantum-inspired moth-flame optimizer with an enhanced local search strategy (QLSMFO) and verified the superiority of QLSMFO in terms of accuracy, convergence speed, and stability on the cluster analysis problem. Zhang et al. (2022) proposed a novel adaptive mutation quantum-inspired squirrel search algorithm (AM-QSSA) and applied it to the image registration problem to verify the efficiency and stability of AM-QSSA. Houssein et al. (2022) proposed a hybrid quantum classical convolutional neural network (i.e., HQ-CNN) model based on stochastic quantum circuits for the detection of COVID-19 patients by chest X-ray images. Wang et al. (2023) proposed a quantum behavioral particle swarm optimization (PSO) algorithm applied to optimize neural networks and predict cross-sectional deformation of metal bends formed by a novel variable-diameter mold.

In the aforementioned studies, numerous researchers have explored the integration of QC concepts with metaheuristic algorithms. Specifically, QC has been successfully combined with algorithms such as SMA, DE, and moth-flame optimization algorithm (MFO). Through various experimental studies, it has been established that the incorporation of QC enhances the performance of the original algorithms. This finding presents a novel avenue for algorithmic improvement, encouraging researchers to explore the fusion of QC with diverse metaheuristic algorithms and assess the resultant improvements in algorithm performance. Furthermore, the amalgamation of QC with metaheuristic algorithms has proven to yield novel solutions for a wide range of problems, including airport gate optimization, cluster analysis, and agent coordination. Nevertheless, the application of QC in conjunction with metaheuristic algorithms for addressing PS problems remains inadequately explored within the current research landscape. Based on the aforementioned analysis, the introduction of QC can enhance the performance of metaheuristic algorithms, which will provide a new solution for solving PS problems by combining QC with metaheuristic algorithms to make them useful for solving PS problems. In light of these gaps, our study introduces three strategies, namely QDCE, QRG, and elite mutation (EM) strategy, into the AVOA. The objective is to enhance the performance of AVOA when applied to the PS domain, specifically the PMS and FJSP. Subsequently, the proposed algorithm’s superiority in tackling PS problems is empirically verified through extensive experiments.

This paper presents QEMAVOA, which combines QC and an AVOA. Firstly, QDCE is incorporated into QEMAVOA’s initialization step to boost population diversity and QEMAVOA’s exploration capabilities. Secondly, an EM strategy is applied to exploit QEMAVOA’s capabilities. Finally, the notion of QRG is added to balance QEMAVOA’s exploration and exploitation abilities and avoid QEMAVOA falling into local optimums. The incorporation of the aforementioned three strategies in QEMAVOA has augmented its ability to evade local optima while simultaneously enhancing its exploration and exploitation capabilities. Further, upon conducting a computational complexity analysis, it has been observed that the computational complexity of QEMAVOA and AVOA is analogous. The following are the study’s primary contributions:

  • The incorporation of QDCE during the initialization phase of QEMAVOA has conferred enhanced exploratory process on QEMAVOA.

  • The introduction of QRG within the iterative process of QEMAVOA has significantly bolstered the escape from local optima capacity of QEMAVOA.

  • The introduction of EM within the iterative process of QEMAVOA has significantly bolstered the exploitation capabilities of QEMAVOA.

  • The simulation experiment results show that the proposed QEMAVOA has good effect in solving PS problems.

This paper’s remaining sections are structured as follows: Section 2 gives an overview of the AVOA; Section 3 describes QEMAVOA’s specific improvement strategies for the AVOA; Section 4 provides a comprehensive description of PMS and FJSP; Section 5 performs simulation experiments and results analysis; and Section 6 describes the summary and future prospects.

2. African Vultures Optimization Algorithm

The AVOA in general is a novel metaheuristic algorithm that was suggested by Abdollahzadeh et al. (2021). AVOA is proposed by simulating African vulture foraging behavior and habits. The following model is used in AVOA to simulate African vulture activities and foraging behaviors.

Phase 1: population grouping

Initialize the vulture population, compute the fitness value for each vulture, and group the vultures according to their fitness value. The best value is the first group of vultures, the next best value is the second group of vultures, and all the other remaining vultures are in the third group of vultures. The grouping was done as shown in Equation (1):

(1)

where |$p_i^t$| is determined using the roulette wheel approach, the value is given in Equation (2), |${L}_1$| and |${L}_2$| are random values from |$[ {0,1} ]$|⁠, and the total of both |${L}_1$| and |${L}_2$| is 1.

(2)

where |$f_i^t$| indicates the likelihood of selecting this vulture.

In AVOA, if the parameter value of |${L}_1$| is near 1 and the parameter value of |${L}_2$| is near 0, the convergence will be faster. In contrast, it will increase the diversity of AVOA.

Phase 2: hunger rate of vultures

Vultures frequently seek food, and they will fly long distances to find it. When hungry, vultures become aggressive, circling stronger vultures in quest of food. Equation (3) describes the hunger rate of vultures:

(3)

where |$Iteratio{n}_i$| indicates the current iteration count, |$\max iterations$| indicates maximum iterations, |$rand_{i1}^t$| denotes a random value from |$[ {0,1} ]$|⁠, |${z}^t$| is a random value from |$[ { - 1,1} ]$|⁠, whenever the |${z}^t$| value falls below zero, this vulture was hungry, and whenever the |${z}^t$| value rises to one, the vulture was full, and t is determined using Equation (4):

(4)

where |$t$| represents a random variable between −2 and 2, and |$\omega $| is the probability that the AVOA will perform the exploitation phase.

Phase 3: exploration stage

This stage corresponds to the exploration stage of AVOA. In AVOA, the authors designed two distinct exploration patterns. They used one parameter |${p}_1$| to choose which exploration behavior the vulture takes, giving the parameter |${p}_1$| a range of |$[ {0,1} ]$|⁠. The behavior of the exploration phase of vultures can be simulated by Equation (5):

(5)

where |$X_i^{t + 1}$| indicates the vulture’s location; |$rand_{p1}^t$|⁠, |$rand_{i2}^t$|⁠, and |$rand_{i3}^t$| are four random numbers between 0 and 1; |$ub$| and |$lb$| indicate upper and lower solution bounds, respectively; and |$D_i^t$| is determined using Equation (6) and indicates the gap from vulture to optimal vulture.

(6)

where |$C$| is a random value from |$[ {0,2} ]$|⁠.

Phase 4: first exploitation stage

The vulture starts the first phase of exploitation whenever the value |$| {F_i^t} |$| is between 0.5 and 1. To detect whether the vultures are fighting for food or taking rotational flight, a random parameter |${p}_2$| inside the range |$[ {0,1} ]$| is defined in the initial exploitation phase. When |$rand_{p2}^t \ge {p}_2$|⁠, the vulture competes for food. When |$rand_{p2}^t < {p}_2$| is reached, the vulture begins to rotate in flight. Equation (7) depicts the mathematical model of vulture behavior for this process:

(7)

where |$rand_{i4}^t$| and |$rand_{p2}^t$| are random values ranging from |$[ {0,1} ]$|⁠, |$S_{i1}^t$| and |$S_{i2}^t$| are derived from Equations (8) and (9), accordingly.

(8)
(9)

where |$rand_{i5}^t$| and |$rand_{i6}^t$| are random values ranging from |$[ {0,1} ]$|⁠.

Phase 5: second exploitation stage

The vulture starts the second phase of exploitation whenever the value of |$| {F_i^t} |$| is less than 0.5. To detect whether the vultures are aggregating or attacking, a random parameter |${p}_3$| in the range |$[ {0,1} ]$| is defined in the initial exploitation phase. When |$rand_{p3}^t \ge {p}_3$|⁠, the vultures perform aggregation behavior. When |$rand_{p3}^t < {p}_3$|⁠, the vulture performs attack behavior. Equation (10) depicts the mathematical model of vulture behavior for this process:

(10)
(11)
(12)

where |$rand_{p3}^t$| is a random value ranging from |$[ {0,1} ]$|⁠, |$A_{i1}^t$| and |$A_{i2}^t$| are derived from Equations (11) and (12), accordingly, |$Levy( \bullet )$| denote the Lévy flight (Mirjalili, 2016), and it is calculated as shown in Equation (13).

(13)

where |$\delta $| is just a number that is frequently set at 1.5, |${r}_1$| and |${r}_2$| are random values ranging from |$[ {0,1} ]$|⁠. The AVOA flowchart is shown in Fig. 1 according to the above analysis.

Flowchart of the AVOA.
Figure 1:

Flowchart of the AVOA.

3. The Proposed Algorithm

The description of AVOA is in Section 2. Because of its ease of use, good optimization performance, and simple parameter settings, AVOA is often used in some practical application problems, and the results obtained are usually competitive. However, AVOA tends to converge to the local optimum and exhibits a phenomenon known as premature convergence in the optimization process (Chen & Zhang, 2022). Three enhancement strategies are incorporated into the original AVOA to address these issues: (i) QDCE, (ii) QRG, and (iii) EM strategy. This section describes these three enhancement strategies in detail.

3.1. Quantum-inspired AVOA

QEMAVOA introduces QC into the standard AVOA algorithm and improves the performance of AVOA by exploiting the properties of quanta. In QEMAVOA, the vulture population is transformed into a quantum vulture population, and the change in the quantum population is used to find the optimal solution of the objective function. In prior research (Cui et al., 2022), the DE was augmented through the incorporation of QDCE and QRG techniques, which enabled it to effectively solve large-scale optimization problems. In light of these findings, we aim to introduce QDCE and QRG from QC into the AVOA. In the subsequent sections, we provide a detailed description of the newly incorporated QDCE and QRG methods.

3.1.1. Introduction of QDCE

The tiniest unit of stored data in QC devices is referred to as a quantum bit. A quantum bit, unlike a classical computer’s storage unit (bit), can be a combination of a “1” and a “0” state. A quantum bit is defined as follows:

(14)

where |${\alpha }^2$| and |${\beta }^2$| denote the probability amplitudes of the “0” and “1” states, respectively, and satisfy. Therefore, the definition of a quantum bit can be in accordance with Equation (15):

(15)

The idea of quantum encoding is introduced in the AVOA, and the position of a single quantum vulture is defined as shown in Equation (16):

(16)

where |$Q{X}_i$| indicate the position of the |$i\mathrm{th}$| vulture, the number of vultures is denoted by |$n$|⁠, the dimensionality of the problem is represented by |$d$|⁠, and every quantum vulture covers two locations in solution space, with each position representing a proposed solution to the issue, whose two positions are defined as shown in Equations (17) and (18):

(17)
(18)

In order to obtain individuals that can perform fitness calculations, we need to map the quantum position of the vulture to the solution space, assuming that the described issue’s solution space is |$\Omega = [ {lb,ub} ]$|⁠. The position transformation is shown in Equations (19) and (20):

(19)
(20)

After analysis, the original solution initialization process of real number coding is transformed into the solution initialization process of QDCE. The solution initialization process of quantum encoding is divided into following three steps.

Step1: establish angle matrix

The vulture population is composed of |$N$| vultures, and the issue dimension is |$\dim $|⁠. Probability amplitudes are generated from the angle matrices and used to represent the state of the quantum bits. For quantum initialization, the angle matrix |$N \times \dim $| with angles spanning from 0 to |$2\pi $| should be generated. The generation formula is shown in Equation (21):

(21)

where |$l{b}_{ij}$| and |$u{b}_{ij}$| denote minimum and maximum angle values, respectively, |$rand( {0,1} )$| denoting the randomly generated numbers between 0 and 1. The angle matrix generated by Equation (22) is shown below:

(22)

Step 2: establish quantum population

|$QX$| denotes one quantum population with |$N$| quantum vultures, each of which takes up two places in the search space. The quantum population is depicted in the following way:

(23)

Step 3: solution space transformation

The candidate solutions satisfying the constraints are obtained by mapping the quantum population into the problem’s solution space via Equations (19) and (20).

3.1.2. QRG ’s introduction

In QC, the change in the relative phase of quanta is achieved by quantum operators. The balance of exploration and mining capacity is achieved by modifying the QRG’s rotation angle. In QEMAVOA, the QRG formula is provided in Equation (24):

(24)

where |$\Delta \theta $| is the QRG’s rotation angle.

By updating the quantum gate using a QRG, the expression for updating the quantum bits using a QRG is provided in Equation (25).

(25)

In QEMAVOA, instead of employing a fixed angle as the QRG’s rotation angle, the rotation angle is dynamically updated by comparing DE (DE/rand/1), DE (DE/rand/2), and PSO algorithms. The comparison process is detailed in Section 5.1. Through comparison experiments, it was decided to use the PSO algorithm to dynamically update the rotation angle. Equation (26) shows the adjustment of the rotation angle by the PSO algorithm:

(26)

where |${r}_1$| and |${r}_2$| denoting the randomly generated numbers between 0 and 1, |${c}_1$| and |${c}_2$| are predefined learning factors, |${\theta }_{gj}$| is the angle of the |$j\mathrm{th}$| dimension corresponding to the optimal particle, and |${\theta }_{ilj}$| is the angle of the |$j\mathrm{th}$| dimension corresponding to the historical optimal particle of the |$i\mathrm{th}$| particle.

3.2. EM strategy

The EM strategy is introduced to avoid the drawback that the standard AVOA tends toward the local optimum. In this strategy, the optimal vulture searches for an optimal position in one of its neighborhoods and replaces the original position with this position if it is better than the original position. This increases the likelihood of reaching the best answer and improves EMAVOA’s ability to jump out of the local optimum. The expression of the elite variation strategy is shown in Equation (27):

(27)

where |$Mutation{\rm{ }}( \bullet )$| is an arbitrary selection of two–three dimensions and a full ranking of them, then the relevant dimensions of the optimal vulture position are exchanged according to the full ranking results. Suppose a dimension appears to be out of bounds. In that case, new values are randomly generated in that dimension, after which the individual with the best adaptation is retained as the new optimal vulture.

3.3. Pseudo-code and flowchart of QEMAVOA

The QEMAVOA pseudo-code is shown in Algorithm 1. Figure 2 depicts the flowchart of the QEMAVOA.

Flowchart of the QEMAVOA.
Figure 2:

Flowchart of the QEMAVOA.

Algorithm 1: Pseudo-code of QEMAVOA.

graphic
graphic

Algorithm 1: Pseudo-code of QEMAVOA.

graphic
graphic

3.4. QEMAVOA performance analysis

In this section, we analyze the computational complexity and memory efficiency of QEMAVOA, which denote the time complexity and space complexity of the algorithm, respectively.

3.4.1. Computational complexity of the QEMAVOA

Computational complexity is a fundamental measure in computer science that quantifies the difficulty of an algorithm by assessing the computational resources required to evaluate its efficiency and practical availability. In general, computational complexity increases as the size of the problem increases, although the same algorithm may produce different computational complexities for different problem sizes. The complexity of an algorithm is a crucial metric to consider when selecting an appropriate algorithm or problem solution. Therefore, it is essential to conduct a computational complexity analysis on an algorithm to determine its feasibility and practicality for a given problem.

QEMAVOA’s computational complexity consists of six main components: initialize quantum populations, calculation of the fitness value, generation of vulture populations, QRG, vulture location renewal, and optimal vulture EM strategy. Set N as the population size, |$D$| is the issue dimension, and |$T$| denotes maximum iterations. In the quantum initialization phase, a random initialization generates an angle matrix. The time required for this operation is |$O( {ND} )$|⁠. Second, the quantum population is generated and converted to a vulture population, with a time complexity of |$O( {ND} )$|⁠. When starting the iteration, the time complexity is proportional to |$T$|⁠. In this phase, the temporal complexity of the fitness value calculation, vulture position update, and QRG are all |$O( {ND} )$|⁠. Furthermore, the best vulture EM strategy has a computational required of |$O( {LTN} )$|⁠, and |$L$| is the number of total permutations of two or three with a maximum of 6.

