Summary

In order to validate unusual fatty acids as biomarkers for sulphate-reducing bacteria, selective conditions were arranged for the enrichment of a marine glutamate-fermenting bacterium which made hydrogen and acetate available for oxidation via the respiration of sulphate. Under these conditions the complete oxidation of glutamate via sulphate reduction accounted for 84% of the available electron equivalents. Fatty acid biomarkers for hydrogen-oxidizing Desulfovibrio sp. (iso 17:1w7c and branched monoenoics) and for acetate-oxidizing Desulfobacter (10 methyl 16:0) were detected in the enrichment. These biomarkers were demonstrated in pure cultures of Desulfovibrio sp. and Desulfobacter sp. obtained from the enrichment. The predominant glutamate-fermenting bacterium isolated from the consortium contained no branched ester-linked phospholipid fatty acids, and produced acetate and hydrogen. With energy limitation the enriched consortium produced increased amounts of extracellular polysaccharide and the endogenous storage lipid poly-beta-hydroxybutyrate as detected with Fourier transform/infra-red (FT-IR) spectroscopy.

References

[1]

White
D.C.
(
1983
)
Analysis of microorganisms in terms of quantity and activity in natural environments
(
Slater
J.H.
Whittenbury
R.
Wimpenny
J.W.T.
, Eds) In
Ecology of microbial communities
Cambridge University Press
, Cambridge.

[2]

Parkes
R.J.
(
1987
)
Analysis of microbial communities within sediments using biomarkers
,
Cambridge University Press
, Cambridge.

[3]

Taylor
J.
Parkes
R.J.
(
1983
)
The cellular fatty acids of the sulphate-reducing bacteria Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans
J. Gen. Microbiol.
,
129
,
3303
3309
.

[4]

Edlund
A.
Nichols
P.D.
Roffey
R.
White
D.C.
(
1985
)
Extractable and lipopolysaccharide fatty acid and hydroxy acid profiles from Desulfovibrio species
J. Lipid Res.
,
26
,
982
988
.

[5]

Dowling
N.J.E.
Widdel
F.
White
D.C.
(
1985
)
Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulphate-reducers and other sulphide-forming bacteria
J. Gen. Microbiol.
,
132
,
1815
1829
.

[6]

Perry
G.J.
Volkman
J.K.
Johns
R.B.
Bavor
H.J.
jr.
(
1979
)
Fatty acids of bacterial origin in contemporary marine sediments
Geochim. Cosmochim. Acta
,
43
,
1715
1725
.

[7]

Smith
G.A.
Nichols
P.D.
White
D.C.
(
1986
)
Fatty acid composition and microbial activity of benthic marine sediment from McMurdo Sound, Antarctica
FEMS Microbiol. Ecol.
,
38
,
219
231
.

[8]

Boon
J.J.
Liefkens
W.
Rijpstra
W.I.C.
Baas
M.
De
Leeuw J.W.
(
1978
)
Fatty acids of Desulfovibrio desulfuricans as marker molecules in sedimentary environments
Krumbein
W.E.
, Ed) In
The aquatic environment, Vol. 1 Environmental biogeochemistry and geomicrobiology
, pp
355
372
Ann Arbor Science
, Michigan.

[9]

Parkes
R.J.
Taylor
J.
Jørck-Ramberg
D.
(
1984
)
Demonstration, using Desulfobacter sp., of two pools of acetate with different biological availabilities in marine pore water
Mar. Biol.
,
83
,
271
276
.

[10]

Gerhardt
P.
(
1981
)
Manual of methods for general bacteriology
Am. Soc. Microbiol.
,

[11]

Widdel
F.
Pfennig
N.
(
1984
)
Dissimilatory sulphate-or sulphur-reducing bacteria
(
Krieg
N.
, Ed) Vol.
1
, In
Bergey's Manual fo Systematic Bacteriology
Williams and Wilkins
, Baltimore, London.

[12]

Pfennig
N.
Widdel
F.
Trüper
H.G.
(
1981
)
The dissimilatory sulphate-reducing bacteria
In
The Prokaryotes
(
Starr
M.P.
Stolp
H.
Trüper
H.P.
Balows
A.
Schlegel
H.G.
, Eds) Vol.
1
, pp
926
940
Springer Verlag
, Berlin, New York.

[13]

Tabatabai
M.A.
(
1974
)
Determination of sulphate in water samples
Sulphur Inst. J.
,
10
,
11
13
.

[14]

Cline
C.
(
1969
)
Spectrometric determination of hydrogen sulphide in natural waters
Limnol. Oceanogr.
,
14
,
454
458
.

[15]

Harris
C.K.
Tigane
E.
Hanes
C.S.
(
1961
)
Quantitative chromatographic methods. Part 7. Isolation of amino acids from serum and other fluids
Can. J. Biochem. Physiol.
, Vol.
39
,

[16]

Postgate
J.R.
(
1979
)
The Sulphate-reducing Bacteria
Cambridge University Press
Cambridge.

[17]

Nichols
P.D.
Henson
J.M.
Guckert
J.B.
Nivens
D.E.
White
D.C.
(
1985
)
Fourier transform-infrared spectroscopic methods for microbial ecology: analysis of bacteria, and bacteria-polymer mixtures and biofilms
J. Microbiol. Methods
,
4
,
79
94
.

[18]

Mancuso
C.A.
Nichols
P.D.
White
D.C.
(
1986
)
A method for the separation and characterization of archaebacterial signature ether lipids
J. Lipid Res.
,
27
,
49
56
.

[19]

Dunkelblum
E.
Tan
S.H.
Silk
P.J.
(
1985
)
Double bond location in monounsaturated fatty acids by dimethyl disulphide derivatisation and mass spectrometry: Application to analysis of fatty acids in pheromone glands of four lepidoptera
J. Chem. Ecol.
,
11
,
265
277
.

[20]

White
D.C.
Davis
W.M.
Nickels
J.S.
King
J.D.
Bobbie
R.J.
(
1979
)
Determination of the sedimentary microbial biomass by extractable lipid phosphate
Oecologia
,
40
,
51
62
.

[21]

Stams
A.J.M.
Hansen
T.A.
(
1984
)
Fermentation of glutamate and other compounds by Acidaminobacter hydrogenoformans gen. nov., sp. nov. an obligate anaerobe isolated from black mud. Studies with pure cultures and mixed cultures with sulphate-reducing and methanogenic bacteria
Arch. Microbiol.
,
137
,
329
337
.

[22]

Marshall
K.C.
(
1976
)
Interfaces in Microbial Ecology
Harvard University Press
Cambridge, Massachusetts, London.

[23]

Akamatsu
Y.
Law
J.H.
(
1970
)
Enzymatic alkylation of phospholipid fatty acid chains by extracts of Mycobacterium phlei
J. Biol. Chem.
,
245
,
701
708
.

[24]

Law
J.H.
(
1971
)
Biosynthesis of cyclopropane rings
Acc. Chem. Res.
,
4
,
199
203
.

This content is only available as a PDF.