Summary

Media of various compositions were employed to recover halophilic archaebacteria from a variety of naturally occurring thalassohaline environments, including saturated brines and stromatolithic algal mats. Maximum recovery rates were obtained on media containing natural brine and a whole cell extract of Halobacterium cutirubrum. These rates were up to 102-fold higher than rates obtained on media prepared with either component alone and up to 107-fold higher than rates obtained on conventional media. Enhanced recovery in the presence of natural brine and H. cutirubrum extract was due to those constituents allowing the bacteria present in situ to adapt to growth on laboratory media. However, several isolates demonstrated an absolute requirement for a factor present in both H. cutirubrum extract and natural brine.

References

[1]

Oren
A.
(
1983
)
Halobacterium sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement
Int. J. System. Bacteriol.
,
33
,
381
386
.

[2]

Soliman
G.S.H.
Trüper
H.G.
(
1982
)
Halobacterium pharaonis sp. nov., a new extremely haloalkiliphilic archaebacterium with low magnesium requirements
Zentralbl. Bakteriol. Mikrobiol. Hyg. I. Abt. Orig. C
,
3
,
318
329
.

[3]

Tindall
B.J.
Ross
H.N.M.
Grant
W.D.
(
1984
)
Natronobacterium gen. nov., genera of haloalkiliphilic archaebacteria
System. Appl. Microbiol.
,
5
,
41
57
.

[4]

Grant
W.D.
Tindall
B.J.
(
1986
)
The alkaline saline environment
In
Microbes on Extreme Enviroments
(
Herbert
R.A.
Codd
G.A.
, Eds) pp
25
54
Academic Press
, London.

[5]

Kushner
D.J.
(
1985
)
The Halobacteriaceae
In
The Bacteria Vol. 8: Archaebacteria
(
Woese
C.R.
Wolfe
R.S.
, Eds), pp
171
214
Academic Press
, London.

[6]

Rodriguez-Valera
F.
Ruiz-Berraquero
R.
Ramos-Cormenzana
A.
(
1980
)
Isolation of extremely halophilic bacteria able to grow on defined inorganic media with single carbon sources
J. Gen. Microbiol.
,
119
,
535
538
.

[7]

Rodriguez-Valera
F.
Juez
G.
Kushner
D.J.
(
1983
)
Halobacterium mediterranei spec. nov., a new carbohydrate-utilizing extreme halophile
Syst. Appl. Microbiol.
,
4
,
369
381
.

[8]

Javor
B.J.
(
1984
)
Growth potential of halophilic bacteria isolated from solar salt environments: carbon sources and salt requirement
Appl. Environ. Microbiol.
,
48
,
352
360
.

[9]

Brock
T.D.
(
1978
)
Ecology of saline lakes
Shilo
M.
, Ed) In
Strategies of Microbiol Life in Extreme Environments
pp
29
48
Verlag Chemie
, Weinhein.

[10]

Davis
J.S.
(
1978
)
Biological communities of a nutrient enriched salina
Aquat. Bot.
,
4
,
23
42
.

[11]

Wais
A.C.
(
1985
)
Cellular morphogenesis in a halophilic archaebacterium
Curr. Microbiol.
,
12
,
191
196
.

[12]

Golubic
S.
(
1980
)
Halophily and halotolerance in cyanophytes
Orig. Life
,
10
,
169
183
.

[13]

Wais
A.C.
(
1986
)
Archaebacteria: the road to the universal ancestor
BioEssays
,
5
,
76
78
.

[14]

Deming
J.W.
Barross
J.
(
1986
)
Solid medium for culturing black smoker bacteria at temperatures to 120°C
Appl. Environ. Microbiol.
,
51
,
238
243
.

[15]

Jannasch
H.W.
Jones
G.E.
(
1959
)
Bacterial populations in seawater as determined by different methods of enumeration
Linmol. Oceanogr.
,
4
,
129
139
.

[16]

In

The Bacteria, Vol. 8: Archaebacteria
((
1985
)
Woese
C.R.
Wolfe
R.S.
, Eds),
Academic Press
, London.

[17]

Wolfe
R.S.
(
1985
)
Unusual coenzymes of methanogenesis
Trends Biochem. Sci.
,
10
,
396
399
.

[18]

Taylor
C.D.
McBride
B.C.
Wolfe
R.S.
Bryant
M.P.
(
1974
)
Coenzyme M, essential for growth of a rumen strain of Methanobacterium ruminantium
J. Bacteriol.
,
120
,
974
975
.

[19]

Zillig
W.
Gierl
A.
Schreiber
G.
Wunderl
S.
Janekovic
D.
Stetter
K.O.
Lkenk
H.P.
(
1983
)
The archaebacterium Thermophilum pendens represents a novel genus of the thermophilic, anaerobic sulfur respiring Thermoproteales
Syst. Appl. Microbiol.
,
4
,
79
87
.

This content is only available as a PDF.