Summary

In situ concentrations of hydrogen and other metabolites involved in H2-consuming and H2-producing reactions were measured in anoxic methanogenic lake sediments, sewage sludge and fetid liquid of cottonwood. The data were used to calculate the Gibbs free energies of the metabolic reactions under the conditions prevailing in situ. The thermodynamics of most of the reactions studied were exergonic with Gibbs free energies being more negative for H2-dependent sulfate reduction methanogenesis acetogenesis and for H2-producing lactate fermentation ethanol fermentation. Butyrate and propionate fermentation, on the other hand, were endergonic under in situ conditions. This observation is interpreted by suggesting that butyrate and propionate is degraded within microbial clusters which shield the fermentating bacteria from the outside H2 (and acetate) pool.

References

[1]

Zehnder
A.J.B.
(
1978
)
Ecology of methane formation
Mitchell
R.
, Ed) pp
349
376
John Wiley
, New York.

[2]

Zeikus
J.G.
(
1983
)
Metabolic communication between biodegradative populations in nature
In
Microbes in Their Natural Environments
(
Slater
J.H.
Whittenbury
J.W.
, Eds) pp
423
462
Cambridge University Press
, London.

[3]

Schink
B.
(
1987
)
Principles and limits of anaerobic degradation: environmental and technological aspects
Zehnder
A.J.B.
, Ed)
Wiley
, New York in press.

[4]

Speece
R.E.
(
1983
)
Anaerobic biotechnology for industrial wastewater treatment
Environ. Sci. Technol.
,
17
,
416A
427A
.

[5]

Harper
S.R.
Pohland
F.G.
(
1986
)
Recent developments in hydrogen measurement during anaerobic biological wastewater treatment
Biotechnol. Bioeng.
,
28
,
585
602
.

[6]

Conrad
R.
Aragno
M.
Seiler
W.
(
1983
)
Production and consumption of hydrogen in a eutrophic lake
Appl. Environ. Microbiol.
,
45
,
502
510
.

[7]

Conrad
R.
Phelps
T.J.
Zeikus
J.G.
(
1985
)
Gas metabolism evidence in support of juxtapositioning between hydrogen producing and methanogenic bacteria in sewage sludge and lake sediments
Appl. Environ. Microbiol.
,
50
,
595
601
.

[8]

Phelps
T.J.
Zeikus
J.G.
(
1984
)
Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake
Appl. Environ. Microbiol.
,
48
,
1088
1095
.

[9]

Phelps
T.J.
Zeikus
J.G.
(
1985
)
Effect of fall turnover on terminal carbon metabolism in Lake Mendota sediments
Appl. Environ. Microbiol.
,
50
,
1285
1291
.

[10]

Schink
B.
(
1985
)
Mechanisms and kinetics of succinate and propionate degradation in anoxic freshwater sediments and sewage sludge
J. Gen. Microbiol.
,
131
,
643
650
.

[11]

Zeikus
J.G.
Ward
J.C.
(
1974
)
Methane formation in living trees: a microbial origin
Science
,
184
,
1181
1183
.

[12]

Schink
B.
Ward
J.C.
Zeikus
J.G.
(
1981
)
Microbiology of wetwood: role of anaerobic bacterial populations in living trees
J. Gen. Microbiol.
,
123
,
313
322
.

[13]

Schink
B.
Ward
J.C.
(
1984
)
Microaerobic and anaerobic bacterial activities involved in formation of wetwood and discoloured wood
IAWA Bull. n.s.
,
5
,
105
109
.

[14]

Seiler
W.
(
1978
)
The influence of the biosphere on the atmospheric CO and H2 cycles
2nd ed. (
Krumbein
W.E.
, Ed) In
Environmental Biogeochemistry and Geomicrobiology, vol. 3: Methods, Metals and Assessment
, pp
773
810
Ann Arbor Science Publishers
, Ann Arbor, MI.

[15]

Seiler
W.
Giehl
H.
Roggendorf
P.
(
1980
)
Detection of carbon monoxide and hydrogen by conversion of mercury oxide to mercury vapor
Atmos. Technol.
,
12
,
40
45
.

[16]

Crozier
T.E.
Yamamoto
S.
(
1974
)
Solubility of hydrogen in water, seawater, and NaCl solutions
J. Chem. Eng. Data
,
19
,
242
244
.

[17]

Medard
L.
et al. (
1976
) 2nd ed., In
Gas Encyclopaedia
Elsevier
, Amsterdam.

[18]

Winfrey
M.R.
Zeikus
J.G.
(
1979
)
Microbial methanogenesis and acetate metabolism in a meromictic lake
Appl. Environ. Microbiol.
,
37
,
213
221
.

[19]

Stumm
W.
Morgan
J.J.
(
1981
)
Aquatic Chemistry. An Introduction Emphasizing Chemical Equilibria in Natural Waters
2nd ed.
John Wiley
New York.

[20]

Ingvorsen
K.
Zeikus
J.G.
Brock
T.D.
(
1981
)
Dynamics of bacterial sulfate reduction in a eutrophic lake
Appl. Environ. Microbiol.
,
42
,
1029
1036
.

