Abstract

The community structure of complex anaerobic microbial communities has been difficult to elucidate because of an inability to cultivate most of the contributing populations. In this study, the distribution of sulfate-reducing bacteria (SRB) in anaerobic sediments was determined using oligonucleotide probes complementary to the 16S ribosomal RNAs of major phylogenetic groups. Sediment cores were collected from Santa Rosa Sound in northwest Florida, and sectioned by depth into 1 to 2 cm fractions. Nucleic acids were extracted from each fraction and hybridized with the SRB-specific ribosomal RNA probes. SRB ribosomal RNAs accounted for almost 5% of the microbial community ribosomal RNA pool in the 3–4 cm depth fraction and were dominated by Desulfovibrionaceae ribosomal RNA. The SRB ribosomal RNA peak coincided with mercury methylation, an activity attributed to SRB. Profiles of the ribosomal RNAs indicate that SRB populations in sediments are stratified by depth.

References

[1]

Jørgensen
B.B.
(
1982
)
Mineralization of organic matter in the sea bed — the role of sulphate reduction
Nature
,
296
,
643
645
.

[2]

Abram
J.W.
Nedwell
D.B.
(
1978
)
Inhibition of methanogenesis by sulfate-reducing bacteria competing for transferred hydrogen
Arch. Microbiol.
,
117
,
89
92
.

[3]

Winfrey
M.R.
Zeikus
J.G.
(
1977
)
Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments
Appl. Environ. Microbiol.
,
33
,
275
281
.

[4]

Winfrey
M.R.
Ward
D.M.
(
1983
)
Substrates for sulfate reduction and methane production in intertidal sediments
Appl. Environ. Microbiol.
,
45
,
193
199
.

[5]

Bak
F.
Pfennig
N.
(
1991
)
Sulfate-reducing bacteria in littoral sediment of Lake Constance
FEMS Microbiol. Ecol.
,
85
,
43
52
.

[6]

Smith
R.L.
Klug
M.L.
(
1981
)
Reduction of sulfur compounds in the sediments of a eutrophic lake basin
Appl. Environ. Microbiol.
,
41
,
1230
1237
.

[7]

Widdel
F.
(
1988
)
Microbiology and ecology of sulfate- and sulfur-reducing bacteria
In:
Biology of Anaerobic Microorganisms
Zehnder
A.J.B.
, Ed) pp
469
585
John Wiley and Sons
,
New York
.

[8]

Widdel
F.
Bak
F.
(
1992
)
Gram-negative mesophilic sulfate-reducing bacteria
In:
The Prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications
Balows
A.
Trüper
H.G.
Dworkin
M.
Harder
W.
Schleifer
K.-H.
, Eds) 2nd ed., pp
3352
3378
Springer-Verlag
,
New York
.

[9]

Bak
F.
Widdel
F.
(
1986
)
Anaerobic degradation of phenol and phenol derivatives by Desulfobacterium phenolicum sp. nov.
Arch. Microbiol.
,
146
,
177
180
.

[10]

Coleman
M.L.
Hedrick
D.B.
Lovely
D.R.
White
D.C.
Pye
K.
(
1993
)
Reduction of Fe(III) in sediments by sulphate-reducing bacteria
Nature
,
361
,
436
438
.

[11]

Seitz
H.J.
Cypionka
H.
(
1986
)
Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate and nitrite
Arch. Microbiol.
,
146
,
63
67
.

[12]

Dannenberg
S.
Kroder
M.
Dilling
W.
Cypionka
H.
(
1992
)
Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria
Arch. Microbiol.
,
158
,
93
99
.

[13]

Marschall
C.
Frenzel
P.
Cypionka
H.
(
1993
)
Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria
Arch. Microbiol.
,
159
,
168
173
.

[14]

Bak
F.
Pfennig
N.
(
1987
)
Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulphur compounds
Arch. Microbiol.
,
147
,
184
189
.

[15]

Bak
F.
Cypionka
H.
(
1987
)
A novel type of energy metabolism involving fermentation of inorganic sulphur compounds
Nature
,
326
,
891
892
.

[16]

Kramer
M.
Cypionka
H.
(
1989
)
Sulfate formation via ATP sulfurylase in thiosulfate- and sulfite-disproportionating bacteria
Arch. Microbiol.
,
151
,
232
237
.

[17]

Lovely
D.R.
Phillips
E.J.P.
(
1994
)
Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria
Appl. Environ. Microbiol.
,
60
,
2394
2399
.

[18]

Lovely
D.R.
Phillips
E.J.P.
(
1992
)
Reduction of uranium by Desulfovibrio desulfuricans
Appl. Environ. Microbiol.
,
58
,
850
856
.