QEMAVOA’s time complexity is the total of the time complexity of the six components listed above, and the computation procedure is described in Equation (28):

(28)

The basic AVOA has a temporal complexity of |$O( {AVOA} ) = O( {N( {T + TD} )} )$| (Abdollahzadeh et al., 2021). The comparison demonstrates that the temporal complexity of QEMAVOA is comparable to that of AVOA.

3.4.2. Memory efficiency of the QEMAVOA

Space complexity, as a metric, quantifies the memory resources utilized by an algorithm. It captures the supplementary memory space needed during the algorithm’s execution and its propensity to scale with input size. Space complexity analysis primarily considers the memory space occupied by data structures, variables, pointers, and recursive calls, among others, to assess the memory requirements. Analyzing space complexity is crucial for evaluating resource consumption, selecting suitable data structures, and optimizing memory utilization in algorithm design and analysis.

The space complexity analysis of QEMAVOA encompasses several key components: the rotation angle matrix, the real vulture population, the quantum vulture population, and the required parameter settings. Each of these elements contributes to the overall space complexity. It is worth noting that the space complexity of the parameter setting is constant, denoted as |$O(1)$|⁠, signifying that it remains unaffected by the problem size. The spatial complexity of QEMAVOA is determined to be |$O(N)$|⁠, where |$N$| represents the problem size. This complexity arises due to the rotation angle matrix, real vulture population, and quantum vulture population, all of which dynamically adjust as the problem size and parameter settings change. The time complexity associated with the vulture population is |$O(N)$|⁠, which consequently leads to the spatial complexity of AVOA being |$O(N)$|⁠.

In summary, based on the analysis, it can be concluded that both QEMAVOA and AVOA exhibit similar space complexity characteristics, namely linear space complexity. This implies that the amount of additional memory space required by these algorithms grows proportionally with the problem size.

4. PS Problem

PS problems represent a major challenge in manufacturing systems, as they involve the complex task of allocating available manufacturing resources to specific jobs and determining the optimal sequence of operations while satisfying all necessary constraints. Two widely studied PS problems are the PMS problem and the FJSP problem. Both of these problems are known to be NP-hard, indicating their high degree of computational complexity. In this section, a brief introduction to PMS and FJSP issues is provided.

4.1. PMS problem

In this section, we present the mathematical model of the PMS problem along with a detailed description of the coding approach used in applying QEMAVOA to solve this problem.

4.1.1. Mathematical model of PMS

When multiple machines with similar performance can process multiple jobs simultaneously, it is called the PMS problem (McNaughton, 1959). Figure 3 depicts an example with three machines and seven jobs.

Examples of PMS.
Figure 3:

Examples of PMS.

With the primary goal of decreasing the finish time, the PMS problem involves scheduling |$n$| jobs that are waiting in the queue and running on |$m$| computers. The following is the fundamental mathematical model of PMS (Rabadi et al., 2006):

(29)

where |${C}_{\mathrm{max}}$| is the maximum termination time, |${C}_j$| is the time required to complete job |$j$|⁠, |${p}_{j,k}$| is the time required to process job |$j$| on machine |$k$|⁠, |${S}_{i,j,k}$| is the order related to processing job |$j$| after job |$i$| on machine |$k$| setup time, |${x}_{i,j,k}$| means that when job |$j$| is processed immediately after job |$i$| on machine |$k$|⁠, then the value of |${x}_{i,j,k}$| is 1, otherwise the value of |${x}_{i,j,k}$| is 0, |$M$| is a large integer.

In Equation (29), the decision variables represent the scheduling order of the jobs, and the maximum completion time under the current scheduling order is calculated by transforming it into the matrix x in the equation. The six constraints are as follows: The first constraint guarantees that each job is processed only once. The second constraint ensures that only one job is assigned to a machine when it starts working on that machine. The third constraint ensures that the job assigned to a machine is accurate. The fourth constraint specifies how the completion time is calculated, while the last two constraints define the range of values for the parameters.

4.1.2. Encoding process of PMS

In this research, the suggested QEMAVOA is used to resolve the PMS issue. For solving the PMS issue, QEMAVOA is applied to the PMS issue using the coding approach from the literature (Kılıç & Yüzgeç, 2019). The encoding process is shown below:

First, the problem dimension is determined using Equation (30):

(30)

where |$N$| is jobs, |$M$| is machines.

Finally, based on the dimension |$D$| of the problem derived above, |$D$| random numbers between |$[ {0,1} ]$| are generated to represent the locations of the vultures, the dimensions of the locations are sorted, and the sorted location index vector is used as a candidate solution of PMS. If the index value of any dimension is greater than |$N$|⁠, this is used to indicate the divider’s position. The sub-section character indicates switching to the next machine to run.

Taking two machines with three jobs as an example, the dimension of the problem is determined as 4 by Equation (30), and the problem is encoded in the process as Fig. 4.

Encoding process for PMS with two machines and three jobs.
Figure 4:

Encoding process for PMS with two machines and three jobs.

4.2. FJSP problem

This section presents the mathematical model of the FJSP problem and details the coding approach used by QEMAVOA to solve it.

4.2.1. Mathematical model of FJSP

JSP is a classical basic model for real-world applications. FJSP, as an extended version of JSP, has greater flexibility, which signifies those jobs in the FJSP problem do not need to process operations on only one machine (Boyer et al., 2021). FJSP is described as |$n$| pieces of workpiece are processed on |$m$| machines. |${n}_i$| represents the overall process for workpiece |$i$|⁠, the order of each process is determined, and each workpiece process has its own processing equipment set. Any equipment in the set can be selected to process that process, but the production time varies depending on the equipment. The purpose of scheduling is to select the most appropriate equipment for each process in the overall production plan and to determine the best production sequence for each machine to ensure the minimum and maximum completion times. Process sequencing and machine selection are two sub-problems of FJSP. Assume |$M = \{ {{M}_k| {1 \le k \le m} } \}$| indicate the machine set. |$J = \{ {{J}_i| {1 \le i \le N} } \}$| indicate the workpiece set. |${O}_i = \{ {{O}_{ij}| {1 \le j \le {n}_i} } \}$| indicate the process set of workpieces |${J}_i$|⁠. The basic mathematical model of FJSP is shown below (Chen et al., 2020):

(31)

where |${C}_{\mathrm{max}}$| is the maximum completion time of all operations, |${s}_{i,j,k}$| denotes the start time of operation |${O}_{i,j}$| in machine |${M}_k$|⁠, and |${t}_{i,j,k}$| denotes the processing time of operation |${O}_{i,j}$| in machine |${M}_k$|⁠. The first constraint indicates that the processing times of all operations are greater than 0. The second constraint indicates the priority order in which operations must be executed among themselves. The third constraint indicates that each operation |${O}_{i,j}$| has at least one processable machine. The fourth constraint ensures that each machine can process only one operation at any given time. The fifth constraint specifies the range of values for |${X}_{i,j,k}$|⁠.

4.2.2. Encoding process of FJSP

In this study, the proposed QEMAVOA is applied to solve the FJSP. In order to solve the FJSP, the encoding process of QEMAVOA is required as a way to apply QEMAVOA to the FJSP problem (Yuan et al., 2013). The encoding process is shown below:

Firstly, the problem dimension is determined using Equation (32):

(32)

where |$n$| indicate the number of workpieces and |$S{J}_i$| indicate the number of processes of workpiece |${J}_i$|⁠. The dimension |${N}_\mathrm{p}$| of the problem is derived from Equation (32), and |${N}_\mathrm{p}$| random numbers between |$[ { - 1,1} ]$| are generated to represent the vulture’s position |$P = [{p}_1,{p}_2,{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }},{p}_{Np}]$|⁠. The first |$0.5 \times {N}_\mathrm{p}$| dimensions correspond to the candidate solutions of the process ordering sub-problem; the second |$0.5 \times {N}_\mathrm{p}$| dimensions correspond to the candidate solutions of the machine selection sub-problem, and a vulture position corresponds to a complete candidate solution.

Secondly, a fixed ID is assigned to each operation based on the part number and the process order within. Figure 5 shows this numbering scheme, which is suitable for an instance of three machines, three parts, and two processes per part. After numbering, the order of operations will be determined by the fixed ID. The first |$0.5 \times {N}_\mathrm{p}$| dimensions of the generated candidate solutions are sorted in the inverse order, and the sorted position index vector is corresponding to the ID to get the process order.

Operations numbering scheme.
Figure 5:

Operations numbering scheme.

Finally, the latter |$0.5 \times {N}_\mathrm{p}$| dimension of the candidate solution is converted to an integer according to Equation (33) as a way to represent the machine selected for the process in the first |$0.5 \times {N}_\mathrm{p}$| dimension:

(33)

where |$x(j)$| denotes the random number between |$[ { - 1,1} ]$| originally generated, |$s(j)$| denotes the number of optional operating machines of the process corresponding to |${P}_{j - 0.5 \times Np}$|⁠, |$round()$| denotes the rounding function, and |$u(j)$| denotes the index of the operating machines selected by the process corresponding to |${P}_{j - 0.5 \times Np}$|⁠, so as to obtain the machines selected by the process.

Take three machines, three workpieces, and two processes for each workpiece and each process can be processed on any of the three machines. Determine the dimension of the problem NP as 12 by Equation (33), and the problem is coded in the way shown in Fig. 6. The solutions marked in gray are the solutions for the process operation sequence, and those not marked in gray are the solutions selected by the machine.

Encoding process for FJSP.
Figure 6:

Encoding process for FJSP.

5. Experimental Process and Analysis

In this section, every experiment has been performed on MATLAB R2021(a) with the Windows 10 operating system, a CPU of the Inter(R) Core(TM) i7-9700 at 3.00 GHz, and 16 GB of running memory.

5.1. Experimental proof that QEMAVOA works

In order to test the validity of the QEMAVOA improvement, seven problems from the FJSP were selected: Kacem5, MK10, 13a, Edata_la35, Rdata_la34, Vdata_la33, and VL01, and the problems are described specifically in Section 5.3.

The algorithms involved in the experiments are the AVOA, African vultures optimization algorithm with elite mutation strategy (EMAVOA), quantum-inspired African vultures optimization algorithm with elite mutation strategy (QEMAVOA-DE), quantum-inspired African vultures optimization algorithm with elite mutation strategy (QEMAVOA-DE2), and QEMAVOA. Where EMAVOA is the standard AVOA introducing the elite mutation strategy, QEMAVOA-DE is the quantum-inspired idea based on EMAVOA and uses the DE algorithm (DE/rand/1) to calculate the rotation angle, and QEMAVOA-DE2 is the quantum-inspired idea based on EMAVOA and uses the DE algorithm (DE/rand/2) to determine the rotation angle.

To ensure the fairness and validity of the experiments, we set the population size to 50, the maximum number of iterations to 500, and 10 independent runs. The parameter settings used by the different algorithms are shown in Table 1. The parameter settings for AVOA were taken from previous studies in the literature (Abdollahzadeh et al., 2021), while the parameters specific to each algorithm were determined empirically as well as after experimental discussions.

Table 1:

Metaheuristic algorithm parameters.

AlgorithmParameters
AVOAAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6
EMAVOAAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6
QEMAVOA-DEAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6, theta_ub:2π, theta_lb:0, Mutation rate: 0.2, Crossover rate: 0.5
QEMAVOA-DE2Alpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6, theta_ub:2π, theta_lb:0, Mutation rate1: 0.2, Mutation rate1: 0.2, Crossover rate: 0.5
QEMAVOAAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6, theta_ub:2π, theta_lb:0, Personal Learning coefficient: 2.05, Global Learning coefficient: 2.05, Inertia weight: 0.8
AlgorithmParameters
AVOAAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6
EMAVOAAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6
QEMAVOA-DEAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6, theta_ub:2π, theta_lb:0, Mutation rate: 0.2, Crossover rate: 0.5
QEMAVOA-DE2Alpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6, theta_ub:2π, theta_lb:0, Mutation rate1: 0.2, Mutation rate1: 0.2, Crossover rate: 0.5
QEMAVOAAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6, theta_ub:2π, theta_lb:0, Personal Learning coefficient: 2.05, Global Learning coefficient: 2.05, Inertia weight: 0.8
Table 1:

Metaheuristic algorithm parameters.

AlgorithmParameters
AVOAAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6
EMAVOAAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6
QEMAVOA-DEAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6, theta_ub:2π, theta_lb:0, Mutation rate: 0.2, Crossover rate: 0.5
QEMAVOA-DE2Alpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6, theta_ub:2π, theta_lb:0, Mutation rate1: 0.2, Mutation rate1: 0.2, Crossover rate: 0.5
QEMAVOAAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6, theta_ub:2π, theta_lb:0, Personal Learning coefficient: 2.05, Global Learning coefficient: 2.05, Inertia weight: 0.8
AlgorithmParameters
AVOAAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6
EMAVOAAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6
QEMAVOA-DEAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6, theta_ub:2π, theta_lb:0, Mutation rate: 0.2, Crossover rate: 0.5
QEMAVOA-DE2Alpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6, theta_ub:2π, theta_lb:0, Mutation rate1: 0.2, Mutation rate1: 0.2, Crossover rate: 0.5
QEMAVOAAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6, theta_ub:2π, theta_lb:0, Personal Learning coefficient: 2.05, Global Learning coefficient: 2.05, Inertia weight: 0.8

Table 2 shows the mean values of 10 runs obtained by each algorithm, where the bolded font indicates the optimal value for each problem, and the problem size denotes the number of jobs and machines. Figure 7a and b show the mean convergence zone lines for the Rdata_la34 and VL01 problems, respectively. Figure 8a and b show the box plots for the Rdata_la34 and VL01 problems, respectively.

Mean convergence curve of Rdata_la34 and VL01.
Figure 7:

Mean convergence curve of Rdata_la34 and VL01.

Box plot of Rdata_la34 and VL01.
Figure 8:

Box plot of Rdata_la34 and VL01.

Table 2:

Algorithm validity verification results.

ProblemProblem sizeAVOAEMAVOAQEMAVOA-DEQEMAVOA-DE2QEMAVOA
Kacem515 × 1032.821.920.421.320.3
MK1020 × 15375.4289.8278.9277264
13A20 × 103277.22660.42398.22400.92396.3
Edata_LA3530 × 102158.31801.41826.61763.51756.1
Rdata_LA3430 × 102097.41685.21642.41667.21569.9
Vdata_LA3330 × 102032.91686.31623.215491550
VL0150 × 201134.4833.21122.2940.7829.4
ProblemProblem sizeAVOAEMAVOAQEMAVOA-DEQEMAVOA-DE2QEMAVOA
Kacem515 × 1032.821.920.421.320.3
MK1020 × 15375.4289.8278.9277264
13A20 × 103277.22660.42398.22400.92396.3
Edata_LA3530 × 102158.31801.41826.61763.51756.1
Rdata_LA3430 × 102097.41685.21642.41667.21569.9
Vdata_LA3330 × 102032.91686.31623.215491550
VL0150 × 201134.4833.21122.2940.7829.4

Note. Bold values represent the best results.

Table 2:

Algorithm validity verification results.

ProblemProblem sizeAVOAEMAVOAQEMAVOA-DEQEMAVOA-DE2QEMAVOA
Kacem515 × 1032.821.920.421.320.3
MK1020 × 15375.4289.8278.9277264
13A20 × 103277.22660.42398.22400.92396.3
Edata_LA3530 × 102158.31801.41826.61763.51756.1
Rdata_LA3430 × 102097.41685.21642.41667.21569.9
Vdata_LA3330 × 102032.91686.31623.215491550
VL0150 × 201134.4833.21122.2940.7829.4
ProblemProblem sizeAVOAEMAVOAQEMAVOA-DEQEMAVOA-DE2QEMAVOA
Kacem515 × 1032.821.920.421.320.3
MK1020 × 15375.4289.8278.9277264
13A20 × 103277.22660.42398.22400.92396.3
Edata_LA3530 × 102158.31801.41826.61763.51756.1
Rdata_LA3430 × 102097.41685.21642.41667.21569.9
Vdata_LA3330 × 102032.91686.31623.215491550
VL0150 × 201134.4833.21122.2940.7829.4

Note. Bold values represent the best results.