[21]

Schink
B.
Phelps
T.J.
Eichler
B.
Zeikus
J.G.
(
1985
)
Comparison of ethanol degradation pathways in anoxic freshwater environments
J. Gen. Microbiol.
,
131
,
651
660
.

[22]

Thauer
R.K.
Jungermann
K.
Decker
K.
(
1977
)
Energy conservation in chemotrophic anaerobic bacteria
Bacteriol. Rev.
,
41
,
100
180
.

[23]

Boone
D.R.
(
1982
)
Terminal reactions in the anaerobic digestion of animal waste
Appl. Environ. Microbiol.
,
43
,
57
64
.

[24]

Mackie
R.I.
Bryant
M.P.
(
1981
)
Metabolic activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, and CO2 to methanogenesis in cattle waste at 40 and 60°C
Appl. Environ. Microbiol.
,
41
,
1363
1373
.

[25]

Lovley
D.R.
Klug
M.J.
(
1982
)
Intermidiary metabolism of organic matter in the sediments of a eutrophic lake
Appl. Environ. Microbiol.
,
43
,
552
560
.

[26]

Widdel
F.
Pfennig
N.
(
1982
)
Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids, 2. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov.
Arch. Microbiol.
,
131
,
360
365
.

[27]

Koch
M.
Dolfing
J.
Wuhrmann
K.
Zehnder
A.J.B.
(
1983
)
Pathways of propionate degradation by enriched methanogenic cultures
Appl. Environ. Microbiol.
,
45
,
1411
1414
.

[28]

Boone
D.R.
(
1984
)
Propionate exchange reactions in methanogenic ecosystems
Appl. Environ. Microbiol.
,
48
,
863
864
.

[29]

Boone
D.R.
Bryant
M.P.
(
1980
)
Propionate-degrading bacterium, Syntrophobacter wolini sp. nov. gen. nov., from methanogenic ecosystems
Appl. Environ. Microbiol.
,
40
,
626
632
.

[30]

Wofford
N.Q.
Beaty
P.S.
McInerney
M.J.
(
1986
)
Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism in Syntrophomonas wolfei
J. Bacteriol.
,
167
,
179
185
.

[31]

McInerney
M.J.
Bryant
M.P.
Pfennig
N.
(
1979
)
Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens
Arch. Microbiol.
,
122
,
129
135
.

[32]

Stieb
M.
Schink
B.
(
1985
)
Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a spore-forming, obligately syntrophic bacterium
Arch. Microbiol.
,
140
,
387
390
.

[33]

Conrad
R.
Lupton
F.S.
Zeikus
J.G.
(
1986
)
The ecophysiological basis for sulfate-dependent inhibition of methanogenesis and interspecies H2 competition in eutrophic lake sediments
Submitted for publication.

[34]

Van
Bruggen J.J.A.
Stumm
C.K.
Vogels
G.D.
(
1983
)
Symbiosis of methanogenic bacteria and sapropelic protozoa
Arch. Microbiol.
,
136
,
89
95
.

[35]

Schönheit
P.
Moll
J.
Thauer
R.K.
(
1980
)
Growth parameters (Ks, μmax, Ys) of Methanobacterium thermoautotrophicum
Arch. Microbiol.
,
127
,
59
65
.

[36]

Fardeau
M.L.
Belaich
J.P.
(
1986
)
Energetics of growth of Methanococcus thermolithotrophicus
Arch. Microbiol.
,
144
,
381
385
.

[37]

Braun
M.
Schoberth
S.
Gottschalk
G.
(
1979
)
Enumeration of bacteria forming acetate from hydrogen and carbon dioxide in anaerobic habitats
Arch. Microbiol.
,
120
,
201
204
.

[38]

Lovley
D.R.
Klug
M.J.
(
1983
)
Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of a eutrophic lake
Appl. Environ. Microbiol.
,
45
,
1310
1315
.

[39]

Conrad
R.
Goodwin
S.
Zeikus
J.G.
(
1986
)
Hydrogen metabolism in a mildly acidic (pH 6.2) lake sediment
Submitted for publication.

[40]

Winfrey
M.R.
Zeikus
J.G.
(
1977
)
Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments
Appl. Environ. Microbiol.
,
33
,
275
281
.

[41]

Abram
J.W.
Nedwell
D.B.
(
1978
)
Hydrogen as a substrate for methanogenesis and sulphate reduction in anaerobic saltmarsh sediments
Arch. Microbiol.
,
117
,
93
97
.

[42]

Lovley
D.R.
Dwyer
D.F.
Klug
M.J.
(
1982
)
Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments
Appl. Environ. Microbiol.
,
43
,
1373
1379
.

[43]

Isa
Z.
Grusenmeyer
S.
Verstraete
W.
(
1986
)
Sulfate reduction relative to methane production in high-rate anaerobic digestion: microbiological aspects
Appl. Environ. Microbiol.
,
51
,
580
587
.

This content is only available as a PDF.