Summary

A method for extraction of microbial populations from wood samples was worked out which gave good recovery of both aerobic and anaerobic microorganisms in agar shake dilution and plating enumerations. This method was applied to the quantification of microbial populations in three European white firs (Abies alba Mill.) which were afflicted with the European fir disease. Low numbers of aerobic microorganisms (102−104 colony- forming units (cfu) per g fresh tissue) were detected in sapwood irrespective of the degree of affliction. Anaerobic bacteria were usually 1–2 orders of magnitude less frequent. Wetwood of highly diseased firs contained significantly higher numbers of aerobic microorganisms (105−107), whereas the number of anaerobes was not enhanced significantly. Among the prevalent aerobic microorganisms in wetwood were Protaminobacter, Pseudomonas strains, and a yeast. In anaerobic counts from wetwood, Klebsiella and Vibrio strains predominated. The sapwood contained Bacillus, Beijerinckia, Staphylococcus, and Clostridium spp. High numbers of aerobic microorganisms were also detected in the roots and lower stem of a diseased vine plant (Vitis vinifera L.). The importance of microbial populations in wetwood formation and disease expression is discussed.

References

[1]

Hartley
C.
Davidson
R.W.
Crandall
B.S.
(
1961
)
Wetwood, bacteria and increased pH in trees, U.S. Dept. Agric. For. Service
For. Prod. Lab. Rep. 2215
,
35
.

[2]

Hillis
W.E.
(
1977
)
Secondary changes in wood
In
Phytochemistry 11
(
Loewus
F.A.
Runeckles
V.C.
, Eds) pp
247
309
Plenum Press
, New York.

[3]

Carter
J.C.
(
1945
)
Wetwood of elms
Natural History Survey Division, IL Bull.
,
23
,
407
448
.

[4]

Murdoch
C.W.
Biermann
C.J.
Campana
R.J.
(
1983
)
Pressure and composition of intrastem gases produced in wetwood of American elm
Plant Dis.
,
67
,
74
76
.

[5]

Zeikus
J.G.
Ward
J.C.
(
1974
)
Methane formation in living trees: a microbial origin
Science
,
184
,
1181
1183
.

[6]

Morani
V.
Arru
G.M.
(
1958
)
Accumulo di gas entro pioppi in vegetazione
Ric. Sci.
,
28
,
146
151
.

[7]

Scott
E.S.
(
1984
)
Populations of bacteria in poplar stems
Eur. J. For. Pathol.
,
14
,
103
112
.

[8]

Schink
B.
Ward
J.C.
(
1984
)
Microaerobic and anaerobic bacterial activities involved in formation of wetwood and discoloured wood
IAWA Bull.
,
5
,
105
109
.

[9]

Ward
J.C.
Zeikus
J.G.
(
1980
)
Bacteriological, chemical and physical properties of wetwood in living trees
2nd ed. (
Bauch
J.
, Ed) Vol.
131
, In
Natural Variations of Wood Properties Mitt. Bundesforschungsanstalt f. Forst- und Holzwirtschaft
, pp
133
166
Wiedebusch
, Hamburg.

[10]

Worrall
J.J.
Parmeter
J.R.
(
1982
)
Formation and properties of wetwood in white fir
Phytopathology
,
72
,
1209
1212
.

[11]

Ward
J.C.
Pong
W.Y.
(
1980
)
Wetwood in trees: a timber resource problem
2nd ed., In
USDA Forest Service Gen. Tech. Rep. PNW
, pp
56
112
Pacific Northwest Forest and Range Exp. Station
, Portland, OR.

[12]

Schmidt
O.
(
1985
)
Occurennce of microorganisms in the wood of Norway spruce trees polluted sites
Eur. J. For. Pathol.
,
15
,
2
10
.

[13]

Schmidt
O.
Kebernik
U.
(
1984
)
Characterization of microorganisms from spruce trees from polluted sites
Mater. Org.
,
19
,
81
93
.

[14]

Bauch
J.
Höll
W.
Endeward
R.
(
1975
)
Some aspects of wetwood formation in fir
Holzforschung
,
29
,
198
205
.

[15]

Bauch
J.
Klein
P.
Frühwald
A.
Brill
H.
(
1979
)
Alterations of wood characteristics in Abies alba Mill. due to ‘fir-dying’ and considerations concerning its origin
Eur. J. For. Pathol.
,
9
,
321
331
.

[16]

Brill
H.
Bock
E.
Bauch
J.
(
1981
)
Über die Bedeutung von Mikroorganismen im Holz von Abies alba Mill. für das Tannesterben
Forstwissensch. Centralbl.
,
100
,
195
206
.