Table 3 shows the combined Friedman ranking of the following algorithms: AVOA, EMAVOA, QEMAVOA-DE, QEMAVOA-DE2, and the proposed QEMAVOA algorithm. The rankings are determined based on the optimal results, average results, and standard deviations of 10 independent runs of each algorithm. The final ranking is obtained by the Friedman test, which calculates the Friedman value based on the optimal result, the average result, and the standard deviation, and takes the average of the three different Friedman values. Finally, the algorithms are ranked using Friedman’s means. The results show that QEMAVOA obtained the best ranking. Figure 9 shows the overall ranking results.

Comprehensive ranking of algorithms.
Figure 9:

Comprehensive ranking of algorithms.

Table 3:

All algorithm Friedman rank results.

AVOAEMAVOAQEMAVOA-DEQEMAVOA-DE2QEMAVOA
Best value FAR53.35712.07142.42862.1429
Mean value FAR53.57142.85712.42861.1429
Std value FAR3.571433.85712.42862.1429
Mean FAR4.52383.30952.92852.42861.8096
RANK54321
AVOAEMAVOAQEMAVOA-DEQEMAVOA-DE2QEMAVOA
Best value FAR53.35712.07142.42862.1429
Mean value FAR53.57142.85712.42861.1429
Std value FAR3.571433.85712.42862.1429
Mean FAR4.52383.30952.92852.42861.8096
RANK54321

Note. Bold values represent the best results.

Table 3:

All algorithm Friedman rank results.

AVOAEMAVOAQEMAVOA-DEQEMAVOA-DE2QEMAVOA
Best value FAR53.35712.07142.42862.1429
Mean value FAR53.57142.85712.42861.1429
Std value FAR3.571433.85712.42862.1429
Mean FAR4.52383.30952.92852.42861.8096
RANK54321
AVOAEMAVOAQEMAVOA-DEQEMAVOA-DE2QEMAVOA
Best value FAR53.35712.07142.42862.1429
Mean value FAR53.57142.85712.42861.1429
Std value FAR3.571433.85712.42862.1429
Mean FAR4.52383.30952.92852.42861.8096
RANK54321

Note. Bold values represent the best results.

The effectiveness of the algorithm improvements was verified through a series of experiments aimed at evaluating its performance. The experiments encompassed comprehensive assessments of the algorithm’s capabilities, including the application of the Friedman test to determine the algorithm’s overall performance in comparison to other algorithms. The results indicated that QEMAVOA ranked first among the compared algorithms, affirming the superiority of the introduced enhancements. Notably, the incorporation of three strategies, namely QDCE, QRG, and EM, significantly improved the algorithm’s performance, surpassing that of AVOA specifically for the FJSP problem.

5.2. PMS test results

The PMS case in this study is drawn from the literature (Kılıç & Yüzgeç, 2019). In this application, four parallel machines have a total of 20 jobs, and the runtime of each job is given by a matrix |$p[ {20 \times 4} ]$|⁠, and the setup time for each job to finish processing before processing another job is represented using a matrix |$s[ {20 \times 20 \times 4} ]$|⁠.

The QEMAVOA has solved the PMS problem. Its performance has been compared to the algorithms evaluated in the literature (Kılıç & Yüzgeç, 2019). The comparison algorithms are shown below: improved antlion optimization algorithm via tournament selection (IALOT), antlion optimization algorithm (ALO), firefly algorithm (FA), MFO, genetic algorithm (GA), grasshopper optimization algorithm (GOA), dragonfly optimization algorithm (DA), gray wolf optimization algorithm (GWO), biogeography-based optimization algorithm (BBO), and PSO.

In the comparison experiments, QEMAVOA was run 10 times with an overall size of 20 and a maximum number of 1000 iterations. The parameters of the algorithm used in this study are listed in Table 4, which were set based on previous studies (Abdollahzadeh et al., 2021; Kılıç & Yüzgeç, 2019). Simulation experiments were performed using the proposed QEMAVOA algorithm, and the results are presented in Table 5. The experimental results obtained by QEMAVOA were compared with those reported in the literature (Kılıç & Yüzgeç, 2019).

Table 4:

Metaheuristic algorithm parameters for PMS testing.

AlgorithmParameters
PSOLearning coefficient 1(personal): 1.5, Learning coefficient 2(global): 2.0, Inertia weight: 1.0
BBOMutation rate: 0.1, Keep coefficient: 0.2, Alpha: 0.9
DADragonfly population size: 20
GASelection pressure rate: 5, Mutation rate: 0.8, Crossover rate: 0.4
GOAGrasshopper population size: 20, |$cMin$|⁠: 0.00004, |$cMax$|⁠: 1
MFOMoth-flames population size: 20
FAInitial attraction rate: 2.0, Light absorption rate: 1.0, Mutation rate damping: 0.98, Mutation rate: 0.2
ALOAntlion population size: 20
IALOTAntlion population size: 20, random walk value: Max_Iter/5
AVOAAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6
QEMAVOAAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6, theta_ub:2π, theta_lb:0, Personal Learning coefficient: 2.05, Global Learning coefficient: 2.05, Inertia weight: 0.8
AlgorithmParameters
PSOLearning coefficient 1(personal): 1.5, Learning coefficient 2(global): 2.0, Inertia weight: 1.0
BBOMutation rate: 0.1, Keep coefficient: 0.2, Alpha: 0.9
DADragonfly population size: 20
GASelection pressure rate: 5, Mutation rate: 0.8, Crossover rate: 0.4
GOAGrasshopper population size: 20, |$cMin$|⁠: 0.00004, |$cMax$|⁠: 1
MFOMoth-flames population size: 20
FAInitial attraction rate: 2.0, Light absorption rate: 1.0, Mutation rate damping: 0.98, Mutation rate: 0.2
ALOAntlion population size: 20
IALOTAntlion population size: 20, random walk value: Max_Iter/5
AVOAAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6
QEMAVOAAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6, theta_ub:2π, theta_lb:0, Personal Learning coefficient: 2.05, Global Learning coefficient: 2.05, Inertia weight: 0.8
Table 4:

Metaheuristic algorithm parameters for PMS testing.

AlgorithmParameters
PSOLearning coefficient 1(personal): 1.5, Learning coefficient 2(global): 2.0, Inertia weight: 1.0
BBOMutation rate: 0.1, Keep coefficient: 0.2, Alpha: 0.9
DADragonfly population size: 20
GASelection pressure rate: 5, Mutation rate: 0.8, Crossover rate: 0.4
GOAGrasshopper population size: 20, |$cMin$|⁠: 0.00004, |$cMax$|⁠: 1
MFOMoth-flames population size: 20
FAInitial attraction rate: 2.0, Light absorption rate: 1.0, Mutation rate damping: 0.98, Mutation rate: 0.2
ALOAntlion population size: 20
IALOTAntlion population size: 20, random walk value: Max_Iter/5
AVOAAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6
QEMAVOAAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6, theta_ub:2π, theta_lb:0, Personal Learning coefficient: 2.05, Global Learning coefficient: 2.05, Inertia weight: 0.8
AlgorithmParameters
PSOLearning coefficient 1(personal): 1.5, Learning coefficient 2(global): 2.0, Inertia weight: 1.0
BBOMutation rate: 0.1, Keep coefficient: 0.2, Alpha: 0.9
DADragonfly population size: 20
GASelection pressure rate: 5, Mutation rate: 0.8, Crossover rate: 0.4
GOAGrasshopper population size: 20, |$cMin$|⁠: 0.00004, |$cMax$|⁠: 1
MFOMoth-flames population size: 20
FAInitial attraction rate: 2.0, Light absorption rate: 1.0, Mutation rate damping: 0.98, Mutation rate: 0.2
ALOAntlion population size: 20
IALOTAntlion population size: 20, random walk value: Max_Iter/5
AVOAAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6
QEMAVOAAlpha: 0.8, Betha: 0.2, Gamma:2.5, P1: 0.6, P2: 0.4, P3: 0.6, theta_ub:2π, theta_lb:0, Personal Learning coefficient: 2.05, Global Learning coefficient: 2.05, Inertia weight: 0.8
Table 5:

The results of QEMAVOA for PMS.

AlgorithmAverage valueBest valueWorst valueStandard dev
PSO121.31161345.143
BBO167.115019814.617
GWO127.21191376.391
DA121.41151335.661
GA121.41151305.232
GOA116.31131191.636
MFO115.31131232.983
FA121.11131367.724
ALO151.51421607.075
IALOT115.21131233.011
AVOA124.91141388.4912
QEMAVOA1151111202.667
QEMAVOA RANK1122
AlgorithmAverage valueBest valueWorst valueStandard dev
PSO121.31161345.143
BBO167.115019814.617
GWO127.21191376.391
DA121.41151335.661
GA121.41151305.232
GOA116.31131191.636
MFO115.31131232.983
FA121.11131367.724
ALO151.51421607.075
IALOT115.21131233.011
AVOA124.91141388.4912
QEMAVOA1151111202.667
QEMAVOA RANK1122

Note. Bold values represent the best results.

Table 5:

The results of QEMAVOA for PMS.

AlgorithmAverage valueBest valueWorst valueStandard dev
PSO121.31161345.143
BBO167.115019814.617
GWO127.21191376.391
DA121.41151335.661
GA121.41151305.232
GOA116.31131191.636
MFO115.31131232.983
FA121.11131367.724
ALO151.51421607.075
IALOT115.21131233.011
AVOA124.91141388.4912
QEMAVOA1151111202.667
QEMAVOA RANK1122
AlgorithmAverage valueBest valueWorst valueStandard dev
PSO121.31161345.143
BBO167.115019814.617
GWO127.21191376.391
DA121.41151335.661
GA121.41151305.232
GOA116.31131191.636
MFO115.31131232.983
FA121.11131367.724
ALO151.51421607.075
IALOT115.21131233.011
AVOA124.91141388.4912
QEMAVOA1151111202.667
QEMAVOA RANK1122

Note. Bold values represent the best results.

The results of 10 independent runs of QEMAVOA to solve the PMS are presented in Table 5. The table includes the average value, best value, worst value, and standard deviation of the results obtained in 10 independent runs of all algorithms and the ranking of each metric obtained by QEMAVOA. When average cost and best cost are chosen as evaluation indicators, it can be seen that QEMAVOA achieves the best results in both indicators (mean cost = 115, best cost = 111), and Fig. 10 shows the best results obtained by QEMAVOA. When the worst cost and standard deviation are chosen as evaluation metrics, the GOA algorithm obtains optimal results (worst cost = 119, standard dev = 1.636).

Results obtained by QEMAVOA for PMS problem.
Figure 10:

Results obtained by QEMAVOA for PMS problem.

The effectiveness of QEMAVOA in solving the PMS problem is evaluated by comparing its performance with other metaheuristic algorithms. However, the runtime of the algorithm is also a crucial factor to consider when solving the PMS problem. Therefore, the runtime of QEMAVOA is compared to that of AVOA. Figure 11 shows the comparison results. The experimental results indicate that QEMAVOA shows superior performance in solving the PMS problem while having a runtime comparable to that of AVOA.

QEMAVOA and AVOA runtime comparison in PMS.
Figure 11:

QEMAVOA and AVOA runtime comparison in PMS.

The algorithm’s superiority in solving the PMS problem was confirmed through dedicated experiments involving QEMAVOA. These experiments encompassed 10 independent runs, each producing optimal values, mean values, worst values, and standard deviations, enabling a comprehensive comparative analysis. The experimental results demonstrated that QEMAVOA outperformed the other algorithms considered for solving the PMS problem. Furthermore, runtime experiments were conducted, comparing QEMAVOA against AVOA in 10 independent trials. The results revealed that QEMAVOA exhibited slightly slower runtime performance compared to AVOA. In summary, the analysis concluded that QEMAVOA showcased exceptional performance in solving the PMS problem, albeit with a slightly longer runtime.

5.3. FJSP test results

In this section, the performance of the proposed QEMAVOA in solving the FJSP problem is evaluated. For this purpose, a series of simulation experiments are performed to apply QEMAVOA to the FJSP problem. To verify the effectiveness of QEMAVOA, the results of previously published studies have been chosen as a basis for comparison.

5.3.1. Experimental setup

To verify the performance of QEMAVOA in solving FJSP, the following problem datasets were considered in the experiments:

  • Kacem dataset: This dataset is derived from a set of five problems proposed by Kacem et al. (2002). The jobs range from 4 to 15, and the machines range from 5 to 10. These five problems are fully flexible.

  • Brandimarte dataset: This dataset is derived from a set of 10 problems proposed by Brandimarte (1993). The number of operations ranged from 10 to 20, and the number of machines ranged from 4 to 15. These 10 problems are partially flexible, with flexibility between 1.43 and 4.10 per operation and the number of operations between 55 and 240 for all operations.

  • Dauzere dataset: This dataset is derived from a set of 18 problems proposed by Dauzère & Paulli (1997). The jobs range from 10 to 20, and the machines range from 5 to 10. These 18 problems are partially flexible, with flexibility between 1.13 and 5.02 for each operation and several operations between 196 and 387 for all operations.

  • Hurink dataset: This dataset is derived from three sets of 129 problems proposed by Hurink et al. (1994). These problems are divided into Edata, Rdata, and Vdata (Behnke & Geiger, 2012; Hurink et al., 1994; Kasapidis et al., 2021), each containing 66 problems and differing in the flexibility of each operation. In this dataset, the number of jobs ranges from 6 to 30, the number of machines ranges from 5 to 15, and the flexibility of each job ranges from 1.15 to 7.5, with an average flexibility of 1.15 for Edata, 2 for Rdata, and 5 for Vdata. The number of operations for all operations ranges from 36 to 300.

  • Large dataset: This dataset comes with a large-scale dataset generated based on Brandimarte’s rules, which contains three large-scale problems named VL01, VL02, and VL03 (Brandimarte, 1993; Escamilla-Serna et al., 2022; Sun et al., 2019). In the dataset, there are 50 to 80 jobs and 20 to 50 machines. These three problems are partially flexible, with an average flexibility rate of 0.75 per operation.

Due to the uncertainty of the algorithm, 10 independent experiments were conducted for each dataset. The parameter settings of QEMAVOA proposed in this paper are referred to in Table 4. The present study evaluates the performance of QEMAVOA in solving the FJSP problem by comparing its makespan with those obtained by the participating comparison algorithms, which all take the optimal makespan from their respective papers. At the same time, the n × m in the result statistics table represents the number of jobs and machines.

5.3.2. Kacem dataset

For the experiments with the Kacem dataset, the size of the QEMAVOA populations was 100 and the number of maximum iterations was 300. Table 6 shows the results of the comparison of QEMAVOA with other algorithms containing the following: BBO, artificial immune algorithm (AIA), hybrid tabu search algorithm (HTSA), teaching learning based optimization algorithm (TLBO), improved Jaya algorithm (IJA), hybrid artificial bee colony algorithm (HABC), and genetic algorithms and random-restart hill-climbing (GA-RRHC). For the algorithms to be compared, the best values from the respective papers have been used. With three solutions to the problem in the AIA literature and four solutions to the problem in the BBO literature.

Table 6:

Optimal makespan of the algorithm on Kacem dataset.

Problemn × mAIA (Bagheri et al., 2010)HTSA (Li et al., 2010)BBO (Rahmati & Zandieh, 2012)TLBO (Buddala & Mahapatra, 2019)IJA (Caldeira & Gnanavelbabu, 2019)HABC (Caldeira et al., 2020)GA-RRHC (Escamilla-Serna et al., 2022)AVOAQEMAVOA
Kacem14 × 5/1111111111111111
Kacem28 × 8141414141414141414
Kacem310 × 7/11/111111111311
Kacem410 × 107777777117
Kacem515 × 10111112121111111614
Problemn × mAIA (Bagheri et al., 2010)HTSA (Li et al., 2010)BBO (Rahmati & Zandieh, 2012)TLBO (Buddala & Mahapatra, 2019)IJA (Caldeira & Gnanavelbabu, 2019)HABC (Caldeira et al., 2020)GA-RRHC (Escamilla-Serna et al., 2022)AVOAQEMAVOA
Kacem14 × 5/1111111111111111
Kacem28 × 8141414141414141414
Kacem310 × 7/11/111111111311
Kacem410 × 107777777117
Kacem515 × 10111112121111111614

Note. Bold values represent the best results. “/” indicates that the result is not given in the literature.

