Abstract

Objectives

RecA is the key enzyme involved in DNA repair, recombination and induction of the SOS response and is central to the development of antibiotic resistance. Here we assessed the interaction of two different gyrase inhibitors, ciprofloxacin (a fluoroquinolone) and novobiocin (an aminocoumarin), on RecA activity and the SOS response in Staphylococcus aureus.

Methods

The influence of different gyrase inhibitors on the SOS response of S. aureus (including recA and lexA mutants) was analysed by northern blot analysis, real-time RT–PCR, western blot analysis and promoter activity assays. Recombination as well as mutation frequencies were determined for the different antibiotic combinations.

Results

We verified that ciprofloxacin leads to RecA activation and therefore induction of the SOS response. In contrast, novobiocin treatment resulted in an inhibition of recA transcription independent of LexA. When novobiocin and ciprofloxacin were added simultaneously, recA was reduced to the same level as with novobiocin alone. In combination, novobiocin also partially reduces the ciprofloxacin-mediated induction of the LexA target gene umuC (error-prone polymerase). Apart from reducing recA and umuC expression, novobiocin also inhibited the frequency of recombination, mutation and the formation of non-haemolytic variants.

Conclusion

In summary, aminocoumarins inhibit recA expression in S. aureus and probably delay the process of developing antibiotic resistance and gene transfer. A clinical re-evaluation of these compounds as well as designing more applicable derivatives should be considered.

You do not currently have access to this article.