[17]

Widdel
F.
Pfennig
N.
(
1981
)
Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids, I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen nov., sp. nov.
Arch. Microbiol.
,
129
,
395
400
.

[18]

Schink
B.
Pfennig
N.
(
1982
)
Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium
Arch. Microbiol.
,
133
,
195
201
.

[19]

Widdel
F.
Kohring
G.-W.
Mayer
F.
(
1983
)
Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids, III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov.
Arch. Microbiol.
,
134
,
286
294
.

[20]

Pfennig
N.
(
1978
)
Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae
Int. J. Syst. Bacteriol.
,
28
,
283
288
.

[21]

Magee
C.M.
Rodeheaver
G.
Edgerton
M.T.
Edlich
R.F.
(
1975
)
A more reliable Gram staining technic for diagnosis of surgical infections
Am. J. Surg.
,
130
,
341
346
.

[22]

Hugh
R.
Leifson
E.
(
1953
)
The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram-negative bacteria
J. Bacteriol.
,
66
,
24
26
.

[23]

Sato
K.
(
1978
)
Bacteriochlorophyll formation by facultative methylotrophs, Protaminobacter ruber and Pseudomonas AMI
FEBS Lett.
,
85
,
207
210
.

[24]

Schink
B.
Ward
J.C.
Zeikus
J.G.
(
1981
)
Microbiology of wetwood: role of anaerobic bacterial populations in living trees
J. Gen. Microbiol.
,
123
,
313
322
.

[25]

Cypionka
H.
Widdel
F.
Pfennig
N.
(
1985
)
Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients
FEMS Microbiol. Ecol.
,
31
,
39
45
.

[26]

Scheraga
M.
Meskill
M.
Litchfield
C.D.
(
1979
)
Analysis of methods for the quantitative recovery of bacteria sorbed onto marine sediments. In Methodology of Biomass Determinations and Microbial Activities in sediments
(
Litchfield
C.D.
Seyfried
P.L.
, Eds) 2nd ed. In
ASTM STP 673
, pp
21
39
Am. Soc. for Testing and Materials
, Washington, DC.

[27]

Banks
C.J.
Walker
J.
(
1977
)
Sonication of activated sludge flocs and the recovery of their bacteria on solid media
J. Gen. Microbiol.
,
98
,
369
377
.

[28]

Neger
F.W.
(
1908
)
Das Tannensterben in den sächsischen und anderen deutschen Mittelgebirgen
Thar. Forstl. Jahrb.
,
58
,
201
225
.

[29]

Fink
S.
Braun
H.J.
(
1978
)
Zur epidemischen Erkrankung der Weisstanne Abies alba Mill., I. Untersuchungen zur Symptomatik und Formulierung einer Virose-Hypothese
Allg. Forst-Jagdztg.
,
149
,
145
150
.

[30]

Schütt
P.
(
1981
)
Ursache und Ablauf des Tannensterbens — Versuche einer Zwischenbilanz
Forstwissensch. Centralbl.
,
100
,
286
287
.

[31]

Bauch
J.
(
1983
)
Biological alterations in the stem and root of fir and spruce due to pollution influence
In
Effects of Accumulation of Air Pollutants in Forest Ecosystems
(
Ulrich
B.
Pankrath
J.
, Eds) pp
377
386
D. Reidel
, Dordrecht.

[32]

Zech
W.
Popp
E.
(
1983
)
Magnesiummangel, einer der Gründe für das Fichten- und Tannensterben
NO-Bayern, Forstwissensch. Centralbl.
,
102
,
50
55
.

[33]

Kandler
O.
(
1983
)
Waldsterben: Emissions- oder Epidemiehypothese
Naturwiss. Rundsch.
,
36
,
488
490
.

[34]

Lichtenthaler
H.K.
(
1984
)
Luftschadstoffe als Auslöser des Baumsterbens
Naturwiss. Rundsch.
,
37
,
271
277
.

[35]

Schink
B.
Ward
J.C.
Zeikus
J.G.
(
1981
)
Microbiology of wetwood: Importance of pectin degradation and Clostridium species in living trees
Appl. Environ. Microbiol.
,
42
,
526
532
.

[36]

Warshaw
J.E.
Leschine
S.B.
Canale-Parola
E.
(
1985
)
Anaerobic cellulolytic bacteria from wetwood of living trees
Appl. Environ. Microbiol.
,
50
,
807
811
.

This content is only available as a PDF.