Abstract

Since its isolation from marine volcanic areas, Catenococcus thiocyclus has been known to be able to oxidize thiosulfate to tetrathionate, but the benefits gained from the reaction were unknown. The energy to be gained from such a reaction is so small (1 electron per mol of thiosulfate, compared with 8 electrons if the thiosulfate is oxidized to sulfate) that it seemed unlikely to be a useful metabolic reaction. However, continuous culture experiments have now revealed that C. thiocyclus is able to gain metabolically useful energy from this oxidation (biomass yields increased by approximately 20% after the addition of 7.75 mM thiosulfate to medium containing 20 mM acetate) by combining it with the chemical reduction of the tetrathionate by sulfide. The enzymes for thiosulfate oxidation appear to be constitutive. Moreover, with a suitable primary energy source (e.g. glucose), C. thiocyclus can reduce sulfur (S°) to sulfide and Fe3+ to Fe2+. A chemical reaction then generates FeS. Such reactions may have important implications for the sulfur cycle at oxic:anoxic interfaces in marine and freshwater systems.

References

[1]

Guitonneau
G.
Keiling
J.
(
1932
)
L'évolution et al solubilisation du soufre élémentaire dans la terre arable
Annal. Agron.
,
2
,
690
725
.

[2]

Kuenen
J.G.
(
1975
)
Colourless sulfur bacteria and their role in the sulfur cycle
Plant and Soil
,
43
,
49
76
.

[3]

Tuttle
J.H.
Jannasch
H.W.
(
1972
)
Occurrence and types of Thiobacillus-like bacteria in the sea
Limnol. Oceanog.
,
17
,
532
543
.

[4]

Tuttle
J.H.
Holmes
P.E.
Jannasch
H.W.
(
1974
)
Growth and stimulation of marine pseudomonads by thiosulphate
Arch. Microbiol.
,
99
,
1
14
.

[5]

Mason
J.
Kelly
D.P.
(
1988
)
Thiosulphate oxidation by obligately heterotrophic bacteria
Microb. Ecol.
,
15
,
123
134
.

[6]

Ruby
E.G.
Wirsen
C.O.
Jannasch
H.W.
(
1981
)
Chemolithotrophic sulfur-oxidizing bacteria from the Galapagos rift hydrothermal vents
Appl. Env. Microbiol.
,
42
,
317
324
.

[7]

Sorokin
D.Yu.
(
1992
)
Thiosulphate oxidation to tetrathionate by heterotrophic bacteria from aquatic habitats
Microbiologia
,
61
,
524
529
(English translation).

[8]

Sorokin
D.Yu.
(
1992
)
Catenococcus thiocyclus gen. nov. sp. nov.—a new facultatively anaerobic bacterium from a near-shore sulfidic hydrothermal area
J. Gen. Microbiol.
,
138
,
2287
2292
.

[9]

Pfennig
N.
Lippert
R.D.
(
1966
)
Uber das vitamin B12-Bedur fuis phototrophes schwefel bacterium
Arch. Microbiol.
,
55
,
245
256
.

[10]

Sörbo
B.
(
1957
)
A colorimetric determination of thiosulphate
Biochim. Biophys. Acta
,
23
,
412
416
.

[11]

Trüper
H.G.
Schlegel
H.G.
(
1964
)
Sulfur metabolism in Thiorhodaceae. 1, Quantitative measurements on growing cells of Chromatium okenii
Antonie van Leeuwenhoek
,
30
,
225
238
.

[12]

Cypionka
H.
Pfennig
N.
(
1986
)
Growth yield of Desulfotomaculum orientis with hydrogen in chemostat culture
Arch. Microbiol.
,
145
,
396
399
.

[13]

Goa
J.
(
1953
)
A microbiuret method for protein determination; determination of total protein from cerebrospinal fluid
J. Clin. Lab. Invest.
,
5
,
218
222
.

[14]

ASTU
(
1980
)
American Society for Testing Materials
,
31
,
373
383
.

[15]

Gommers
P.J.F.
Kuenen
J.G.
(
1988
)
Thiobacillus strain Q, a chemolithoheterotrophic sulphur-oxidizing bacterium
Arch. Microbiol.
,
150
,
117
125
.

[16]

Gommers
P.J.F.
van Schie
B.J.
van Dijken
J.P.
Kuenen
J.G.
(
1986
)
Biochemical limits to microbial growth yields, and analysis of mixed substrate utilization
Biotech. Bioeng.
,
32
,
86
94
.

[17]

Jannasch
H.W.
(
1984
)
Microbial processes at deep sea hydrothermal vents
In:
Hydrothermal Processes at Sea Floor Spreading Centers
Rona
P.A.
Bostrom
K.
Laubier
L.
Smith
K.L.
, Eds) pp
1023
1036
Plenum Press
,
New York
.

[18]

Jørgensen
B.B.
(
1989
)
Biogeochemistry of chemolithotrophic bacteria
In:
Autotrophic bacteria
Schlegel
H.G.
, Ed) pp
117
146
Springer Verlag, Scientific Technological Publications
,
Madison, Wisconsin
.

[19]

Lutber
G.W.
Giblin
A.
Varsolona
R.
(
1985
)
Polarographic analysis of sulphur species in marine opore waters
Limnol. Oceanog.
,
30
,
727
731
.

[20]

Beffa
T.
Berczy
M.
Aragno
M.
(
1991
)
Chemolithotrophic growth on elemental sulphur (S°) and respiratory oxidation of S° by Thiobacillus versutus and another sulphur-oxidizing bacterium
FEMS Microbiol. Lett.
,
84
,
285
290
.

[21]

Sorokin
D.Yu.
(
1991
)
Oxidation of reduced sulphur compounds by heterotrophic microorganisms
Izvest. Acad. Nauk, ser. biol.
,
20
,
558
570
(in Russian).

[22]

Burdige
D.J.
Nealson
K.H.
(
1986
)
Chemical and microbial studies of sulfide-mediated Mn reduction
Geomicrobiol. J.
,
4
,
361
387
.

This content is only available as a PDF.