Abstract

The effects of combinations of desiccation and exposure to O2 were studied in pure cultures of Methanosarcina barkeri strain Fusaro and in a new Methanosarcina strain and a new Methanobacterium strain which were both isolated from dry oxic paddy soil. Incubation of bacterial suspensions under air for 200 min resulted in a decreased potential to produce CH4, but not in a decreased viability. The inhibitory effect of O2 slightly increased with increased salt concentration. Desiccation of bacterial suspensions under N2 resulted in reduction of viability to 10% and of potential CH4 production to 0.6%. Desiccation of bacterial suspensions under air resulted in a larger decrease of both viability (0.5%) and potential CH4 production (0.03%). This decrease was smaller at rapid compared to slow desiccation. Survival and potential CH4 production were further inhibited when the suspension was dried in the presence of sand grains or glass beads coated with FeS or FeNH4PO4. However, survival and potential CH4 production increased dramatically in the presence of pyrite (FeS2) grains. Then, as much as 10% of the initial methanogenic population survived oxic desiccation. This relatively good resistance is in agreement with observations that methanogens in rice fields survive the periods when the paddy soil is dry and oxic.

References

1

Seiler
W.
(
1984
)
Contribution of biological processes to the global budget of CH4 in the atmosphere
In
Current Perspectives in Microbial Ecology
Klug
M.J.
Reddy
C.A.
, Eds) pp
468
477
American Society for Microbiology
,
Washington DC
.

2

Aselmann
I.
Crutzen
P.J.
(
1989
)
Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions
J. Atmos. Chem.
,
8
,
307
358
.

3

Matthews
E.
Fung
I.
Lerner
J.
(
1991
)
Methane emission from rice cultivation: geographic and seasonal distribution of cultivated areas and emissions
Global Biogeochem. Cycles
,
5
,
3
24
.

4

Yamane
I.
Sato
K.
(
1963
)
Decomposition of organic acids and gas formation in flooded soil
Soil Sci. Plant Nutr.
,
9
,
32
36
.

5

Ponamperuma
F.N.
(
1972
)
The chemistry of submerged soils
Adv. Agronomy
,
24
,
29
96
.

6

Patrick
W.H.
Jr.
Reddy
C.N.
(
1978
)
Chemical changes in rice soils
In
Soils and Rice
Institute, International Rice Research
, pp
361
379
IRRI
,
Los Banos, Philippines
.

7

Mayer
H.P.
Conrad
R.
(
1990
)
Factors influencing the population of methanogenic bacteria and the initiation of methane production upon flooding of paddy soil
FEMS Microbiol. Ecol.
,
73
,
103
112
.

8

Zhilina
T.N.
(
1972
)
Death of Methanosarcina in the air
Microbiologiya
,
41
,
1105
1106
.

9

Kiener
A.
Leisinger
T.
(
1983
)
Oxygen sensitivity of methanogenic bacteria
Syst. Appl. Microbiol.
,
4
,
305
312
.

10

Patel
G.B.
Roth
L.A.
Agnew
B.J.
(
1984
)
Death rates of obligate anaerobes exposed to oxygen and the effect of media prereduction on cell viability
Can. J. Microbiol.
,
30
,
228
235
.

11

Rajagopal
B.S.
Belay
N.
Daniels
L.
(
1988
)
Isolation and characterization of methanogenic bacteria from rice paddies
FEMS Microbiol. Ecol.
,
53
,
153
158
.

12

Conrad
R.
Bak
F.
Seitz
H.J.
Thebrath
B.
Mayer
H.P.
Schütz
H.
(
1989
)
Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment
FEMS Microbiol. Ecol.
,
62
,
285
294
.

13

Kandler
O.
Hippe
H.
(
1977
)
Lack of peptidoglycan in the cell walls of Methanosarcina barkeri
Arch. Microbiol.
,
113
,
57
60
.

14

Widdel
F.
Bak
F.
(
1992
)
Gram-negative mesophilic sulfate-reducing bacteria
2nd Edn. In
The Prokaryotes
Balows
H.
Trüper
H.G.
Dworkin
M.
Harder
W.
Schleifer
K.H.
, Eds) Vol.
4
, pp
3352
3378
Springer
,
New York
.

15

Hutten
T.J.
Bongaerts
H.C.M.
VanderDrift
C.
Vogels
G.D.
(
1980
)
Acetate, methanol and carbon dioxide as substrates for growth of Methanosarcina barkeri
Ant. Leeuwenhoek
,
46
,
601
610
.

16

Brock
T.D.
Madigan
M.T.
(
1988
)
Antibiotics
In
Biology of Microorganisms. Microbial Biotechnology
, pp
357
390
Prentice-Hall
,
New Jersey
.