Table 6:

Optimal makespan of the algorithm on Kacem dataset.

Problemn × mAIA (Bagheri et al., 2010)HTSA (Li et al., 2010)BBO (Rahmati & Zandieh, 2012)TLBO (Buddala & Mahapatra, 2019)IJA (Caldeira & Gnanavelbabu, 2019)HABC (Caldeira et al., 2020)GA-RRHC (Escamilla-Serna et al., 2022)AVOAQEMAVOA
Kacem14 × 5/1111111111111111
Kacem28 × 8141414141414141414
Kacem310 × 7/11/111111111311
Kacem410 × 107777777117
Kacem515 × 10111112121111111614
Problemn × mAIA (Bagheri et al., 2010)HTSA (Li et al., 2010)BBO (Rahmati & Zandieh, 2012)TLBO (Buddala & Mahapatra, 2019)IJA (Caldeira & Gnanavelbabu, 2019)HABC (Caldeira et al., 2020)GA-RRHC (Escamilla-Serna et al., 2022)AVOAQEMAVOA
Kacem14 × 5/1111111111111111
Kacem28 × 8141414141414141414
Kacem310 × 7/11/111111111311
Kacem410 × 107777777117
Kacem515 × 10111112121111111614

Note. Bold values represent the best results. “/” indicates that the result is not given in the literature.

As demonstrated in Table 6, BBO and AVOA algorithms obtained two optimal solutions each, AIA and BBO algorithms obtained three optimal solutions each, TLBO and QEMAVOA algorithms obtained four optimal solutions each, while HTSA, IJA, HABC, and GA-RRHC algorithms obtained all optimal solutions. When compared with other algorithms on the Kacem dataset, QEMAVOA’s performance was not outstanding, but it exhibited better performance than AVOA.

5.3.3. Brandimarte dataset

For the experiments with the Brandimarte dataset, the size of the QEMAVOA populations was 100 and the number of maximum iterations was 500. Table 7 shows the results of the comparison of QEMAVOA with other algorithms. The compared algorithms contain the following: deep reinforcement learning (Deep RL), DA, human learning optimization algorithm and particle swarm optimization algorithm (HLO-PSO), improved particle swarm optimization algorithm (IPSO), self-learning genetic algorithm (SLGA), hybrid whale optimization algorithm (HWOA), and hybrid gray wolf weed algorithm (GIWO). For the algorithms to be compared, the best values from the respective papers have been used. There are six solutions to the problem in the DA literature.

Table 7:

Optimal makespan of the algorithm on Brandimarte dataset.

Problemn × mDeep RL (Han & Yang, 2021)DA (Hu & Zhou, 2020)HLO-PSO (Ding & Gu, 2020)IPSO (Ding & Gu, 2020)SLGA (Chen et al., 2020)HWOA (Yang et al., 2022)GIWO (Wang et al., 2021)AVOAQEMAVOA
MK0110 × 6445240404040404040
MK0210 × 6284628292728324128
MK0315 × 8245210204204204204204204204
MK0415 × 8748863666063657462
MK0515 × 4193175175175172177177186170
MK0610 × 1512387717769668411952
MK0720 × 5216/144145144145156188133
MK0820 × 10523/523523523523523523523
MK0920 × 10386/326320320315331324299
MK1020 × 15336/238239254236242265236
Problemn × mDeep RL (Han & Yang, 2021)DA (Hu & Zhou, 2020)HLO-PSO (Ding & Gu, 2020)IPSO (Ding & Gu, 2020)SLGA (Chen et al., 2020)HWOA (Yang et al., 2022)GIWO (Wang et al., 2021)AVOAQEMAVOA
MK0110 × 6445240404040404040
MK0210 × 6284628292728324128
MK0315 × 8245210204204204204204204204
MK0415 × 8748863666063657462
MK0515 × 4193175175175172177177186170
MK0610 × 1512387717769668411952
MK0720 × 5216/144145144145156188133
MK0820 × 10523/523523523523523523523
MK0920 × 10386/326320320315331324299
MK1020 × 15336/238239254236242265236

Note. Bold values represent the best results. “/” indicates that the result is not given in the literature.

Table 7:

Optimal makespan of the algorithm on Brandimarte dataset.

Problemn × mDeep RL (Han & Yang, 2021)DA (Hu & Zhou, 2020)HLO-PSO (Ding & Gu, 2020)IPSO (Ding & Gu, 2020)SLGA (Chen et al., 2020)HWOA (Yang et al., 2022)GIWO (Wang et al., 2021)AVOAQEMAVOA
MK0110 × 6445240404040404040
MK0210 × 6284628292728324128
MK0315 × 8245210204204204204204204204
MK0415 × 8748863666063657462
MK0515 × 4193175175175172177177186170
MK0610 × 1512387717769668411952
MK0720 × 5216/144145144145156188133
MK0820 × 10523/523523523523523523523
MK0920 × 10386/326320320315331324299
MK1020 × 15336/238239254236242265236
Problemn × mDeep RL (Han & Yang, 2021)DA (Hu & Zhou, 2020)HLO-PSO (Ding & Gu, 2020)IPSO (Ding & Gu, 2020)SLGA (Chen et al., 2020)HWOA (Yang et al., 2022)GIWO (Wang et al., 2021)AVOAQEMAVOA
MK0110 × 6445240404040404040
MK0210 × 6284628292728324128
MK0315 × 8245210204204204204204204204
MK0415 × 8748863666063657462
MK0515 × 4193175175175172177177186170
MK0610 × 1512387717769668411952
MK0720 × 5216/144145144145156188133
MK0820 × 10523/523523523523523523523
MK0920 × 10386/326320320315331324299
MK1020 × 15336/238239254236242265236

Note. Bold values represent the best results. “/” indicates that the result is not given in the literature.

Table 7 shows the results of the comparison among different algorithms on the Brandimarte dataset. DA was unable to obtain an optimal solution, while Deep RL obtained an optimal solution. HLO-PSO, IPSO, GIWO, and AVOA obtained three optimal solutions. In contrast, SLGA and HWOA obtained six optimal solutions, and QEMAVOA obtained eight optimal solutions. Notably, QEMAVOA outperformed other algorithms on this dataset.

5.3.4. Dauzere dataset

For the experiments with the Dauzere dataset, the size of the QEMAVOA populations was 100 and the number of maximum iterations was 1000. Table 8 shows the results of the comparison of QEMAVOA with other algorithms. The compared algorithms contain the following: integrated approach based on tabu search (IATS), TS, general particle swarm optimization (GPSO), discrepancy search (DS), and multi-swarm collaborative genetic algorithm (MSCGA).

Table 8:

Optimal makespan of the algorithm on Dauzere dataset.

Problemn × mIATS (Dauzère & Paulli, 1997)TS (Mastrolilli & Gambardella, 2000)GPSO (Gao et al., 2006)DS (Hmida et al., 2010)MSCGA (Cuiyu et al., 2021)AVOAQEMAVOA
01A10 × 52530251825392518251525552507
02A10 × 52244223122442231223123252229
03A10 × 52235222922322229222923332228
04A10 × 52565250325232503250625032532
05A10 × 52229221622342216221622982193
06A10 × 52216220322182196219722602173
07A15 × 82408228323612283227924402272
08A15 × 82093206920862069206920692069
09A15 × 82074206620732066206622782171
10A15 × 82362229123622291228724292270
11A15 × 82078206320832063206021352062
12A15 × 82047203420502031203321901993
13A20 × 102302226023422257224823152256
14A20 × 102183216721742167216721672167
15A20 × 102171216721732165216521922168
16A20 × 102301225523242256225523662255
17A20 × 102169214121622140214221812149
18A20 × 102139213721572127213221822055
Problemn × mIATS (Dauzère & Paulli, 1997)TS (Mastrolilli & Gambardella, 2000)GPSO (Gao et al., 2006)DS (Hmida et al., 2010)MSCGA (Cuiyu et al., 2021)AVOAQEMAVOA
01A10 × 52530251825392518251525552507
02A10 × 52244223122442231223123252229
03A10 × 52235222922322229222923332228
04A10 × 52565250325232503250625032532
05A10 × 52229221622342216221622982193
06A10 × 52216220322182196219722602173
07A15 × 82408228323612283227924402272
08A15 × 82093206920862069206920692069
09A15 × 82074206620732066206622782171
10A15 × 82362229123622291228724292270
11A15 × 82078206320832063206021352062
12A15 × 82047203420502031203321901993
13A20 × 102302226023422257224823152256
14A20 × 102183216721742167216721672167
15A20 × 102171216721732165216521922168
16A20 × 102301225523242256225523662255
17A20 × 102169214121622140214221812149
18A20 × 102139213721572127213221822055

Note. Bold values represent the best results. “/” indicates that the result is not given in the literature.

Table 8:

Optimal makespan of the algorithm on Dauzere dataset.

Problemn × mIATS (Dauzère & Paulli, 1997)TS (Mastrolilli & Gambardella, 2000)GPSO (Gao et al., 2006)DS (Hmida et al., 2010)MSCGA (Cuiyu et al., 2021)AVOAQEMAVOA
01A10 × 52530251825392518251525552507
02A10 × 52244223122442231223123252229
03A10 × 52235222922322229222923332228
04A10 × 52565250325232503250625032532
05A10 × 52229221622342216221622982193
06A10 × 52216220322182196219722602173
07A15 × 82408228323612283227924402272
08A15 × 82093206920862069206920692069
09A15 × 82074206620732066206622782171
10A15 × 82362229123622291228724292270
11A15 × 82078206320832063206021352062
12A15 × 82047203420502031203321901993
13A20 × 102302226023422257224823152256
14A20 × 102183216721742167216721672167
15A20 × 102171216721732165216521922168
16A20 × 102301225523242256225523662255
17A20 × 102169214121622140214221812149
18A20 × 102139213721572127213221822055
Problemn × mIATS (Dauzère & Paulli, 1997)TS (Mastrolilli & Gambardella, 2000)GPSO (Gao et al., 2006)DS (Hmida et al., 2010)MSCGA (Cuiyu et al., 2021)AVOAQEMAVOA
01A10 × 52530251825392518251525552507
02A10 × 52244223122442231223123252229
03A10 × 52235222922322229222923332228
04A10 × 52565250325232503250625032532
05A10 × 52229221622342216221622982193
06A10 × 52216220322182196219722602173
07A15 × 82408228323612283227924402272
08A15 × 82093206920862069206920692069
09A15 × 82074206620732066206622782171
10A15 × 82362229123622291228724292270
11A15 × 82078206320832063206021352062
12A15 × 82047203420502031203321901993
13A20 × 102302226023422257224823152256
14A20 × 102183216721742167216721672167
15A20 × 102171216721732165216521922168
16A20 × 102301225523242256225523662255
17A20 × 102169214121622140214221812149
18A20 × 102139213721572127213221822055

Note. Bold values represent the best results. “/” indicates that the result is not given in the literature.

Table 8 presents the results obtained by different algorithms on the Dauzere dataset. IATS and GPSO failed to find optimal solutions, while AVOA obtained three, TS and DS obtained five, and MSCGA obtained six optimal solutions. In contrast, QEMAVOA outperformed other algorithms by finding 12 optimal solutions. The experimental results demonstrate the superior performance of QEMAVOA in solving FJSP problems on the Dauzere dataset.

5.3.5. Hurink dataset

The Hurink dataset contains three sub-sets: Edata, Rdata, and Vdata, each containing 66 problems. The three sub-sets differ in the average flexibility of their operations, with the Hurink Edata dataset having an average flexibility of 1.15, the Hurink Rdata dataset having an average flexibility of 2, and the Hurink Vdata dataset having an average flexibility of 5.

For the experiments with the Hurink dataset, the size of the QEMAVOA populations was 100 and the number of maximum iterations was 1000. The results of QEMAVOA compared to other algorithms on the Hurink Edata dataset are shown in Table 9. The results of QEMAVOA compared to other algorithms on the Hurink Rdata dataset are shown in Table 10. The results of QEMAVOA compared to other algorithms on the Hurink Vdata dataset are shown in Table 11. The compared algorithms contain the following: TS, constraint programming (CP), PSO, two-level metaheuristic of the upper-level algorithm (MPM-UPLA), and graph-based multi-agent system (GMAS). The algorithms for the comparison were chosen from the best values in their respective papers. With 43 solutions to the problem in the TS and PSO literature and 40 solutions to the problem in GMAS.

Table 9:

Optimal makespan of the algorithm on Hurink Edata dataset.

Problemn × mTS (Hurink et al., 1994)CP (Behnke & Geiger, 2012)PSO (Pongchairerks & Kachitvichyanukul, 2009)MPM-UPLA (Pongchairerks et al., 2022)GMAS (Jing et al., 2022)AVOAQEMAVOA
MT66 × 657555555/5555
MT1010 × 10917877892873/890871
MT2020 × 51109108811161090/11071088
LA110 × 5611609609609609609609
LA210 × 5655655655655655655655
LA310 × 5573567567550550550550
LA410 × 5578568582568568568568
LA510 × 5503503503503503503503
LA615 × 5833833833833833847833
LA715 × 5765765765762762796762
LA815 × 5845845845845845845845
LA915 × 5878878878878878912878
LA1015 × 5866866866866866876866
LA1120 × 51106110311031103110011281107
LA1220 × 5960960960960960982966
LA1320 × 51053105310531053105310791053
LA1420 × 51151112311231123112311321123
LA1520 × 51111111111111111111111111111
LA1610 × 10924904893892892892892
LA1710 × 10757707707707707712707
LA1810 × 10864843847842842842842
LA1910 × 10850799820796796810796
LA2010 × 10919857859857857857857
LA2115 × 101066104410571021100410391009
LA2215 × 10919887912882875930880
LA2315 × 109809509949509501022950
LA2415 × 10952913939909925929908
LA2515 × 10970955974945942981936
LA2620 × 101169114311731115113511481169
LA2720 × 101230118812471182118812591181
LA2820 × 101204115311951149115311741147
LA2920 × 101210112811751124116711831107
LA3020 × 101253124112621220125412731193
LA3130 × 101596155216201541156516051599
LA3230 × 101769169817431698174717781721
LA3330 × 101575156015781547157516591571
LA3430 × 101627160916621608159716351609
LA3530 × 101736173617361736173617701736
LA3615 × 151247116012021160115311851160
LA3715 × 151453139714251397143414451397
LA3815 × 151185114612091143124512661141
LA3915 × 151226118412201186119512621184
LA4015 × 151214117411971150116911771144
ABZ510 × 10/1176/1167/11671167
ABZ610 × 10/925/925/925925
ABZ720 × 15/638/619/613610
ABZ820 × 15/654/648/648637
ABZ920 × 15/668/655/688644
CAR111 × 5/6176/6176/61766176
CAR213 × 4/6455/6432/64416327
CAR312 × 5/6856/6856/68566856
CAR414 × 4/7789/7789/77897789
CAR510 × 6/7229/7229/72297229
CAR68 × 9/8478/7990/83317990
CAR77 × 7/6123/6123/61236123
CAR88 × 8/7689/7689/76897689
ORB110 × 10/988/977/988977
ORB210 × 10/870/865/877865
ORB310 × 10/960/952/978951
ORB410 × 10/1016/984/1015984
ORB510 × 10/865/842/855842
ORB610 × 10/1004/958/976958
ORB710 × 10/387/389/390387
ORB810 × 10/894/894/901894
ORB910 × 10/933/933/933933
ORB1010 × 10/937/933/933933
Problemn × mTS (Hurink et al., 1994)CP (Behnke & Geiger, 2012)PSO (Pongchairerks & Kachitvichyanukul, 2009)MPM-UPLA (Pongchairerks et al., 2022)GMAS (Jing et al., 2022)AVOAQEMAVOA
MT66 × 657555555/5555
MT1010 × 10917877892873/890871
MT2020 × 51109108811161090/11071088
LA110 × 5611609609609609609609
LA210 × 5655655655655655655655
LA310 × 5573567567550550550550
LA410 × 5578568582568568568568
LA510 × 5503503503503503503503
LA615 × 5833833833833833847833
LA715 × 5765765765762762796762
LA815 × 5845845845845845845845
LA915 × 5878878878878878912878
LA1015 × 5866866866866866876866
LA1120 × 51106110311031103110011281107
LA1220 × 5960960960960960982966
LA1320 × 51053105310531053105310791053
LA1420 × 51151112311231123112311321123
LA1520 × 51111111111111111111111111111
LA1610 × 10924904893892892892892
LA1710 × 10757707707707707712707
LA1810 × 10864843847842842842842
LA1910 × 10850799820796796810796
LA2010 × 10919857859857857857857
LA2115 × 101066104410571021100410391009
LA2215 × 10919887912882875930880
LA2315 × 109809509949509501022950
LA2415 × 10952913939909925929908
LA2515 × 10970955974945942981936
LA2620 × 101169114311731115113511481169
LA2720 × 101230118812471182118812591181
LA2820 × 101204115311951149115311741147
LA2920 × 101210112811751124116711831107
LA3020 × 101253124112621220125412731193
LA3130 × 101596155216201541156516051599
LA3230 × 101769169817431698174717781721
LA3330 × 101575156015781547157516591571
LA3430 × 101627160916621608159716351609
LA3530 × 101736173617361736173617701736
LA3615 × 151247116012021160115311851160
LA3715 × 151453139714251397143414451397
LA3815 × 151185114612091143124512661141
LA3915 × 151226118412201186119512621184
LA4015 × 151214117411971150116911771144
ABZ510 × 10/1176/1167/11671167
ABZ610 × 10/925/925/925925
ABZ720 × 15/638/619/613610
ABZ820 × 15/654/648/648637
ABZ920 × 15/668/655/688644
CAR111 × 5/6176/6176/61766176
CAR213 × 4/6455/6432/64416327
CAR312 × 5/6856/6856/68566856
CAR414 × 4/7789/7789/77897789
CAR510 × 6/7229/7229/72297229
CAR68 × 9/8478/7990/83317990
CAR77 × 7/6123/6123/61236123
CAR88 × 8/7689/7689/76897689
ORB110 × 10/988/977/988977
ORB210 × 10/870/865/877865
ORB310 × 10/960/952/978951
ORB410 × 10/1016/984/1015984
ORB510 × 10/865/842/855842
ORB610 × 10/1004/958/976958
ORB710 × 10/387/389/390387
ORB810 × 10/894/894/901894
ORB910 × 10/933/933/933933
ORB1010 × 10/937/933/933933

