-
Views
-
Cite
Cite
Ertuğrul Dalgıç, Muazzez Çelebi-Çınar, Merve Vural-Özdeniz, Özlen Konu, Randomization based evaluation of distinct topological and cancer expression characteristics of mutually acting gene pairs, Integrative Biology, Volume 17, 2025, zyaf005, https://doi.org/10.1093/intbio/zyaf005
- Share Icon Share
Abstract
Small scale molecular network patterns and motifs are crucial for systems level understanding of cellular information transduction. Using randomizations, we statistically explored, previously overlooked basic patterns of mutually acting pairs, i.e. mutually positive (PP) or negative (NN) and positive–negative (PN) pairs, in two comprehensive and distinct large-scale molecular networks from literature; the human protein signaling network (PSN) and the human gene regulatory network (GRN). Only the positive and negative signs of all interacting pairs were randomized, while the gene pairs and the number of positive and negative signs in the original network were kept constant. While the numbers of NN and PN pairs were significantly higher, the number of PP pairs was significantly lower than randomly expected values. Genes participating in mutual pairs were more connected than other genes. NN genes were more connected than PP and PN in GRN for all types of degree values, including in, out, positive or negative connections, but less connected for in-degree and more connected for out-degree values in PSN. They also had significantly high number of intersections with each other and PN pairs than randomly expected values, indicating potential cooperative mechanisms. The three mutual interaction designs we examined had distinct RNA and protein expression correlation characteristics. NN protein pairs were uniquely over-represented across normal tissue samples, whose negative correlations were lost across cancer tissue samples. PP and PN pairs showed non-random positive RNA or protein expression correlation across normal or cancer tissue samples. Moreover, we developed an online tool, i.e. MGPNet, for further user specific analysis of mutual gene pairs. We identified SNCA with significantly enriched negatively correlated NN pairs. Unique non-random characteristics of mutual gene pairs identified in two different comprehensive molecular networks could provide valuable information for a better comparative understanding of molecular design principles between normal and cancer states.
Insight Box/Paragraph Statement: This study provides a systems-level perspective on cellular information transduction by analyzing mutually acting pairs of genes. By examining mutually positive (PP), mutually negative (NN), and positive–negative (PN) pairs in the human protein signaling network (PSN) and the human gene regulatory network (GRN), we uncover significant variations in their connectivity and expression correlation. Our findings highlight the unique features of NN pairs across normal and cancer tissues and offer insights into molecular design principles. The development of the MGPNet tool further enhances user-specific analyses, enabling a deeper understanding of gene pair mechanisms and their potential cooperative roles in cellular processes.