Abstract

The growth of phototrophic sulfur bacteria in benthic systems is restricted to well-defined layers within the sedimentary oxygen, sulfide, pH and light gradients. In order to culture these microorganisms under more ecologically relevant conditions, we have developed a Benthic Gradient Chamber (BGC) in which phototrophic sulfur bacteria can be grown within experimentally imposed solute and light gradients. The new autoclavable device is composed of a reconstituted sand core sandwiched in between a lower anoxic sulfide-containing compartment and an upper oxic compartment. The core can be illuminated from above by a collimated light beam. An axenic biofilm of Thiocapsa roseopersicina strain EP 2204 developed from a tiny inoculum within the sand core, using a 5-week incubation period and a 16:8 h light/dark illumination regime. The metabolic activities in this biofilm were inferred from the analyses of oxygen, sulfide and pH profiles, and their shifts during light-dark cycles.

References

[1]

Pfennig
N.
(
1989
)
Ecology of phototrophic purple and green sulfur bacteria
In:
Autotrophic Bacteria
Schlegel
H.G.
Bowien
B.
, Eds) pp
97
116
Science Tech Publishers
,
Madison, Wisconsin
.

[2]

Stal
L.J.
van Gemerden
H.
Krumbein
W.E.
(
1985
)
Structure and development of a benthic marine microbial mat
FEMS Microbiol. Ecol.
,
31
,
111
125
.

[3]

van Gemerden
H.
de Wit
R.
Tughan
C.S.
Herbert
R.A.
(
1989
)
Development of mass blooms of Thiocapsa roseopersicina on sheltered beaches on the Orkney Islands
FEMS Microbiol. Ecol.
,
62
,
111
118
.

[4]

van Gemerden
H.
Tughan
C.S.
de Wit
R.
Herbert
R.A.
(
1989
)
Laminated microbial ecosystems on sheltered beaches in Scapa flow, Orkney Islands
FEMS Microbiol. Ecol.
,
62
,
87
102
.

[5]

Beijerinck
M.W.
(
1889
)
L'auxanographie ou la méthode de l'hydrodiffusion dans la gélatine appliquée aux recherches microbiologiques
Arch. Neerlandaises des Sci. exactes et naturelles (Haarlem)
,
23
,
367
372
.

[6]

Wimpenny
J.W.T.
(
1981
)
Spatial order in microbial ecosystems
Biol. Rev.
,
56
,
295
342
.

[7]

Koch
A.L.
(
1990
)
Diffusion, the crucial process in many aspects of the biology of bacteria
Adv. Microb. Ecol.
,
11
,
37
70
.

[8]

Caldwell
D.E.
Hirsch
P.
(
1973
)
Growth of microorganisms in two-dimensional steady-state diffusion gradients
Can. J. Microbiol.
,
19
,
53
58
.

[9]

Caldwell
D.E.
Lai
S.H.
Tiedje
J.M.
(
1973
)
A two-dimensional steady state diffusion gradient for ecological studies
Bull. Ecol. Res. Comm. (Stockholm)
,
17
,
151
158
.

[10]

Wimpenny
J.W.T.
Coombs
J.P.
Lovitt
R.W.
Whittaker
S.G.
(
1981
)
A gel-stabilized model ecosystem for investigating microbial growth in spatially ordered solute gradients
J. Gen. Microbiol.
,
127
,
277
287
.

[11]

Wimpenny
J.W.T.
Waters
P.
(
1984
)
Growth of microorganisms in gel-stabilized two-dimensional diffusion gradient systems
J. Gen. Microbiol.
,
130
,
2921
2926
.

[12]

Nelson
D.C.
Jørgensen
B.B.
Revsbech
N.P.
(
1986
)
Growth pattern and yield of a chemoautotrophic Beggiatoa sp. in oxygen-sulfide microgradients
Appl. Environ. Microbiol.
,
52
,
225
233
.

[13]

Nelson
D.C.
Jørgensen
B.B.
Revsbech
N.P.
(
1986
)
Microoxic-anoxic niche of Beggiatoa sp.: microelectrode survey of marine and freshwater strains
Appl. Environ. Microbiol.
,
52
,
161
168
.

[14]

Wimpenny
J.W.T.
(
1988
)
Handbook of Laboratory Model Systems for Microbial Ecosystems
CRC Press
,
Boca Raton
.