Note. Bold values represent the best results. “/” indicates that the result is not given in the literature.

Table 9:

Optimal makespan of the algorithm on Hurink Edata dataset.

Problemn × mTS (Hurink et al., 1994)CP (Behnke & Geiger, 2012)PSO (Pongchairerks & Kachitvichyanukul, 2009)MPM-UPLA (Pongchairerks et al., 2022)GMAS (Jing et al., 2022)AVOAQEMAVOA
MT66 × 657555555/5555
MT1010 × 10917877892873/890871
MT2020 × 51109108811161090/11071088
LA110 × 5611609609609609609609
LA210 × 5655655655655655655655
LA310 × 5573567567550550550550
LA410 × 5578568582568568568568
LA510 × 5503503503503503503503
LA615 × 5833833833833833847833
LA715 × 5765765765762762796762
LA815 × 5845845845845845845845
LA915 × 5878878878878878912878
LA1015 × 5866866866866866876866
LA1120 × 51106110311031103110011281107
LA1220 × 5960960960960960982966
LA1320 × 51053105310531053105310791053
LA1420 × 51151112311231123112311321123
LA1520 × 51111111111111111111111111111
LA1610 × 10924904893892892892892
LA1710 × 10757707707707707712707
LA1810 × 10864843847842842842842
LA1910 × 10850799820796796810796
LA2010 × 10919857859857857857857
LA2115 × 101066104410571021100410391009
LA2215 × 10919887912882875930880
LA2315 × 109809509949509501022950
LA2415 × 10952913939909925929908
LA2515 × 10970955974945942981936
LA2620 × 101169114311731115113511481169
LA2720 × 101230118812471182118812591181
LA2820 × 101204115311951149115311741147
LA2920 × 101210112811751124116711831107
LA3020 × 101253124112621220125412731193
LA3130 × 101596155216201541156516051599
LA3230 × 101769169817431698174717781721
LA3330 × 101575156015781547157516591571
LA3430 × 101627160916621608159716351609
LA3530 × 101736173617361736173617701736
LA3615 × 151247116012021160115311851160
LA3715 × 151453139714251397143414451397
LA3815 × 151185114612091143124512661141
LA3915 × 151226118412201186119512621184
LA4015 × 151214117411971150116911771144
ABZ510 × 10/1176/1167/11671167
ABZ610 × 10/925/925/925925
ABZ720 × 15/638/619/613610
ABZ820 × 15/654/648/648637
ABZ920 × 15/668/655/688644
CAR111 × 5/6176/6176/61766176
CAR213 × 4/6455/6432/64416327
CAR312 × 5/6856/6856/68566856
CAR414 × 4/7789/7789/77897789
CAR510 × 6/7229/7229/72297229
CAR68 × 9/8478/7990/83317990
CAR77 × 7/6123/6123/61236123
CAR88 × 8/7689/7689/76897689
ORB110 × 10/988/977/988977
ORB210 × 10/870/865/877865
ORB310 × 10/960/952/978951
ORB410 × 10/1016/984/1015984
ORB510 × 10/865/842/855842
ORB610 × 10/1004/958/976958
ORB710 × 10/387/389/390387
ORB810 × 10/894/894/901894
ORB910 × 10/933/933/933933
ORB1010 × 10/937/933/933933
Problemn × mTS (Hurink et al., 1994)CP (Behnke & Geiger, 2012)PSO (Pongchairerks & Kachitvichyanukul, 2009)MPM-UPLA (Pongchairerks et al., 2022)GMAS (Jing et al., 2022)AVOAQEMAVOA
MT66 × 657555555/5555
MT1010 × 10917877892873/890871
MT2020 × 51109108811161090/11071088
LA110 × 5611609609609609609609
LA210 × 5655655655655655655655
LA310 × 5573567567550550550550
LA410 × 5578568582568568568568
LA510 × 5503503503503503503503
LA615 × 5833833833833833847833
LA715 × 5765765765762762796762
LA815 × 5845845845845845845845
LA915 × 5878878878878878912878
LA1015 × 5866866866866866876866
LA1120 × 51106110311031103110011281107
LA1220 × 5960960960960960982966
LA1320 × 51053105310531053105310791053
LA1420 × 51151112311231123112311321123
LA1520 × 51111111111111111111111111111
LA1610 × 10924904893892892892892
LA1710 × 10757707707707707712707
LA1810 × 10864843847842842842842
LA1910 × 10850799820796796810796
LA2010 × 10919857859857857857857
LA2115 × 101066104410571021100410391009
LA2215 × 10919887912882875930880
LA2315 × 109809509949509501022950
LA2415 × 10952913939909925929908
LA2515 × 10970955974945942981936
LA2620 × 101169114311731115113511481169
LA2720 × 101230118812471182118812591181
LA2820 × 101204115311951149115311741147
LA2920 × 101210112811751124116711831107
LA3020 × 101253124112621220125412731193
LA3130 × 101596155216201541156516051599
LA3230 × 101769169817431698174717781721
LA3330 × 101575156015781547157516591571
LA3430 × 101627160916621608159716351609
LA3530 × 101736173617361736173617701736
LA3615 × 151247116012021160115311851160
LA3715 × 151453139714251397143414451397
LA3815 × 151185114612091143124512661141
LA3915 × 151226118412201186119512621184
LA4015 × 151214117411971150116911771144
ABZ510 × 10/1176/1167/11671167
ABZ610 × 10/925/925/925925
ABZ720 × 15/638/619/613610
ABZ820 × 15/654/648/648637
ABZ920 × 15/668/655/688644
CAR111 × 5/6176/6176/61766176
CAR213 × 4/6455/6432/64416327
CAR312 × 5/6856/6856/68566856
CAR414 × 4/7789/7789/77897789
CAR510 × 6/7229/7229/72297229
CAR68 × 9/8478/7990/83317990
CAR77 × 7/6123/6123/61236123
CAR88 × 8/7689/7689/76897689
ORB110 × 10/988/977/988977
ORB210 × 10/870/865/877865
ORB310 × 10/960/952/978951
ORB410 × 10/1016/984/1015984
ORB510 × 10/865/842/855842
ORB610 × 10/1004/958/976958
ORB710 × 10/387/389/390387
ORB810 × 10/894/894/901894
ORB910 × 10/933/933/933933
ORB1010 × 10/937/933/933933

Note. Bold values represent the best results. “/” indicates that the result is not given in the literature.

Table 10:

Optimal makespan of the algorithm on Hurink Rdata dataset.

Problemn × mTS (Hurink et al., 1994)CP (Behnke & Geiger, 2012)PSO (Pongchairerks & Kachitvichyanukul, 2009)MPM-UPLA (Pongchairerks et al., 2022)GMAS (Jing et al., 2022)AVOAQEMAVOA
MT66 × 647474747/4747
MT1010 × 10737686724686/831686
MT2020 × 51028102410251022/10231022
LA110 × 5574573574571570594584
LA210 × 5535534534530530532529
LA310 × 5481478480478477494477
LA410 × 5509504506502502505502
LA510 × 5460458459457457476457
LA615 × 5801799800799799801799
LA715 × 5752750750749749784763
LA815 × 5767766767765765768765
LA915 × 5859854854853853862853
LA1015 × 5806805806804804811804
LA1120 × 51073107210721071107110911071
LA1220 × 5937936936936936937936
LA1320 × 51039103810391038103810381038
LA1420 × 51071107110701070107010881070
LA1520 × 51093109110901089109011261089
LA1610 × 10717717732717717732717
LA1710 × 10646646654646646669646
LA1810 × 10674666694666666666666
LA1910 × 10725703730700685694700
LA2010 × 10756757756756756767756
LA2115 × 10861845916844845917892
LA2215 × 10790775839772749806778
LA2315 × 10884857892850837876850
LA2415 × 10825818870821800864801
LA2515 × 10823805858802783808782
LA2620 × 101086107411141067105811251064
LA2720 × 101109110111411095109011091087
LA2820 × 101097108411351083107611081078
LA2920 × 1010161006104610039971128996
LA3020 × 101105108711481087107411141079
LA3130 × 101532152515491520152115591520
LA3230 × 101668166416911659165816761658
LA3330 × 101511150215301498149715131498
LA3430 × 101542154215561536153515631536
LA3530 × 101559155615771554155115911550
LA3615 × 151054103411191026102310601023
LA3715 × 151122108411901084106811011062
LA3815 × 1510049731063976958964954
LA3915 × 151041101811311024101910631011
LA4015 × 15100998410579779681047955
ABZ510 × 10/962/959/974954
ABZ610 × 10/807/807/893807
ABZ720 × 15/544/547/588581
ABZ820 × 15/555/561/626608
ABZ920 × 15/562/555/615601
CAR111 × 5/5057/5050/50505035
CAR213 × 4/5989/5986/59865986
CAR312 × 5/5626/5625/56505623
CAR414 × 4/6518/6515/65176515
CAR510 × 6/5764/5680/57175615
CAR68 × 9/6147/6147/61536147
CAR77 × 7/4432/4425/44254425
CAR88 × 8/5692/5692/56925692
ORB110 × 10/763/746/765746
ORB210 × 10/703/696/716696
ORB310 × 10/720/715/719712
ORB410 × 10/753/753/782753
ORB510 × 10/643/639/751639
ORB610 × 10/766/754/772754
ORB710 × 10/302/302/302302
ORB810 × 10/651/641/651639
ORB910 × 10/694/694/694694
ORB1010 × 10/750/742/742742
Problemn × mTS (Hurink et al., 1994)CP (Behnke & Geiger, 2012)PSO (Pongchairerks & Kachitvichyanukul, 2009)MPM-UPLA (Pongchairerks et al., 2022)GMAS (Jing et al., 2022)AVOAQEMAVOA
MT66 × 647474747/4747
MT1010 × 10737686724686/831686
MT2020 × 51028102410251022/10231022
LA110 × 5574573574571570594584
LA210 × 5535534534530530532529
LA310 × 5481478480478477494477
LA410 × 5509504506502502505502
LA510 × 5460458459457457476457
LA615 × 5801799800799799801799
LA715 × 5752750750749749784763
LA815 × 5767766767765765768765
LA915 × 5859854854853853862853
LA1015 × 5806805806804804811804
LA1120 × 51073107210721071107110911071
LA1220 × 5937936936936936937936
LA1320 × 51039103810391038103810381038
LA1420 × 51071107110701070107010881070
LA1520 × 51093109110901089109011261089
LA1610 × 10717717732717717732717
LA1710 × 10646646654646646669646
LA1810 × 10674666694666666666666
LA1910 × 10725703730700685694700
LA2010 × 10756757756756756767756
LA2115 × 10861845916844845917892
LA2215 × 10790775839772749806778
LA2315 × 10884857892850837876850
LA2415 × 10825818870821800864801
LA2515 × 10823805858802783808782
LA2620 × 101086107411141067105811251064
LA2720 × 101109110111411095109011091087
LA2820 × 101097108411351083107611081078
LA2920 × 1010161006104610039971128996
LA3020 × 101105108711481087107411141079
LA3130 × 101532152515491520152115591520
LA3230 × 101668166416911659165816761658
LA3330 × 101511150215301498149715131498
LA3430 × 101542154215561536153515631536
LA3530 × 101559155615771554155115911550
LA3615 × 151054103411191026102310601023
LA3715 × 151122108411901084106811011062
LA3815 × 1510049731063976958964954
LA3915 × 151041101811311024101910631011
LA4015 × 15100998410579779681047955
ABZ510 × 10/962/959/974954
ABZ610 × 10/807/807/893807
ABZ720 × 15/544/547/588581
ABZ820 × 15/555/561/626608
ABZ920 × 15/562/555/615601
CAR111 × 5/5057/5050/50505035
CAR213 × 4/5989/5986/59865986
CAR312 × 5/5626/5625/56505623
CAR414 × 4/6518/6515/65176515
CAR510 × 6/5764/5680/57175615
CAR68 × 9/6147/6147/61536147
CAR77 × 7/4432/4425/44254425
CAR88 × 8/5692/5692/56925692
ORB110 × 10/763/746/765746
ORB210 × 10/703/696/716696
ORB310 × 10/720/715/719712
ORB410 × 10/753/753/782753
ORB510 × 10/643/639/751639
ORB610 × 10/766/754/772754
ORB710 × 10/302/302/302302
ORB810 × 10/651/641/651639
ORB910 × 10/694/694/694694
ORB1010 × 10/750/742/742742

Note. Bold values represent the best results. “/” indicates that the result is not given in the literature.

Table 10:

Optimal makespan of the algorithm on Hurink Rdata dataset.

