Abstract

This study was aimed to investigate the effects of dietary arctiin (ARC) supplementation (100, 200, and 400 mg/kg) on the growth performance and immune response of broilers after a Salmonella pullorum (S. pullorum) challenge, and we conducted in vitro antibacterial test to explore the bacteriostatic mechanism of ARC. The in vivo trial was randomly assigned to six groups: noninfected control (NC) group and positive control (PC) group received a basal diet; TET group, received a basal diet supplemented with 100 mg/kg chlortetracycline; ARC100, ARC200, and ARC400 groups received a basal diet containing 100, 200, and 400 mg/kg ARC, respectively. From days 14 to 16, all birds (except the NC group) were infected with 1 mL (1 × 108 CFU per mL) fresh S. pullorum culture by oral gavage per day. In vivo results showed that dietary supplementation of 200 mg/kg ARC significantly increased average daily gain (P < 0.05) and decreased feed-to-gain ratio of broilers vs. the PC group during days 15 to 28 after being challenged with S. pullorum (P < 0.05). The jejunal crypt depth (CD) was decreased by supplementing 100 or 200 mg/kg ARC in diets compared with PC birds at day 19 (P < 0.05). The jejunal villi height (VH) was increased by supplementing 100, 200, or 400 mg/kg ARC in diets compared with PC birds at day 28 (P < 0.05). Besides, dietary supplementation of 200 mg/kg ARC increased the jejunal VH to CD ratio than the PC group both at days 19 and 28 (P < 0.05). Notably, the broilers had lower serum lipopolysaccharide and diamine oxidase levels in the ARC100 and ARC200 groups at day 28 than those in the PC group (P < 0.05). Furthermore, in comparison to PC birds, the birds in ARC groups (100, 200, and 400 mg/kg) had higher serum contents of IgM and IL-10, and the birds in the ARC200 group had higher serum contents of IgA at day 19 (P < 0.05). At day 28, the birds in ARC groups (100, 200, and 400 mg/kg) had lower serum contents of IL-8, and the birds in the ARC200 group had lower serum contents of IFN-γ compared with PC birds (P < 0.05). The in vitro experiment showed that ARC significantly inhibited the biofilm formation and adhesion of S. pullorum (P < 0.05). Metabonomics analysis revealed that ARC can restrain the formation of the biofilm by affecting a variety of metabolic pathways of S. pullorum. Therefore, dietary supplementation of 200 mg/kg ARC might be a potential way to substitute antibiotics to control S. pullorum infection in broilers.

Lay Summary

Pullorosis caused by Salmonella pullorum (S. pullorum) is a severe contagious disease and could cause great economic loss to the poultry industry. Antibiotics are usually used to control pullorosis, while prolonged use of antibiotics has led to the emergence of multidrug-resistant bacterial strains. Therefore, it is necessary to find safer and more effective alternatives to substitute antibiotics. In this study, we established a model of S. pullorum infection in broilers and conducted in vitro antibacterial test to explore the preventive effect and mechanisms of dietary arctiin (ARC) supplementation on S. pullorum infection in broilers. The results showed that ARC could not only improve the immune function of infected broilers by regulating the immune system but also directly inhibit the invasion of S. pullorum to broilers by inhibiting the formation and adhesion rate of S. pullorum biofilm. Dietary supplementation of 200 mg/kg ARC might be a potential way to substitute antibiotics to control S. pullorum infection in broilers.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
You do not currently have access to this article.