[15]

Thomas
L.V.
Wimpenny
J.W.T.
(
1993
)
Method for investigation of competition between bacteria as a function of three environmental factors varied simultaneously
Appl. Environ. Microbiol.
,
59
,
1991
1997
.

[16]

Emerson
D.
Worden
R.W.
Breznak
J.A.
(
1994
)
A diffusion gradient chamber for studying microbial behavior and separating microorganisms
Appl. Environ. Microbiol.
,
60
,
1269
1278
.

[17]

Caldwell
D.E.
Caldwell
S.J.
Tiedje
J.M.
(
1975
)
An ecological study of the sulfur-oxidising bacteria from the littoral zone of a Michigan lake and sulfur spring in Florida
Plant Soil
,
43
,
101
114
.

[18]

Morgan
P.
Watkinson
R.J.
(
1989
)
The use of gel-stabilized model systems for the study of microbial processes in polluted sediments
J. Gen. Microbiol.
,
135
,
549
555
.

[19]

Langer
R.
Fefferman
M.
Gryska
P.
Bergman
K.
(
1980
)
A simple method for studying chemotaxis using sustained release of attractants from polymers
Can. J. Microbiol.
,
26
,
274
278
.

[20]

Wolfaardt
G.M.
Lawrence
J.R.
Hendry
M.J.
Robarts
R.D.
Caldwell
D.E.
(
1993
)
Development of steady-state diffusion gradients for the cultivation of degradative microbial consortia
Appl. Environ. Microbiol.
,
59
,
2388
2396
.

[21]

Pierson
B.K.
Oesterle
A.
Murphy
G.L.
(
1987
)
Pigments, light penetration and photosynthetic activity in the multi-layered microbial mats of great Sippewissett salt Marsh
FEMS Microbiol. Ecol.
,
45
,
365
376
.

[22]

van Gemerden
H.
(
1993
)
Microbial mats: a joint venture
Mar. Geol.
,
113
,
3
25
.

[23]

Hoffmann
C.
(
1942
)
Beiträge zur Vegetation des Farbstreifen-Sandwatt
Kieler Meeresforsch
,
4
,
85
108
.

[24]

Guyoneaud
R.
Matheron
R.
Baulaigue
R.
Podeur
K.
Hirschler
A.
Caumette
P.
(
1996
)
Anoxygenic phototrophic bacteria in eutrophic coastal lagoons of the French Mediterranean and Atlantic Coasts (Prévost Lagoon, Arcachon Bay, Certes Fishponds)
Hydrobiol.
, (in press).

[25]

de Wit
R.
van Gemerden
H.
(
1987
)
Chemolithotrophic growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina
FEMS Microbiol. Ecol.
,
45
,
117
126
.

[26]

Pfennig
N.
Trüper
H.G.
(
1992
)
The family Chromatiaceae
In:
The Prokaryotes
Balows
A.
Trüper
H.G.
Dworkin
M.
Harder
W.
Schleifer
K.H.
, Eds) 2nd Ed., pp
3200
3221
Springer Verlag
,
New York
.

[27]

Kühl
M.
Jørgensen
B.B.
(
1992
)
Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms
Appl. Environ. Microbiol.
,
58
,
1164
1174
.

[28]

Trüper
H.G.
Schlegel
H.G.
(
1964
)
Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii
Antonie van Leeuwenhoek
,
30
,
225
238
.

[29]

Stumm
W.
Morgan
J.J.
(
1981
)
Aquatic Chemistry. An introduction emphasizing chemical equilibria in natural waters
Wiley
,
New-York
.

[30]

Millero
F.J.
Plese
T.
Fernandez
M.
(
1988
)
The dissociation of hydrogen sulfide in seawater
Limnol. Oceanogr.
,
33
,
269
274
.

[31]

Meyer
B.
Ward
K.
Koshalp
K.
Peter
L.
(
1983
)
Second dissociation constant of hydrogen sulfide
Inorg. Chem.
,
22
,
2345
2346
.

[32]

Berner
R.J.
(
1980
)
Early Diagenesis: a Theoretical Approach
Princeton University Press
,
Princeton, New Jersey
.