Problemn × mTS (Hurink et al., 1994)CP (Behnke & Geiger, 2012)PSO (Pongchairerks & Kachitvichyanukul, 2009)MPM-UPLA (Pongchairerks et al., 2022)GMAS (Jing et al., 2022)AVOAQEMAVOA
MT66 × 647474747/4747
MT1010 × 10737686724686/831686
MT2020 × 51028102410251022/10231022
LA110 × 5574573574571570594584
LA210 × 5535534534530530532529
LA310 × 5481478480478477494477
LA410 × 5509504506502502505502
LA510 × 5460458459457457476457
LA615 × 5801799800799799801799
LA715 × 5752750750749749784763
LA815 × 5767766767765765768765
LA915 × 5859854854853853862853
LA1015 × 5806805806804804811804
LA1120 × 51073107210721071107110911071
LA1220 × 5937936936936936937936
LA1320 × 51039103810391038103810381038
LA1420 × 51071107110701070107010881070
LA1520 × 51093109110901089109011261089
LA1610 × 10717717732717717732717
LA1710 × 10646646654646646669646
LA1810 × 10674666694666666666666
LA1910 × 10725703730700685694700
LA2010 × 10756757756756756767756
LA2115 × 10861845916844845917892
LA2215 × 10790775839772749806778
LA2315 × 10884857892850837876850
LA2415 × 10825818870821800864801
LA2515 × 10823805858802783808782
LA2620 × 101086107411141067105811251064
LA2720 × 101109110111411095109011091087
LA2820 × 101097108411351083107611081078
LA2920 × 1010161006104610039971128996
LA3020 × 101105108711481087107411141079
LA3130 × 101532152515491520152115591520
LA3230 × 101668166416911659165816761658
LA3330 × 101511150215301498149715131498
LA3430 × 101542154215561536153515631536
LA3530 × 101559155615771554155115911550
LA3615 × 151054103411191026102310601023
LA3715 × 151122108411901084106811011062
LA3815 × 1510049731063976958964954
LA3915 × 151041101811311024101910631011
LA4015 × 15100998410579779681047955
ABZ510 × 10/962/959/974954
ABZ610 × 10/807/807/893807
ABZ720 × 15/544/547/588581
ABZ820 × 15/555/561/626608
ABZ920 × 15/562/555/615601
CAR111 × 5/5057/5050/50505035
CAR213 × 4/5989/5986/59865986
CAR312 × 5/5626/5625/56505623
CAR414 × 4/6518/6515/65176515
CAR510 × 6/5764/5680/57175615
CAR68 × 9/6147/6147/61536147
CAR77 × 7/4432/4425/44254425
CAR88 × 8/5692/5692/56925692
ORB110 × 10/763/746/765746
ORB210 × 10/703/696/716696
ORB310 × 10/720/715/719712
ORB410 × 10/753/753/782753
ORB510 × 10/643/639/751639
ORB610 × 10/766/754/772754
ORB710 × 10/302/302/302302
ORB810 × 10/651/641/651639
ORB910 × 10/694/694/694694
ORB1010 × 10/750/742/742742
Problemn × mTS (Hurink et al., 1994)CP (Behnke & Geiger, 2012)PSO (Pongchairerks & Kachitvichyanukul, 2009)MPM-UPLA (Pongchairerks et al., 2022)GMAS (Jing et al., 2022)AVOAQEMAVOA
MT66 × 647474747/4747
MT1010 × 10737686724686/831686
MT2020 × 51028102410251022/10231022
LA110 × 5574573574571570594584
LA210 × 5535534534530530532529
LA310 × 5481478480478477494477
LA410 × 5509504506502502505502
LA510 × 5460458459457457476457
LA615 × 5801799800799799801799
LA715 × 5752750750749749784763
LA815 × 5767766767765765768765
LA915 × 5859854854853853862853
LA1015 × 5806805806804804811804
LA1120 × 51073107210721071107110911071
LA1220 × 5937936936936936937936
LA1320 × 51039103810391038103810381038
LA1420 × 51071107110701070107010881070
LA1520 × 51093109110901089109011261089
LA1610 × 10717717732717717732717
LA1710 × 10646646654646646669646
LA1810 × 10674666694666666666666
LA1910 × 10725703730700685694700
LA2010 × 10756757756756756767756
LA2115 × 10861845916844845917892
LA2215 × 10790775839772749806778
LA2315 × 10884857892850837876850
LA2415 × 10825818870821800864801
LA2515 × 10823805858802783808782
LA2620 × 101086107411141067105811251064
LA2720 × 101109110111411095109011091087
LA2820 × 101097108411351083107611081078
LA2920 × 1010161006104610039971128996
LA3020 × 101105108711481087107411141079
LA3130 × 101532152515491520152115591520
LA3230 × 101668166416911659165816761658
LA3330 × 101511150215301498149715131498
LA3430 × 101542154215561536153515631536
LA3530 × 101559155615771554155115911550
LA3615 × 151054103411191026102310601023
LA3715 × 151122108411901084106811011062
LA3815 × 1510049731063976958964954
LA3915 × 151041101811311024101910631011
LA4015 × 15100998410579779681047955
ABZ510 × 10/962/959/974954
ABZ610 × 10/807/807/893807
ABZ720 × 15/544/547/588581
ABZ820 × 15/555/561/626608
ABZ920 × 15/562/555/615601
CAR111 × 5/5057/5050/50505035
CAR213 × 4/5989/5986/59865986
CAR312 × 5/5626/5625/56505623
CAR414 × 4/6518/6515/65176515
CAR510 × 6/5764/5680/57175615
CAR68 × 9/6147/6147/61536147
CAR77 × 7/4432/4425/44254425
CAR88 × 8/5692/5692/56925692
ORB110 × 10/763/746/765746
ORB210 × 10/703/696/716696
ORB310 × 10/720/715/719712
ORB410 × 10/753/753/782753
ORB510 × 10/643/639/751639
ORB610 × 10/766/754/772754
ORB710 × 10/302/302/302302
ORB810 × 10/651/641/651639
ORB910 × 10/694/694/694694
ORB1010 × 10/750/742/742742

Note. Bold values represent the best results. “/” indicates that the result is not given in the literature.

Table 11:

Optimal makespan of the algorithm on Hurink Vdata dataset.

Problemn × mTS (Hurink et al., 1994)CP (Behnke & Geiger, 2012)PSO (Pongchairerks & Kachitvichyanukul, 2009)MPM-UPLA (Pongchairerks et al., 2022)GMAS (Jing et al., 2022)AVOAQEMAVOA
MT66 × 647474747/4747
MT1010 × 10655655655655/655655
MT2020 × 51023102310241022/10251022
LA110 × 5573570571570570579570
LA210 × 5531529530529530537529
LA310 × 5482478479477477494477
LA410 × 5504502504502502504502
LA510 × 5464458460457457466457
LA615 × 5802799799799799809799
LA715 × 5751750750749749752749
LA815 × 5766766766765765775765
LA915 × 5854854855853853869853
LA1015 × 5805804805804804804804
LA1120 × 51073107110711071107110711071
LA1220 × 5940936936936936956936
LA1320 × 51040103810381038103810551038
LA1420 × 51071107010701070107010761070
LA1520 × 51091109010901089108911031089
LA1610 × 10717717717717717722717
LA1710 × 10646646646646646675646
LA1810 × 10663663663663663705663
LA1910 × 10617617619617617682617
LA2010 × 10756756756756756792756
LA2115 × 10826804719817804829803
LA2215 × 10745736755755737785735
LA2315 × 10826815828826820845812
LA2415 × 10796775790793775796775
LA2515 × 10770756775768753794753
LA2620 × 101058105410581073105310961053
LA2720 × 101088108410911106108511641084
LA2820 × 101073107010761091107011011069
LA2920 × 10995995100310109941056994
LA3020 × 101071107210781085106811021069
LA3130 × 101521152215241538152015741520
LA3230 × 101658166116641681165717151660
LA3330 × 101498150015031511149715731498
LA3430 × 101536153715411557153516631535
LA3530 × 101553155115551563155016041549
LA3615 × 159489489559489481156950
LA3715 × 159869869939869861188987
LA3815 × 159439439439439431093943
LA3915 × 159229229459229221010922
LA4015 × 159559559559559551107955
ABZ510 × 10/860/859/1007895
ABZ610 × 10/742/742/812742
ABZ720 × 15/495/535/616569
ABZ820 × 15/509/554/632608
ABZ920 × 15/500/540/613588
CAR111 × 5/5013/5007/51375005
CAR213 × 4/5930/5929/59725929
CAR312 × 5/5600/5601/56235599
CAR414 × 4/6517/6514/66156514
CAR510 × 6/4932/4935/50694913
CAR68 × 9/5486/5486/55875486
CAR77 × 7/4281/4281/44894281
CAR88 × 8/4613/4613/47054613
ORB110 × 10/695/695/709695
ORB210 × 10/620/620/651620
ORB310 × 10/648/648/653648
ORB410 × 10/753/753/780753
ORB510 × 10/584/584/634584
ORB610 × 10/715/715/749715
ORB710 × 10/275/275/275275
ORB810 × 10/573/573/596573
ORB910 × 10/659/659/718659
ORB1010 × 10/681/681/709681
Problemn × mTS (Hurink et al., 1994)CP (Behnke & Geiger, 2012)PSO (Pongchairerks & Kachitvichyanukul, 2009)MPM-UPLA (Pongchairerks et al., 2022)GMAS (Jing et al., 2022)AVOAQEMAVOA
MT66 × 647474747/4747
MT1010 × 10655655655655/655655
MT2020 × 51023102310241022/10251022
LA110 × 5573570571570570579570
LA210 × 5531529530529530537529
LA310 × 5482478479477477494477
LA410 × 5504502504502502504502
LA510 × 5464458460457457466457
LA615 × 5802799799799799809799
LA715 × 5751750750749749752749
LA815 × 5766766766765765775765
LA915 × 5854854855853853869853
LA1015 × 5805804805804804804804
LA1120 × 51073107110711071107110711071
LA1220 × 5940936936936936956936
LA1320 × 51040103810381038103810551038
LA1420 × 51071107010701070107010761070
LA1520 × 51091109010901089108911031089
LA1610 × 10717717717717717722717
LA1710 × 10646646646646646675646
LA1810 × 10663663663663663705663
LA1910 × 10617617619617617682617
LA2010 × 10756756756756756792756
LA2115 × 10826804719817804829803
LA2215 × 10745736755755737785735
LA2315 × 10826815828826820845812
LA2415 × 10796775790793775796775
LA2515 × 10770756775768753794753
LA2620 × 101058105410581073105310961053
LA2720 × 101088108410911106108511641084
LA2820 × 101073107010761091107011011069
LA2920 × 10995995100310109941056994
LA3020 × 101071107210781085106811021069
LA3130 × 101521152215241538152015741520
LA3230 × 101658166116641681165717151660
LA3330 × 101498150015031511149715731498
LA3430 × 101536153715411557153516631535
LA3530 × 101553155115551563155016041549
LA3615 × 159489489559489481156950
LA3715 × 159869869939869861188987
LA3815 × 159439439439439431093943
LA3915 × 159229229459229221010922
LA4015 × 159559559559559551107955
ABZ510 × 10/860/859/1007895
ABZ610 × 10/742/742/812742
ABZ720 × 15/495/535/616569
ABZ820 × 15/509/554/632608
ABZ920 × 15/500/540/613588
CAR111 × 5/5013/5007/51375005
CAR213 × 4/5930/5929/59725929
CAR312 × 5/5600/5601/56235599
CAR414 × 4/6517/6514/66156514
CAR510 × 6/4932/4935/50694913
CAR68 × 9/5486/5486/55875486
CAR77 × 7/4281/4281/44894281
CAR88 × 8/4613/4613/47054613
ORB110 × 10/695/695/709695
ORB210 × 10/620/620/651620
ORB310 × 10/648/648/653648
ORB410 × 10/753/753/780753
ORB510 × 10/584/584/634584
ORB610 × 10/715/715/749715
ORB710 × 10/275/275/275275
ORB810 × 10/573/573/596573
ORB910 × 10/659/659/718659
ORB1010 × 10/681/681/709681

Note. Bold values represent the best results. “/” indicates that the result is not given in the literature.

Table 11:

Optimal makespan of the algorithm on Hurink Vdata dataset.

Problemn × mTS (Hurink et al., 1994)CP (Behnke & Geiger, 2012)PSO (Pongchairerks & Kachitvichyanukul, 2009)MPM-UPLA (Pongchairerks et al., 2022)GMAS (Jing et al., 2022)AVOAQEMAVOA
MT66 × 647474747/4747
MT1010 × 10655655655655/655655
MT2020 × 51023102310241022/10251022
LA110 × 5573570571570570579570
LA210 × 5531529530529530537529
LA310 × 5482478479477477494477
LA410 × 5504502504502502504502
LA510 × 5464458460457457466457
LA615 × 5802799799799799809799
LA715 × 5751750750749749752749
LA815 × 5766766766765765775765
LA915 × 5854854855853853869853
LA1015 × 5805804805804804804804
LA1120 × 51073107110711071107110711071
LA1220 × 5940936936936936956936
LA1320 × 51040103810381038103810551038
LA1420 × 51071107010701070107010761070
LA1520 × 51091109010901089108911031089
LA1610 × 10717717717717717722717
LA1710 × 10646646646646646675646
LA1810 × 10663663663663663705663
LA1910 × 10617617619617617682617
LA2010 × 10756756756756756792756
LA2115 × 10826804719817804829803
LA2215 × 10745736755755737785735
LA2315 × 10826815828826820845812
LA2415 × 10796775790793775796775
LA2515 × 10770756775768753794753
LA2620 × 101058105410581073105310961053
LA2720 × 101088108410911106108511641084
LA2820 × 101073107010761091107011011069
LA2920 × 10995995100310109941056994
LA3020 × 101071107210781085106811021069
LA3130 × 101521152215241538152015741520
LA3230 × 101658166116641681165717151660
LA3330 × 101498150015031511149715731498
LA3430 × 101536153715411557153516631535
LA3530 × 101553155115551563155016041549
LA3615 × 159489489559489481156950
LA3715 × 159869869939869861188987
LA3815 × 159439439439439431093943
LA3915 × 159229229459229221010922
LA4015 × 159559559559559551107955
ABZ510 × 10/860/859/1007895
ABZ610 × 10/742/742/812742
ABZ720 × 15/495/535/616569
ABZ820 × 15/509/554/632608
ABZ920 × 15/500/540/613588
CAR111 × 5/5013/5007/51375005
CAR213 × 4/5930/5929/59725929
CAR312 × 5/5600/5601/56235599
CAR414 × 4/6517/6514/66156514
CAR510 × 6/4932/4935/50694913
CAR68 × 9/5486/5486/55875486
CAR77 × 7/4281/4281/44894281
CAR88 × 8/4613/4613/47054613
ORB110 × 10/695/695/709695
ORB210 × 10/620/620/651620
ORB310 × 10/648/648/653648
ORB410 × 10/753/753/780753
ORB510 × 10/584/584/634584
ORB610 × 10/715/715/749715
ORB710 × 10/275/275/275275
ORB810 × 10/573/573/596573
ORB910 × 10/659/659/718659
ORB1010 × 10/681/681/709681
Problemn × mTS (Hurink et al., 1994)CP (Behnke & Geiger, 2012)PSO (Pongchairerks & Kachitvichyanukul, 2009)MPM-UPLA (Pongchairerks et al., 2022)GMAS (Jing et al., 2022)AVOAQEMAVOA
MT66 × 647474747/4747
MT1010 × 10655655655655/655655
MT2020 × 51023102310241022/10251022
LA110 × 5573570571570570579570
LA210 × 5531529530529530537529
LA310 × 5482478479477477494477
LA410 × 5504502504502502504502
LA510 × 5464458460457457466457
LA615 × 5802799799799799809799
LA715 × 5751750750749749752749
LA815 × 5766766766765765775765
LA915 × 5854854855853853869853
LA1015 × 5805804805804804804804
LA1120 × 51073107110711071107110711071
LA1220 × 5940936936936936956936
LA1320 × 51040103810381038103810551038
LA1420 × 51071107010701070107010761070
LA1520 × 51091109010901089108911031089
LA1610 × 10717717717717717722717
LA1710 × 10646646646646646675646
LA1810 × 10663663663663663705663
LA1910 × 10617617619617617682617
LA2010 × 10756756756756756792756
LA2115 × 10826804719817804829803
LA2215 × 10745736755755737785735
LA2315 × 10826815828826820845812
LA2415 × 10796775790793775796775
LA2515 × 10770756775768753794753
LA2620 × 101058105410581073105310961053
LA2720 × 101088108410911106108511641084
LA2820 × 101073107010761091107011011069
LA2920 × 10995995100310109941056994
LA3020 × 101071107210781085106811021069
LA3130 × 101521152215241538152015741520
LA3230 × 101658166116641681165717151660
LA3330 × 101498150015031511149715731498
LA3430 × 101536153715411557153516631535
LA3530 × 101553155115551563155016041549
LA3615 × 159489489559489481156950
LA3715 × 159869869939869861188987
LA3815 × 159439439439439431093943
LA3915 × 159229229459229221010922
LA4015 × 159559559559559551107955
ABZ510 × 10/860/859/1007895
ABZ610 × 10/742/742/812742
ABZ720 × 15/495/535/616569
ABZ820 × 15/509/554/632608
ABZ920 × 15/500/540/613588
CAR111 × 5/5013/5007/51375005
CAR213 × 4/5930/5929/59725929
CAR312 × 5/5600/5601/56235599
CAR414 × 4/6517/6514/66156514
CAR510 × 6/4932/4935/50694913
CAR68 × 9/5486/5486/55875486
CAR77 × 7/4281/4281/44894281
CAR88 × 8/4613/4613/47054613
ORB110 × 10/695/695/709695
ORB210 × 10/620/620/651620
ORB310 × 10/648/648/653648
ORB410 × 10/753/753/780753
ORB510 × 10/584/584/634584
ORB610 × 10/715/715/749715
ORB710 × 10/275/275/275275
ORB810 × 10/573/573/596573
ORB910 × 10/659/659/718659
ORB1010 × 10/681/681/709681

Note. Bold values represent the best results. “/” indicates that the result is not given in the literature.