[19]

Jørgensen
B.B.
Bak
F.
(
1991
)
Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark)
Appl. Environ. Microbiol.
,
57
,
847
856
.

[20]

Stahl
D.A.
Amann
R.
(
1991
)
Development and application of nucleic acid probes
In:
Nucleic Acid Techniques in Bacterial Systematics
Stackebrandt
E.
Goodfellow
M.
, Eds) pp
205
248
Wiley and Sons Ltd
,
Chichester
.

[21]

Stahl
D.A.
Flesher
B.
Mansfield
H.R.
Montgomery
L.
(
1988
)
Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology
Appl. Environ. Microbiol.
,
54
,
1079
1084
.

[22]

Amann
R.I.
Ludwig
W.
Schleifer
K.-H.
(
1995
)
Phylogenetic identification and in situ detection of individual microbial cells without cultivation
Microbiol. Rev.
,
59
,
143
169
.

[23]

Devereux
R.
Delaney
M.
Widdel
F.
Stahl
D.A.
(
1989
)
Natural relationships among sulfate-reducing eubacteria
J. Bacteriol.
,
171
,
6689
6695
.

[24]

Devereux
R.
He
S.-H.
Doyle
C.L.
Orkland
S.
Stahl
D.A.
LeGall
J.
Whitman
W.B.
(
1990
)
Diversity and origin of Desulfovibrio species: phylogenetic definition of a family
J. Bacteriol.
,
172
,
3609
3619
.

[25]

Fowler
V.J.
Widdel
F.
Pfennig
N.
Woese
C.R.
Stackebrandt
E.
(
1986
)
Phylogenetic relationships of sulfate- and sulfur-reducing eubacteria
System. Appl. Microbiol.
,
8
,
8
18
.

[26]

Devereux
R.
Kane
M.D.
Winfrey
J.
Stahl
D.A.
(
1992
)
Genus- and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria
System. Appl. Microbiol.
,
15
,
609
610
.

[27]

Devereux
R.
Stahl
D.A.
(
1993
)
Phylogeny of sulfate-reducing bacteria and a perspective for analyzing their natural communities
In:
Sulfate-Reducing Bacteria: Contemporary Perspectives
Odom
J.M.
Singleton
R.
Jr.
, pp
131
160
Springer-Verlag
,
New York
.

[28]

Compeau
G.C.
Bartha
R.
(
1985
)
Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment
Appl. Environ. Microbiol.
,
50
,
498
502
.

[29]

Furutani
A.
Rudd
J.W.M.
(
1980
)
Measurement of mercury methylation in lake waters and sediment samples
Appl. Environ. Microbiol.
,
40
,
770
776
.

[30]

Korthals
E.T.
Winfrey
M.R.
(
1987
)
Seasonal and spatial variations in mercury methylation and demethylation in an oligotrophic lake
Appl. Environ. Microbiol.
,
53
,
2397
2404
.

[31]

Hesslein
R.H.
(
1976
)
An in situ sampler for close interval pore water studies
Limnol. Oceanogr.
,
21
,
912
914
.

[32]

Tabatabai
M.A.
(
1974
)
Determination of sulfate in water samples
Sulphur Inst. J.
,
10
,
11
13
.

[33]

Cline
J.D.
(
1969
)
Spectrophotometric determination of hydrogen sulfide in natural waters
Limnol. Oceanogr.
,
14
,
454
458
.

[34]

Holben
W.E.
Jansson
J.K.
Chelm
B.K.
Tiedje
J.M.
(
1988
)
DNA probe method for detection of specific microorganisms in the soil bacterial community
Appl. Environ. Microbiol.
,
47
,
403
408
.

[35]

Lovely
D.R.
Giovannoni
S.J.
White
D.C.
Champine
J.E.
Phillips
E.J.P.
Gorby
Y.A.
Goodwin
S.
(
1993
)
Geobacter metallireducens gen. nov., sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals
Arch. Microbiol.
,
159
,
336
344
.

[36]

Giovannoni
S.J.
Britschgi
T.B.
Moyer
C.L.
Field
K.G.
(
1990
)
Genetic diversity in Sargasso Sea bacterioplankton
Nature
,
345
,
60
63
.

[37]

Risatti
J.B.
Capman
W.C.
Stahl
D.A.
(
1994
)
Community structure of a microbial mat: the phylogenetic dimension
2nd ed.,
91
, In:
Proc. Natl. Acad. Sci. USA
, pp
10173
10177
.

[38]

Invorsen
K.
Zehnder
A.J.B.
Jørgensen
B.B.
(
1984
)
Kinetics of sulfate and acetate uptake by Desulfobacter postgatei
Appl. Environ. Microbiol.
,
47
,
403
408
.