[33]

Bouldin
D.
(
1968
)
Models describing the diffusion of oxygen and other mobile constituents across the mud-water interface
J. Ecol.
,
56
,
429
455
.

[34]

Revsbech
N.P.
Jørgensen
B.B.
(
1986
)
Micro-electrodes: their use in microbial ecology
Adv. Microb. Ecol.
,
9
,
293
352
.

[35]

Rasmussen
H.
Jørgensen
B.B.
(
1992
)
Microelectrode studies of seasonal oxygen uptake in a coastal sediment: role of molecular diffusion
Mar. Ecol. Prog. Ser. 81
,
289
303
.

[36]

de Wit
R.
Relexans
J-C.
Bouvier
T.
Moriarty
D.J.W.
(in press)
Microbial respiration and diffusive oxygen uptake of deep-sea sediments in Southern Ocean (ANTARES-1 cruise)
. Deep Sea Res.

[37]

Ullman
W.S.
Aller
R.C.
(
1982
)
Diffusion coefficients in nearshore marine sediments
Limnol. Oceanogr.
,
27
,
552
556
.

[38]

Broecker
W.S.
Peng
T.H.
(
1974
)
Gas exchange rates between air and see
Tellus
,
26
,
21
35
.

[39]

Nielsen
L.P.
Christensen
P.B.
Revsbech
N.P.
Sorensen
J.
(
1990
)
Denitrification and photosynthesis in a stream sediment studied with microsensor and whole-core techniques
Limnol. Oceanogr.
,
35
,
1135
1144
.

[40]

Revsbech
N.P.
Jørgensen
B.B.
(
1983
)
Photosynthesis of benthic microflora measured with high spatial resolution by the oxygen microprofile method: capabilities and limitations of the method
Limnol. Oceanogr.
,
28
,
749
756
.

[41]

Lassen
C.
Ploug
H.
Jørgensen
B.B.
(
1992
)
A fibreoptic scalar irradiance microsensor: application for spectral light measurements in sediments
FEMS Microbiol. Ecol.
,
86
,
247
254
.

[42]

Jørgensen
B.B.
Des Marais
D.J.
(
1986
)
Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats
FEMS. Microbial. Ecol.
,
38
,
179
186
.

[43]

Kühl
M.
Lassen
C.
Jørgensen
B.B.
(
1994
)
Light penetration and light intensity in sandy marine sediments measured with irradiance and scalar irradiance fiber-optic microprobes
Mar. Ecol. Prog. Ser. 105
,
139
148
.

[44]

Ingvorsen
K.
Jørgensen
B.B.
(
1982
)
Seasonal variation in H2S emission to the atmosphere from intertidal sediments in Denmark
Atmos. Environ.
,
16
,
855
865
.

[45]

Howarth
R.W.
Jørgensen
B.B.
(
1984
)
Formation of pyrite and elemental sulfur in coastal marine sediments (Limfjorden and Kysing Fjord, Denmark) during short-term 35S sulfate reduction measurements
Geochim. Cosmochim. Acta
,
48
,
1807
1818
.

[46]

de Wit
R.
van Gemerden
H.
(
1990
)
Growth and metabolism of the purple sulfur bacterium Thiocapsa roseopersicina under combined light/dark and oxic/anoxic regimens
Arch. Microbiol.
,
154
,
459
464
.

[47]

de Wit
R.
van Gemerden
H.
(
1990
)
Growth and metabolism of the purple sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimens in the light
FEMS Microbiol. Ecol.
,
73
,
69
76
.

[48]

Visscher
P.T.
Nijburg
J.W.
van Gemerden
H.
(
1990
)
Polysulfide utilization by Thiocapsa roseopersicina
Arch. Microbiol.
,
155
,
75
81
.

[49]

Millero
F.J.
(
1991
)
The oxidation of H2S in Framvaren Fjord
Limnol. Oceanogr.
,
36
,
1007
1014
.

[50]

Cohen-Bazire
G.
Sistrom
W.R.
Stanier
R.Y.
(
1957
)
Kinetics studies of pigment synthesis by non-sulfur purple bacteria
J. Cell. Comp. Physiol.
,
49
,
25
68
.

[51]

de Wit
R.
(
1989
)
Interactions between phototrophic bacteria in marine sediments
16th edition, In:
PhD thesis
University of Groningen
.

This content is only available as a PDF.