Table 9 presents the results of the experiments conducted on the Hurink Edata dataset. TS obtained 11 optimal solutions out of 43 problems, PSO obtained 14 optimal solutions out of 43 problems, AVOA obtained 21 optimal solutions out of 66 problems, GMAS obtained 26 optimal solutions out of 40 problems, CP obtained 31 optimal solutions out of 66 problems, MPM-UPLA obtained 44 optimal solutions out of 66 problems, and QEMAVOA obtained 56 optimal solutions out of 66 problems. The results indicate that QEMAVOA outperforms the other algorithms in terms of the number of optimal solutions obtained on this dataset.

Table 10 presents a comparison of the performance of various scheduling algorithms on the Hurink Rdata dataset. As per the table, TS and PSO could obtain only four optimal solutions out of 43 problems, AVOA obtained nine optimal solutions out of 66 problems, while CP and MPM-UPLA obtained 15 and 35 optimal solutions out of 66 problems, respectively. GMAS was successful in obtaining 31 optimal solutions out of 40 problems, whereas QEMAVOA emerged as the most effective scheduling algorithm by obtaining 52 optimal solutions out of 66 problems. The results indicate that QEMAVOA outperforms the other algorithms on the Hurink Rdata dataset by obtaining more optimal solutions.

In Table 11, it is shown that AVOA obtained five optimal solutions out of 66 problems, TS obtained 12 optimal solutions out of 43 problems, PSO obtained 13 optimal solutions out of 43 problems, GMAS obtained 33 optimal solutions out of 40 problems, CP obtained 40 optimal solutions out of 66 problems, MPM-UPLA obtained 45 optimal solutions out of 66 problems, and QEMAVOA obtained 57 optimal solutions out of 66 problems. On the Hurink Vdata dataset, QEMAVOA outperforms the other compared algorithms and obtains more optimal solutions.

5.3.6. Large dataset

The large dataset is a large-scale dataset, and the size of QEMAVOA populations was 100, and the maximum number of iterations was 2000 for experiments using large dataset. Table 12 shows the results of the comparison of QEMAVOA with other algorithms, and the compared algorithms contain the following: global-local neighborhood search algorithm (GLNSA, Serna et al., 2021) and GA-RRHC. Since the large dataset has been used only once in the existing studies, it is only compared here with the above two algorithms.

Table 12:

Optimal makespan of the algorithm on large dataset.

Problemn × mGLNSA (Escamilla-Serna et al., 2022)GA-RRHC (Escamilla-Serna et al., 2022)AVOAQEMAVOA
VL0150 × 20592551846541
VL0260 × 307597051189693
VL0380 × 501155104116631027
Problemn × mGLNSA (Escamilla-Serna et al., 2022)GA-RRHC (Escamilla-Serna et al., 2022)AVOAQEMAVOA
VL0150 × 20592551846541
VL0260 × 307597051189693
VL0380 × 501155104116631027

Note. Bold values represent the best results.

Table 12:

Optimal makespan of the algorithm on large dataset.

Problemn × mGLNSA (Escamilla-Serna et al., 2022)GA-RRHC (Escamilla-Serna et al., 2022)AVOAQEMAVOA
VL0150 × 20592551846541
VL0260 × 307597051189693
VL0380 × 501155104116631027
Problemn × mGLNSA (Escamilla-Serna et al., 2022)GA-RRHC (Escamilla-Serna et al., 2022)AVOAQEMAVOA
VL0150 × 20592551846541
VL0260 × 307597051189693
VL0380 × 501155104116631027

Note. Bold values represent the best results.

As demonstrated in Table 12, the proposed QEMAVOA algorithm in this study displays superiority over other algorithms when tested on large datasets, and achieves optimal solutions that outperform the three other algorithms across all three problems. Gantt charts of the optimal scheduling solutions obtained by QEMAVOA for VL02 and VL03 are presented in Figs 12 and 13, respectively. To investigate the runtime variation of QEMAVOA when addressing complex FJSP problems, the VL03 case was selected for a comparative analysis between QEMAVOA and AVOA. Figure 14 presents the results of this comparison. The experimental findings demonstrate that QEMAVOA exhibits a significantly longer runtime when confronted with intricate FJSP problem instances.

Gantt chart of VL02 problem solution (60 × 30).
Figure 12:

Gantt chart of VL02 problem solution (60 × 30).

Gantt chart of VL03 problem solution (80 × 50).
Figure 13:

Gantt chart of VL03 problem solution (80 × 50).

QEMAVOA and AVOA runtime comparison in VL03.
Figure 14:

QEMAVOA and AVOA runtime comparison in VL03.

The algorithm’s superiority in addressing the FJSP problem was validated through dedicated experiments utilizing QEMAVOA. Multiple datasets were selected to evaluate the algorithm’s performance by comparing the number of optimal scheduling outcomes achieved. The experimental results unequivocally established QEMAVOA as the top-performing algorithm among the compared alternatives for solving the FJSP problem. Additionally, the most complex FJSP problem was selected to conduct runtime experiments, comparing QEMAVOA against AVOA in 10 independent trials. The findings revealed that QEMAVOA exhibited significantly slower runtime performance compared to AVOA. In summary, the analysis indicated that QEMAVOA exhibited exceptional performance in solving the FJSP problem, although it incurred a longer time required to obtain the optimal solution.

5.4. Experimental summary

In Section 5, we conducted three experiments to evaluate the performance of QEMAVOA: the algorithm validation experiment, QEMAVOA solving the PMS problem experiment, and QEMAVOA solving the FJSP problem experiment. Based on the experimental results, QEMAVOA demonstrates superior performance in addressing the PMS and FJSP problems. We will provide a detailed analysis of the experimental findings below.

In the algorithm validation experiments, we selected 10 FJSP problems from different datasets to assess the effectiveness of our improved strategy. The comparison involved AVOA, EMAVOA, QEMAVOA-DE, QEMAVOA-DE2, and QEMAVOA, with algorithm parameters set according to previous studies (Abdollahzadeh et al., 2021). QEMAVOA obtained nine optimal solutions, while QEMAVOA-DE2 obtained one optimal solution for the 10 selected FJSP problems. Friedman tests were conducted on the five algorithms to determine their final rankings. The results indicate that EMAVOA outperforms AVOA significantly, and QEMAVOA-DE, QEMAVOA-DE2, and QEMAVOA exhibit substantial improvements over EMAVOA. Hence, we conclude that the three enhancements introduced by QEMAVOA effectively address the PS problem.

For the experiments involving QEMAVOA in solving the PMS problem, we selected a well-established PMS problem from the literature (Kılıç & Yüzgeç, 2019). The comparison algorithms included PSO, BBO, DA, GA, GOA, MFO, FA, ALO, IALOT, AVOA, and QEMAVOA, with algorithm parameters based on previous studies (Kılıç & Yüzgeç, 2019). QEMAVOA ranked first in terms of mean value and best value, and second in terms of worst value and standard deviation, following GOA. These results highlight the superiority of QEMAVOA in addressing PMS problems. We also compared the running time of the algorithm, and the experimental results indicate that while QEMAVOA performs well in solving the PMS problem, its running time is longer compared to AVOA. Consequently, QEMAVOA may face challenges in obtaining feasible solutions quickly when dealing with complex PMS problems.

In the experiments focusing on QEMAVOA for solving the FJSP problem, we selected five datasets from various literature sources, containing FJSP problems of different sizes. Different comparison algorithms were chosen for each dataset, and the parameter settings were based on relevant studies (Abdollahzadeh et al., 2021; Kılıç & Yüzgeç, 2019). The experimental results reveal that QEMAVOA obtained the highest number of optimal solutions in all datasets except for the Kacem dataset. This demonstrates the superiority of QEMAVOA compared to the other algorithms considered. Additionally, we conducted experiments comparing the running times of QEMAVOA and AVOA using the VL03 problem from the large dataset. The results show that QEMAVOA has approximately double the running time of AVOA. Consequently, when addressing complex FJSP problems, QEMAVOA exhibits significantly longer running times compared to AVOA.

Based on the above experimental analysis, we can conclude that QEMAVOA shows significant advantages in solving the PS problem and can find more optimal solutions. The performance advantage of the algorithm mainly comes from the ability to explore and exploit the balance achieved through QDCE and QRG, as well as the increased ability to jump out of the local optimum, and the EM strategy increases the mining ability of the algorithm, and the above three improvements help to obtain better results in solving the PS problem. However, it is important to note that the running time of QEMAVOA becomes quite long when dealing with complex PS problems, making it challenging to obtain feasible solutions.

6. Conclusions and Future Works

In this paper, we proposed QEMAVOA as a solution to the PS problem, considering its broad applicability and complexity. Compared to AVOA, QEMAVOA incorporates three strategies. Firstly, QDCE is employed for population initialization, enhancing population diversity. Secondly, QRG ensured a balance between exploration and exploitation while facilitating the algorithm’s ability to escape local optima. Lastly, the EM strategy enhanced the algorithm’s exploitation capability, facilitating the acquisition of feasible solutions. The effectiveness of QEMAVOA in addressing the PS problem is demonstrated through its application to the PMS and FJSP problems. Experimental results indicated that QEMAVOA surpasses other algorithms in terms of accuracy, convergence rate, and stability. However, it is important to acknowledge that the QEMAVOA may exhibit a longer computational time compared to the AVOA when confronted with intricate PS problems. Nevertheless, QEMAVOA surpassed the existing studies in terms of delivering superior quality outcomes for complex PS problems. According to this observation, it can be inferred that QEMAVOA finds applicability in scenarios encompassing both small-scale PS problems that necessitate prompt results and large-scale PS problems that demand higher-quality solutions. For instance, real-time scheduling systems and worker scheduling in large factories represent suitable domains for employing QEMAVOA. Moreover, in this study, the population size and the number of runs were selected to be fixed. To be fair under the experimental conditions, the population size and number of runs were selected accordingly by referring to existing studies. It is worth noting that higher population sizes and the number of runs yielded comparatively more precise results. However, this outcome is at the cost of increased computational time and greater computational resource consumption for QEMAVOA.

This paper provided new ideas for solving PS problems, and one can try to combine QC ideas with more metaheuristic algorithms for solving PS problems. Meanwhile, PS problems that are more in line with the current era, such as energy-efficient flexible shop scheduling problems with worker flexibility (Han et al., 2021), flexible shop scheduling problems with triangular fuzzy time (Li et al., 2022), green flexible shop scheduling problems with class II fuzzy processing time (Li et al., 2023), distributed green flexible shop scheduling problems with class II fuzzy processing time (Li et al., 2022), and other PS problems, can be considered for extended research based on the existing studies. In addition, the defects of QEMAVOA in running time can be improved, and the application of QEMAVOA can be extended based on this study, such as applying it to image noise reduction, spherical asymmetric multi-travel quotient problems, and other research directions.

Acknowledgement

This work was supported by the National Natural Science Foundation of China.

Funding

This work was supported by the National Natural Science Foundation of China under Grant Nos. U21A20464, 62066005, and 62266007.

Conflict of interest statement

None declared.

Author contribution statement

B.L.: Investigation, writing-draft; Y.Z.: Supervision, writing-review, and editing. Q.L.: Writing-review and editing. H.H.: Experiments and analysis.

References

Abdollahzadeh
B.
,
Gharehchopogh
F. S.
,
Mirjalili
S.
(
2021
).
African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems
.
Computers & Industrial Engineering
,
158
,
107408
. .

Al-qaness
M. A.
,
Ewees
A. A.
,
Abd Elaziz
M
. (
2021
).
Modified whale optimization algorithm for solving unrelated parallel machine scheduling problems
.
Soft Computing
,
25
,
9545
9557
.. .

Arık
O. A.
,
Schutten
M.
,
Topan
E.
(
2022
).
Weighted earliness/tardiness parallel machine scheduling problem with a common due date
.
Expert Systems with Applications
,
187
,
115916
. .

Bagal
H. A.
,
Soltanabad
Y. N.
,
Dadjuo
M.
,
Wakil
K.
,
Zare
M.
,
Mohammed
A. S.
(
2021
).
SOFC model parameter identification by means of modified African vulture optimization algorithm
.
Energy Reports
,
7
,
7251
7260
.. .

Bagheri
A.
,
Zandieh
M.
,
Mahdavi
I.
,
Yazdani
M.
(
2010
).
An artificial immune algorithm for the flexible job-shop scheduling problem
.
Future Generation Computer Systems
,
26
,
533
541
.. .

Behnke
D.
,
Geiger
M. J.
(
2012
).
Test instances for the flexible job shop scheduling problem with work centers
.
Technical report
,
Helmut-Schmidt-Universität, Lehrstuhl für Betriebswirtschaftslehre, insbes. Logistik-Management
. .

Bhosale
K. C.
,
Pawar
P. J.
(
2020
).
Production planning and scheduling problem of continuous parallel lines with demand uncertainty and different production capacities
.
Journal of Computational Design and Engineering
,
7
,
761
774
.. .

Boyer
V.
,
Vallikavungal
J.
,
Rodríguez
X. C.
,
Salazar-Aguilar
M. A.
(
2021
).
The generalized flexible job shop scheduling problem
.
Computers & Industrial Engineering
,
160
,
107542
. .

Brandimarte
P.
(
1993
).
Routing and scheduling in a flexible job shop by tabu search
.
Annals of Operations Research
,
41
,
157
183
.. .

Buddala
R.
,
Mahapatra
S. S.
(
2019
).
An integrated approach for scheduling flexible job-shop using teaching–learning-based optimization method
.
Journal of Industrial Engineering International
,
15
,
181
192
.. .

Cai
X.
,
Zhao
H.
,
Shang
S.
,
Zhou
Y.
,
Deng
W.
,
Chen
H.
,
Deng
W.
(
2021
).
An improved quantum-inspired cooperative co-evolution algorithm with muli-strategy and its application
.
Expert Systems with Applications
,
171
,
114629
. .

Caldeira
R. H.
,
Gnanavelbabu
A.
(
2019
).
Solving the flexible job shop scheduling problem using an improved Jaya algorithm
.
Computers & Industrial Engineering
,
137
,
106064
. .

Caldeira
R. H.
,
Gnanavelbabu
A.
,
Joseph Solomon
J
. (
2020
).
Solving the flexible job shop scheduling problem using a hybrid artificial bee colony algorithm
. In
Trends in manufacturing and engineering management: Select proceedings of ICMechD 2019
(pp.
833
843
.).
Springer
. .

