Abstract

Noncoding cis-regulatory elements (CREs), such as transcriptional enhancers, are key regulators of gene expression programs. Accessible chromatin and H3K27ac are well-recognized markers for CREs associated with their biological function. Deregulation of CREs is commonly found in hematopoietic malignancies yet the extent to which CRE dysfunction contributes to pathophysiology remains incompletely understood. Here, we developed HemaCisDB, an interactive, comprehensive, and centralized online resource for CRE characterization across hematopoietic malignancies, serving as a useful resource for investigating the pathological roles of CREs in blood disorders. Currently, we collected 922 ATAC-seq, 190 DNase-seq, and 531 H3K27ac ChIP-seq datasets from patient samples and cell lines across different myeloid and lymphoid neoplasms. HemaCisDB provides comprehensive quality control metrics to assess ATAC-seq, DNase-seq, and H3K27ac ChIP-seq data quality. The analytic modules in HemaCisDB include transcription factor (TF) footprinting inference, super-enhancer identification, and core transcriptional regulatory circuitry analysis. Moreover, HemaCisDB also enables the study of TF binding dynamics by comparing TF footprints across different disease types or conditions via web-based interactive analysis. Together, HemaCisDB provides an interactive platform for CRE characterization to facilitate mechanistic studies of transcriptional regulation in hematopoietic malignancies. HemaCisDB is available at https://hemacisdb.chinablood.com.cn/.

Information Accepted manuscripts
Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.
This content is only available as a PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Supplementary data