Summary

The microzination of phototrophic bacteria in a flat laminated microbiol mat at Great Sippewissett Salt Marsh on Cape Cod, Massachusetts, was studied using a combination of scanning and transmission electron microscopy, light microscopy and photosynthetic pigment analysis. Comparison of pigment content and ultrastructural information from electron microscopy of thin sections allowed us to determine the major groups of photosynthetic bacteria present. The approximately 1-cm-thick mat is located in sandy intertidal sediments of the marsh and comprised four to five distinctly colored layers. The uppermost brown layer contained Lyngbya, Nostoc, Phormidium (cyanobacteria) and Navicula (diatom) species. An intermediate bluish-green layer was dominated by Oscillatoria species. A central pink layer contained purple sulfur bacteria such as Amoebobacter, Thiocapsa, Chromatium and Thiocystis species, Below this was a distinctive orange layer, formed largely by one species of purple sulfur bacteria, Thiocapsa pfennigii. The lowermost and thinnest layer contained green sulfur bacteria of the genus Prosthecochloris, a very small prosthecate species with numerous knobby projections; this layer was not always present. Below this, where pigments were generally absent, were dark gray and black iron sulfide-rich sediments. Remnants of older decayed mats could be found deeper in the sediment. Extensive production of microbial extracellular polymers in all layers appeared to be responsible for attachment of cells to sand grains, for lamination of layers and for structural integrity of the mat as a whole. Below the layer of green sulfur bacteria, binding of sediment by microbial polymers ceased abruptly. Possibly in response to decreasing light penetration, the mean size of bacterial cells decreased in successively deeper layers. In the lowest layer where light penetration was very low, green sulfur bacteria with highly convoluted surfaces occurred. The increase in cell surface area-to-volume ratio may allow such organisms to survive at low light levels.

References

[1]

Awramik
S.M.
(
1984
)
Ancient stromatolites and microbial mats
In
Microbial Mats: Stromatolites
(
Cohen
Y.
Castenholz
R.W.
Halvorson
H.O.
, Eds) pp
1
22
Alan R. Liss, Inc
, New York.

[2]

Castenholz
R.K.
(
1984
)
Composition of hot spring microbial mats: a summary
In
Microbial Mats: Stromatolites
(
Cohen
Y.
Castenholz
R.W.
Halvorson
H.O.
, Eds) pp
101
120
Alan R. Liss, Inc
, New York.

[3]

Jannasch
H.W.
(
1984
)
Chemosynthetic microbial mats of deep-sea hydrothermal vents
In
Microbial Mats: Stromatolites
(
Cohen
Y.
Castenholz
R.W.
Halvorson
H.O.
, Eds) pp
121
132
Alan R. Liss, Inc
, New York.

[4]

Walter
M.R.
(
1983
) In
Earth's Earliest Biosphere: its Origin and Evolution
Archean stromatolites: evidence of the earth's earliest benthos
and
Schopf
J.W.
, Ed) pp
187
213
Princeton University Press
, Princeton, NJ Ch. 8.

[5]

Hoffmann
H.J.
Schopf
J.W.
(
1983
) In
Earth's Earliest Biosphere: its Origin and Evolution
Early Proterozoic microfossils
and
Schopf
J.W.
, Ed) pp
321
360
Princeton University Press
, Princeton, NJ Ch. 14.

[6]

Jørgensen
B.B.
Revsbech
N.P.
Cohen
Y.
(
1983
)
Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities
Limnol. Oceanogr.
,
28
,
1075
1093
.

[7]

Stal
L.J.
van Gemerden
H.
Krumbein
W.E.
(
1985
)
Structure and development of a benthic marine microbial mat
FEBS Microbiol. Ecol.
,
31
,
111
125
.

[8]

Stolz
J.F.
(
1984
)
Fine structure of the stratified microbial community at Laguna Figueroa, Baja California, Mexico: II. Transmission electron microscopy as a diagnostic tool in studying microbial communities
In
Microbial Mats: Stromatolites
(
Cohen
Y.
Castenholz
R.W.
Halvorson
H.O.
, Eds) pp
23
28
Alan R. Liss, Inc
, New York.

[9]

Jorgensen
B.B.
Revsbech
N.P.
Blackburn
T.H.
Cohen
Y.
(
1979
)
Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobacterial mat sediment
Appl. Environ. Microbiol.
,
38
,
46
58
.