Chen
Y.
,
Zhang
G.
(
2022
).
New parameters identification of Proton exchange membrane fuel cell stacks based on an improved version of African vulture optimization algorithm
.
Energy Reports
,
8
,
3030
3040
.. .

Chen
R.
,
Yang
B.
,
Li
S.
,
Wang
S.
(
2020
).
A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem
.
Computers & Industrial Engineering
,
149
,
106778
. .

Cho
Y. I.
,
Nam
S. H.
,
Cho
K. Y.
,
Yoon
H. C.
,
Woo
J. H.
(
2022
).
Minimize makespan of permutation flowshop using pointer network
.
Journal of Computational Design and Engineering
,
9
,
51
67
.. .

Cui
X.
,
Luo
Q.
,
Zhou
Y.
,
Deng
W.
,
Yin
S.
(
2022
).
Quantum-inspired moth-flame optimizer with enhanced local search strategy for cluster analysis
.
Frontiers in Bioengineering and Biotechnology
,
10
,
908356
. .

Cuiyu
W.
,
Yang
L. I.
,
Xinyu
L. I.
(
2021
).
Solving flexible job shop scheduling problem by a multi-swarm collaborative genetic algorithm
.
Journal of Systems Engineering and Electronics
,
32
,
261
271
.. .

Dahi
Z. A.
,
Alba
E.
(
2022
).
Metaheuristics on quantum computers: Inspiration, simulation and real execution
.
Future Generation Computer Systems
,
130
,
164
180
.. .

Dauzère-Pérès
S.
,
Paulli
J.
(
1997
).
An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search
.
Annals of Operations Research
,
70
,
281
306
.. .

Deng
W.
,
Shang
S.
,
Cai
X.
,
Zhao
H.
,
Zhou
Y.
,
Chen
H.
,
Deng
W.
(
2021
).
Quantum differential evolution with cooperative coevolution framework and hybrid mutation strategy for large scale optimization
.
Knowledge-Based Systems
,
224
,
107080
. .

Diab
A. A. Z.
,
Tolba
M. A.
,
El-Rifaie
A. M.
,
Denis
K. A.
(
2022
).
Photovoltaic parameter estimation using honey badger algorithm and African vulture optimization algorithm
.
Energy Reports
,
8
,
384
393
.. .

Dias
E. D. M.
,
Vellasco
M. M. B. R.
,
da Cruz
A. V. A.
(
2021
).
Quantum-inspired neuro coevolution model applied to coordination problems
.
Expert Systems with Applications
,
167
,
114133
. .

Ding
H.
,
Gu
X.
(
2020
).
Improved particle swarm optimization algorithm based novel encoding and decoding schemes for flexible job shop scheduling problem
.
Computers & Operations Research
,
121
,
104951
. .

Ding
H.
,
Gu
X.
(
2020
).
Hybrid of human learning optimization algorithm and particle swarm optimization algorithm with scheduling strategies for the flexible job-shop scheduling problem
.
Neurocomputing
,
414
,
313
332
.. .

Escamilla-Serna
N. J.
,
Seck-Tuoh-Mora
J. C.
,
Medina-Marin
J.
,
Barragan-Vite
I.
,
Corona-Armenta
J. R.
(
2022
).
A hybrid search using genetic algorithms and random-restart hill-climbing for flexible job shop scheduling instances with high flexibility
.
Applied Sciences
,
12
,
8050
. .

Ewees
A. A.
,
Al-qaness
M. A.
,
Abd Elaziz
M
. (
2021
).
Enhanced salp swarm algorithm based on firefly algorithm for unrelated parallel machine scheduling with setup times
.
Applied Mathematical Modelling
,
94
,
285
305
.. .

Fan
J.
,
Li
Y.
,
Wang
T.
(
2021
).
An improved African vultures optimization algorithm based on tent chaotic mapping and time-varying mechanism
.
PLoS ONE
,
16
,
e0260725
. .

Fang
W.
,
Zhu
H.
,
Mei
Y.
(
2022
).
Hybrid meta-heuristics for the unrelated parallel machine scheduling problem with setup times
.
Knowledge-Based Systems
,
241
,
108193
. .

Fazel Zarandi
M. H.
,
Sadat Asl
A. A.
,
Sotudian
S.
,
Castillo
O.
(
2020
).
A state of the art review of intelligent scheduling
.
Artificial Intelligence Review
,
53
,
501
593
.. .

Gao
L.
,
Peng
C. Y.
,
Zhou
C.
,
Li
P. G.
(
2006
).
Solving flexible job shop scheduling problem using general particle swarm optimization
. In
Proceedings of the 36th CIE Conference on Computers & Industrial Engineering
(pp.
3018
3027
.).

Gharehchopogh
F. S.
,
Abdollahzadeh
B.
,
Khodadadi
N.
,
Mirjalili
S.
(
2022
).
A hybrid African vulture optimization algorithm and harmony search: Algorithm and application in clustering
. In
Advances in swarm intelligence: Variations and adaptations for optimization problems
(pp.
241
254
.).
Springer International Publishing
. .

Graham
R. L.
,
Lawler
E. L.
,
Lenstra
J. K.
,
Kan
A. R.
(
1979
).
Optimization and approximation in deterministic sequencing and scheduling: A survey
. In
Annals of discrete mathematics
(Vol.
5
, pp.
287
326
.).
Elsevier
. .

Han
B.
,
Yang
J.
(
2021
).
A deep reinforcement learning based solution for flexible job shop scheduling problem
.
International Journal of Simulation Modelling
,
20
,
375
386
.. .

Han
W.
,
Deng
Q.
,
Gong
G.
,
Zhang
L.
,
Luo
Q.
(
2021
).
Multi-objective evolutionary algorithms with heuristic decoding for hybrid flow shop scheduling problem with worker constraint
.
Expert Systems with Applications
,
168
,
114282
. .

Hmida
A. B.
,
Haouari
M.
,
Huguet
M. J.
,
Lopez
P.
(
2010
).
Discrepancy search for the flexible job shop scheduling problem
.
Computers & Operations Research
,
37
,
2192
2201
.. .

Houssein
E. H.
,
Abohashima
Z.
,
Elhoseny
M.
,
Mohamed
W. M.
(
2022
).
Hybrid quantum-classical convolutional neural network model for COVID-19 prediction using chest X-ray images
.
Journal of Computational Design and Engineering
,
9
,
343
363
.. .

Hu
S.
,
Zhou
L.
(
2020
).
Research on flexible job-shop scheduling problem based on the dragonfly algorithm
. In
Proceedings of the 2020 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA)
(pp.
241
245
.).
IEEE
. .

Hurink
J.
,
Jurisch
B.
,
Thole
M.
(
1994
).
Tabu search for the job-shop scheduling problem with multi-purpose machines
.
Operations-Research-Spektrum
,
15
,
205
215
.. .

Jiang
Z.
,
Yuan
S.
,
Ma
J.
,
Wang
Q.
(
2022
).
The evolution of production scheduling from Industry 3.0 through Industry 4.0
.
International Journal of Production Research
,
60
,
3534
3554
.. .

Jing
X.
,
Yao
X.
,
Liu
M.
,
Zhou
J.
(
2022
).
Multi-agent reinforcement learning based on graph convolutional network for flexible job shop scheduling
.
Journal of Intelligent Manufacturing
,
1
19
.. .

Kacem
I.
,
Hammadi
S.
,
Borne
P.
(
2002
).
Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems
.
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
,
32
,
1
13
.. .

Kasapidis
G. A.
,
Paraskevopoulos
D. C.
,
Repoussis
P. P.
,
Tarantilis
C. D.
(
2021
).
Flexible job shop scheduling problems with arbitrary precedence graphs
.
Production and Operations Management
,
30
,
4044
4068
.. .

Kılıç
H.
,
Yüzgeç
U.
(
2019
).
Improved antlion optimization algorithm via tournament selection and its application to parallel machine scheduling
.
Computers & Industrial Engineering
,
132
,
166
186
.. .

Kumar
C.
,
Mary
D. M.
(
2021
).
Parameter estimation of three-diode solar photovoltaic model using an improved-African vultures optimization algorithm with Newton–Raphson method
.
Journal of Computational Electronics
,
20
,
2563
2593
.. .

Lei
D.
,
Yang
H.
(
2022
).
Scheduling unrelated parallel machines with preventive maintenance and setup time: Multi-sub-colony artificial bee colony
.
Applied Soft Computing
,
125
,
109154
. .

Lei
D.
,
Yuan
Y.
,
Cai
J.
(
2021
).
An improved artificial bee colony for multi-objective distributed unrelated parallel machine scheduling
.
International Journal of Production Research
,
59
,
5259
5271
.. .

Li
R.
,
Gong
W.
,
Lu
C.
(
2022
).
Self-adaptive multi-objective evolutionary algorithm for flexible job shop scheduling with fuzzy processing time
.
Computers & Industrial Engineering
,
168
,
108099
. .

Li
R.
,
Gong
W.
,
Lu
C.
,
Wang
L.
(
2023
).
A learning-based memetic algorithm for energy-efficient flexible job shop scheduling with type-2 fuzzy processing time
.
IEEE Transactions on Evolutionary Computation
,
27
,
610
620
.. .

Li
R.
,
Gong
W.
,
Wang
L.
,
Lu
C.
,
Jiang
S.
(
2022
).
Two-stage knowledge-driven evolutionary algorithm for distributed green flexible job shop scheduling with type-2 fuzzy processing time
.
Swarm and Evolutionary Computation
,
74
,
101139
. .

Li
X.
,
Guo
X.
,
Tang
H.
,
Wu
R.
,
Wang
L.
,
Pang
S.
,
Li
X.
(
2022
).
Survey of integrated flexible job shop scheduling problems
.
Computers & Industrial Engineering
,
108786
. .

Li
J. Q.
,
Pan
Q. K.
,
Liang
Y. C.
(
2010
).
An effective hybrid tabu search algorithm for multi-objective flexible job-shop scheduling problems
.
Computers & Industrial Engineering
,
59
,
647
662
.. .

McNaughton
R.
(
1959
).
Scheduling with deadlines and loss functions
.
Management Science
,
6
,
1
12
.. .

Mastrolilli
M.
,
Gambardella
L. M.
(
2000
).
Effective neighbourhood functions for the flexible job shop problem
.
Journal of Scheduling
,
3
,
3
20
.. .

Mirjalili
S.
(
2016
).
Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
.
Neural Computing and Applications
,
27
,
1053
1073
.. .

Oh
S. H.
,
Cho
Y. I.
,
Woo
J. H.
(
2022
).
Distributional reinforcement learning with the independent learners for flexible job shop scheduling problem with high variability
.
Journal of Computational Design and Engineering
,
9
,
1157
1174
.. .

Pal
M.
,
Mittal
M. L.
,
Soni
G.
,
Chouhan
S. S.
,
Kumar
M.
(
2023
).
A multi-agent system for FJSP with setup and transportation times
.
Expert Systems with Applications
,
216
,
119474
. .

Pongchairerks
P.
(
2022
).
A two-level metaheuristic for the job-shop scheduling problem with multipurpose machines
.
Complexity
,
2022
,
3487355
. .

Pongchairerks
P.
,
Kachitvichyanukul
V.
(
2009
).
A particle swarm optimization algorithm on job-shop scheduling problems with multi-purpose machines
.
Asia-Pacific Journal of Operational Research
,
26
,
161
184
.. .

Rabadi
G.
,
Moraga
R. J.
,
Al-Salem
A
. (
2006
).
Heuristics for the unrelated parallel machine scheduling problem with setup times
.
Journal of Intelligent Manufacturing
,
17
,
85
97
.. .

Rahmati
S. H. A.
,
Zandieh
M.
(
2012
).
A new biogeography-based optimization (BBO) algorithm for the flexible job shop scheduling problem
.
The International Journal of Advanced Manufacturing Technology
,
58
,
1115
1129
.. .

Serna
N. J. E.
,
Seck-Tuoh-Mora
J. C.
,
Medina-Marin
J.
,
Hernandez-Romero
N.
,
Barragan-Vite
I.
,
Armenta
J. R. C.
(
2021
).
A global-local neighborhood search algorithm and tabu search for flexible job shop scheduling problem
.
PeerJ Computer Science
,
7
,
e574
. .

Soliman
M. A.
,
Hasanien
H. M.
,
Turky
R. A.
,
Muyeen
S. M.
(
2022
).
Hybrid African vultures–grey wolf optimizer approach for electrical parameters extraction of solar panel models
.
Energy Reports
,
8
,
14888
14900
.. .

Steane
A.
(
1998
).
Quantum computing
.
Reports on Progress in Physics
,
61
,
117
. .

Sun
L.
,
Lin
L.
,
Li
H.
,
Gen
M.
(
2019
).
Large scale flexible scheduling optimization by a distributed evolutionary algorithm
.
Computers & Industrial Engineering
,
128
,
894
904
.. .

Sun
K.
,
Zheng
D.
,
Song
H.
,
Cheng
Z.
,
Lang
X.
,
Yuan
W.
,
Wang
J.
(
2023
).
Hybrid genetic algorithm with variable neighborhood search for flexible job shop scheduling problem in a machining system
.
Expert Systems with Applications
,
215
,
119359
. .

Vali
M.
,
Salimifard
K.
,
Gandomi
A. H.
,
Chaussalet
T. J.
(
2022
).
Application of job shop scheduling approach in green patient flow optimization using a hybrid swarm intelligence
.
Computers & Industrial Engineering
,
172
,
108603
. .

Wang
Y.
,
Li
S.
,
Sun
H.
,
Huang
C.
,
Youssefi
N.
(
2022
).
The utilization of adaptive African vulture optimizer for optimal parameter identification of SOFC
.
Energy Reports
,
8
,
551
560
.. .

Wang
Y.
,
Song
Y. C.
,
Zou
Y. J.
,
Lei
Q.
,
Wang
X. K.
(
2021
).
A hybrid gray wolf weed algorithm for flexible job-shop scheduling problem
.
Journal of Physics: Conference Series
,
1828
,
012162
. .

Wang
C.
,
Wang
Z.
,
Zhang
S.
,
Liu
X.
,
Tan
J.
(
2023
).
Reinforced quantum-behaved particle swarm-optimized neural network for cross-sectional distortion prediction of novel variable-diameter-die-formed metal bent tubes
.
Journal of Computational Design and Engineering
,
10
,
1060
1079
.. .

Yang
W.
,
Su
J.
,
Yao
Y.
,
Yang
Z.
,
Yuan
Y.
(
2022
).
A novel hybrid whale optimization algorithm for flexible job-shop scheduling problem
.
Machines
,
10
,
618
. .

Yu
C.
,
Heidari
A. A.
,
Xue
X.
,
Zhang
L.
,
Chen
H.
,
Chen
W.
(
2021
).
Boosting quantum rotation gate embedded slime mould algorithm
.
Expert Systems with Applications
,
181
,
115082
. .

Yuan
Y.
,
Xu
H.
,
Yang
J.
(
2013
).
A hybrid harmony search algorithm for the flexible job shop scheduling problem
.
Applied Soft Computing
,
13
,
3259
3272
.. .

Zhang
L.
,
Deng
Q.
,
Lin
R.
,
Gong
G.
,
Han
W.
(
2021
).
A combinatorial evolutionary algorithm for unrelated parallel machine scheduling problem with sequence and machine-dependent setup times, limited worker resources and learning effect
.
Expert Systems with Applications
,
175
,
114843
. .

Zhang
Y.
,
Wei
C.
,
Zhao
J.
,
Qiang
Y.
,
Wu
W.
,
Hao
Z.
(
2022
).
Adaptive mutation quantum-inspired squirrel search algorithm for global optimization problems
.
Alexandria Engineering Journal
,
61
,
7441
7476
.. .

Zheng
R.
,
Hussien
A. G.
,
Qaddoura
R.
,
Jia
H.
,
Abualigah
L.
,
Wang
S.
,
Saber
A.
(
2023
).
A multi-strategy enhanced African vultures optimization algorithm for global optimization problems
.
Journal of Computational Design and Engineering
,
10
,
329
356
.. .

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.