[39]

Poulsen
L.K.
Ballard
G.
Stahl
D.A.
(
1993
)
Use of 16S rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms
Appl. Environ. Microbiol.
,
59
,
1354
1360
.

[40]

Gilmour
C.C.
Henry
E.A.
Mitchell
R.
(
1992
)
Sulfate stimulation of mercury methylation in freshwater sediments
Environ. Sci. Technol.
,
26
,
2281
2287
.

[41]

Strodal
M.C.
Gill
G.A.
(
1995
)
Determination of mercury methylation rates using a 203-Hg radiotracer technique
Water Air Soil Pollut.
,
80
,
725
734
.

[42]

Gilmour
C.C.
Riedel
G.S.
(
1995
)
Measurement of Hg methylation in sediments using high specific-activity 203Hg and ambient incubation
Water Air Soil Pollut.
,
80
,
747
756
.

[43]

Parkes
R.J.
Gibson
G.R.
(
1989
)
Determination of the substrates for sulphate-reducing bacteria within marine and estuarine sediments with different rates of sulfate reduction
J. Gen. Microbiol.
,
135
,
175
187
.

[44]

Ramsing
N.B.
Kühl
M.
Jørgensen
B.B.
(
1993
)
Distribution of sulfate-reducing bacteria, O2, and H2S in photo-synthetic biofilms determined by oligonucleotide probes and microelectrodes
Appl. Environ. Microbiol.
,
59
,
3840
3849
.

[45]

Callister
S.M.
Winfrey
M.R.
(
1986
)
Microbial methylation of mercury in upper Wisconsin river sediments
Water, Air Soil Pollut.
,
29
,
453
465
.

[46]

Gilmour
C.C.
Henry
E.A.
(
1991
)
Mercury methylation in aquatic systems affected by acid deposition
Environ. Pollut.
,
71
,
131
169
.

[47]

Moriarty
D.J.W.
Hayward
A.C.
(
1982
)
Ultrastructure of bacteria and the proportion of Gram-negative bacteria in marine sediments
Microbial Ecol.
,
8
,
1
14
.

[48]

Postgate
J.R.
(
1984
)
The Sulphate-reducing Bacteria
2nd ed., pp
208
Cambridge University Press
,
Cambridge
.

[49]

DeWeerd
K.A.
Mandelco
L.
Tanner
R.S.
Woese
C.R.
Suflita
J.M.
(
1990
)
Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium
Arch. Microbiol.
,
154
,
23
30
.

[50]

Devereux
R.
Mundfrom
G.W.
(
1994
)
A phylogenetic tree of 16S rRNA sequences from sulfate-reducing bacteria in a sandy marine sediment
Appl. Environ. Microbiol.
,
60
,
3437
3439
.

[51]

Laanbroek
H.J.
Pfennig
N.
(
1981
)
Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and marine sediments
Arch. Microbiol.
,
128
,
330
335
.

[52]

Pace
N.R.
Stahl
D.A.
Lane
D.J.
Olsen
G.J.
(
1986
)
The use of rRNA sequences to characterize natural microbial populations
Adv. Microb. Ecol.
,
9
,
1
55
.

[53]

Maaloe
O.
Kjellgard
N.O.
(
1966
)
Control of Macro-molecular Synthesis
W.A. Benjamin, Inc
,
New York
.

[54]

Jørgensen
B.B.
(
1978
)
A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. I. Measurement with radiotracer techniques
Geomicrobiol. J.
,
1
,
11
28
.

[55]

Stetter
K.O.
(
1988
)
Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria
System. Appl. Microbiol.
,
10
,
172
173
.

[56]

Henry
E.A.
Devereux
R.
Maki
J.S.
Gilmour
C.C.
Woese
C.R.
Mandelco
L.
Schauder
R.
Remsen
C.C.
Mitchell
R.
(
1994
)
Characterization of a new thermophilic sulfate-reducing bacterium Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain
Arch. Microbiol.
,
161
,
62
69
.

[57]

Canfield
D.E.
Des Marais
D.J.
(
1991
)
Aerobic sulfate reduction in microbial mats
Science
,
251
,
1471
1473
.

[58]

Dilling
W.
Cypionka
H.
(
1990
)
Aerobic respiration in sulfate-reducing bacteria
FEMS Microbiol. Lett.
,
71
,
123
128
.

[59]

Fründ
C.
Cohen
Y.
(
1992
)
Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats
Appl. Environ. Microbiol.
,
58
,
70
77
.

This content is only available as a PDF.

Author notes

1

Department of Biology and Microbiology, University of Wisconsin-LaCrosse, LaCrosse, WI, USA.

2

Department of Civil Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.