[10]

Fenchel
T.
Straarup
B.J.
(
1971
)
Vertical distribution of photosynthetic pigments and the penetration of light in marine sediments
Oikos
,
22
,
172
182
.

[11]

Horodyski
R.J.
Bloesser
B.
von der Haar
S.J.
(
1977
)
Laminated algal mats from a coastal lagoon, Laguna Mormona, Baja California, Mexico
J. Sed. Petrol.
,
47
,
1305
1320
.

[12]

Cohen
Y.
(
1984
)
The Solar Lake cyanobacterial mats: strategies of photosynthetic life under sulfide
In
Microbial Mats: Stromatolites
(
Cohen
Y.
Castenholz
R.W.
Halvorson
H.O.
, Eds) pp
133
148
Alan R. Liss, Inc
, New York.

[13]

Howarth
R.W.
Marino
R.
(
1984
)
Sulfate reduction in salt marshes, with some comparisons to sulfate reduction in microbial mats
In
Microbial Mats: Stromatolites
(
Cohen
Y.
Castenholz
R.W.
Halvorson
H.O.
, Eds) pp
245
263
Alan R. Liss, Inc
, New York.

[14]

Howarth
R.W.
Teal
J.M.
(
1979
)
Sulfate reduction in a New England salt marsh
Limnol. Oceanogr.
,
24
,
999
1013
.

[15]

Howarth
R.W.
Merkel
S.
(
1984
)
Pyrite formation and the measurement of sulfate reduction in salt marsh sediments
Limnol. Oceanogr.
,
29
,
598
608
.

[16]

Holt
S.C.
Beveridge
T.J.
(
1982
)
Electron microscopy: its development and application to microbiology
Can. J. Microbiol.
,
28
,
1
53
.

[17]

Shively
J.M.
(
1974
)
Inclusion bodies in prokaryotes
Annu. Rev. Microbiol.
,
28
,
167
187
.

[18]

Pierson
B.K.
Oesterle
A.
Murphy
G.
(
1987
)
Pigments, light penetration, and photosynthetic activity in the multi-layered microbial mats of Great Sippewissett Salt Marsh, Massachusetts
FEMS Microbiol. Ecol.
,
45
,
365
376
.

[19]

Gibson
J.
Leadbetter
E.R.
Jannasch
H.W.
(
1984
)
Great Sippewissett Marsh: a summary of projects carried out by students in the Microbial Ecology Course of the Marine Biological Laboratory, Woods Hole, during summers 1972–1981
In
Microbial Mats: Stromatolites
(
Cohen
Y.
Castenholz
R.W.
Halvorson
H.O.
, Eds) pp
95
100
Alan R. Liss, Inc
, New York.

[20]

Ryan
T.A.
Joiner
B.L.
Ryan
B.F.
(
1976
), In
MINITAB Student Handbook
Duxbury Press
, MA.

[21]

Reineck
H.-E.
Singh
I.B.
(
1975
)
Depositional Sedimentary Environments
Springer-Verlag
New York.

[22]

Pfennig
N.
Truper
H.G.
(
1981
)
Isolation of members of the Families Chromatiaceae and Chlorobiaceae
In
The Prokaryotes
(
Starr
M.P.
, pp
279
289
Springer-Verlag
, New York Ch. 16.

[23]

Truper
H.G.
Pfennig
N.
(
1981
)
Characterization and identification of the anoxygenic phototrophic bacteria
In
The Prokaryotes
(
Starr
M.P.
, pp
299
312
Springer-Verlag
, New York Ch. 18.

[24]

Walsby
A.R.
(
1981
)
Gas-vacuolate bacteria (apart from Cyanobacteria)
In
The Prokaryotes
(
Starr
M.P.
, pp
441
447
Springer-Verlag
, New York Ch. 28.

[25]

Castenholz
R.W.
Pierson
B.K.
(
1981
)
Isolation of members of the Family Chloroflexaceae
In
The Prokaryotes
(
Starr
M.P.
, pp
290
298
Springer-Verlag
, New York Ch. 17.

[26]

Pierson
B.K.
Castenholz
R.W.
(
1978
)
Photosynthetic apparatus and cell membranes of green bacteria
In
The Photosynthetic Bacteria
(
Clayton
R.K.
Sistrom
W.R.
, Eds) pp
179
197
Plenum Press
, New York.

[27]

Jørgensen
B.B.
Des Marais
D.
(
1986
)
Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats
FEMS Microbiol. Ecol.
,
38
,
179
186
.

This content is only available as a PDF.