17

Widdel
F.
Pfennig
N.
(
1984
)
Dissimilatory sulfate-or sulfur-reducing bacteria
2nd Edn. In
Bergey's Manual of Systematic Bacteriology
Krieg
N.R.
Holt
J.G.
, Eds) Vol.
1
, pp
663
679
Williams and Wilkins
,
Baltimore
.

18

Smith
P.K.
Krohn
R.I.
Hermanson
G.E.
Mallia
A.K.
Gartner
F.H.
Provenzano
M.D.
Fujimoto
E.K.
Goeke
N.M.
Olson
B.J.
Klenk
D.C.
(
1985
)
Measurement of protein using bicinchoninic acid
Anal. Biochem.
,
150
,
76
85
.

19

Blitz
H.
(
1971
) In
Übergangselemente, in Experimentelle Einführung in die anorganische Chemie
Klemm
W.
Fischer
W.
, Eds) pp
137
157
Walter de Gruyter
,
Berlin
.

20

Zehnder
A.J.B.
Wuhrmann
K.
(
1976
)
Titanium(III) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes
Science
,
194
,
1165
1166
.

21

Schönheit
P.
Moll
J.
Thauer
R.K.
(
1980
)
Growth parameters (Ks, μmax, Ys) of Methanobacterium thermoautotrophicum
Arch. Microbiol.
,
127
,
59
65
.

22

American Public Health Association
(
1969
)
Standard Methods for Examination of Water and Waste Water Including Bottom Sediments and Sludge
, pp
604
609
American Public Health Assoc
,
Washington DC
.

23

Kiener
A.
Orme-Johnson
W.H.
Walsh
C.T.
(
1988
)
Reversible conversion of coenzyme F420 to the 8-OH-AMP and 8-OH-GMP esters, F390-A and F390-G, on oxygen exposure and reestablishment of anaerobiosis in Methanobacterium thermoautotrophicum
Arch. Microbiol.
,
150
,
249
253
.

24

Kengen
S.W.M.
VondenHoff
H.W.
Keltjens
J.T.
VanderDrift
C.
Vogels
G.D.
(
1991
)
Hydrolysis and reduction of factor 390 by cell extracts of Methanobacterium thermoautotrophicum (strain delta H)
J. Bacteriol.
,
173
,
2283
2288
.

25

Kirby
T.W.
Lancaster
J.R.
Fridovich
I.
(
1981
)
Isolation and characterization of the iron-containing superoxide dismutase of Methanobacterium bryantii
Arch. Biochem. Biophys.
,
210
,
140
148
.

26

Stumm
W.
Morgan
J.J.
(
1981
)
Aquatic Chemistry. An Introduction Emphasizing Chemical Equilibria in Natural Waters
2nd Edn.
Wiley
New York
.

27

Oremland
R.S.
Marsh
L.
DesMarais
D.J.
(
1982
)
Methanogenesis in Big Soda Lake, Nevada: an alkaline, moderately hypersaline desert lake
Appl. Environ. Microbiol.
,
43
,
462
468
.

28

Szewzyk
U.
Schink
B.
(
1988
)
Surface colonization by and life cycle of Pelobacter acidigallici studied in a continuous-flow microchamber
J. Gen. Microbiol.
,
134
,
183
190
.

29

Halliwell
B.
Gutteridge
J.M.C.
(
1984
)
Oxygen toxicity, oxygen radicals, transition metals and disease
Biochem. J.
,
219
,
1
14
.

30

Joergensen
B.B.
(
1983
)
The microbial sulphur cycle
In
Microbial Geochemistry
Krumbein
W.E.
, Ed) pp
91
124
Blackwell
,
Oxford
.

31

Pitts
G.
Allam
A.I.
Hollis
J.P.
(
1972
)
Aqueous iron-sulfur systems in rice field soils of Louisiana
Plant and Soil
,
36
,
251
260
.

32

Canfield
D.E.
Raiswell
R.
(
1991
)
Pyrite formation and fossil preservation
In
Topics in Geobiology
Allison
P.A.
Briggs
D.E.G.
, Eds) pp
337
387
Plenum Press
,
New York
.

33

Grotenhuis
J.T.C.
Plugge
C.M.
Stams
A.J.M.
Zehnder
A.J.B.
(
1992
)
Hydrophobicities and electrophoretic mobilities of anaerobic bacterial isolates from methanogenic granular sludge
Appl. Environ. Microbiol.
,
58
,
1054
1056
.

34

Wächtershäuser
G.
(
1992
)
Groundworks for an evolutionary biochemistry: the iron-sulphur world
Prog. Biophys. molec. Biol.
,
58
,
85
201
.

This content is only available as a PDF.

Author notes

1

Present address: Institut für Molekularbiologie und Tumorforschung, Universität Marburg, Germany.

Deceased 27 December 1992.