Abstract

Objectives

Respiratory syncytial virus (RSV) is a significant cause of pediatric hospitalizations. This article aims to utilize multisource data and leverage the tensor methods to uncover distinct RSV geographic clusters and develop an accurate RSV prediction model for future seasons.

Materials and Methods

This study utilizes 5-year RSV data from sources, including medical claims, CDC surveillance data, and Google search trends. We conduct spatiotemporal tensor analysis and prediction for pediatric RSV in the United States by designing (i) a nonnegative tensor factorization model for pediatric RSV diseases and location clustering; (ii) and a recurrent neural network tensor regression model for county-level trend prediction using the disease and location features.

Results

We identify a clustering hierarchy of pediatric diseases: Three common geographic clusters of RSV outbreaks were identified from independent sources, showing an annual RSV trend shifting across different US regions, from the South and Southeast regions to the Central and Northeast regions and then to the West and Northwest regions, while precipitation and temperature were found as correlative factors with the coefficient of determination R20.5, respectively. Our regression model accurately predicted the 2022-2023 RSV season at the county level, achieving R20.3 mean absolute error MAE < 0.4 and a Pearson correlation greater than 0.75, which significantly outperforms the baselines with P-values <.05.

Conclusion

Our proposed framework provides a thorough analysis of RSV disease in the United States, which enables healthcare providers to better prepare for potential outbreaks, anticipate increased demand for services and supplies, and save more lives with timely interventions.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/pages/standard-publication-reuse-rights)
You do not currently have access to this article.