Abstract

Cardiovascular disease remains the main cause of mortality in individuals with diabetes mellitus (DM) and also results in significant morbidity. Premature and more aggressive atherosclerotic disease, coupled with an enhanced thrombotic environment, contributes to the high vascular risk in individuals with DM. This prothrombotic milieu is due to increased platelet activity together with impaired fibrinolysis secondary to quantitative and qualitative changes in coagulation factors. However, management strategies to reduce thrombosis risk remain largely similar in individuals with and without DM. The current review covers the latest in the field of antithrombotic management in DM. The role of primary vascular prevention is discussed together with options for secondary prevention following an ischaemic event in different clinical scenarios including coronary, cerebrovascular, and peripheral artery diseases. Antiplatelet therapy combinations as well as combination of antiplatelet and anticoagulant agents are examined in both the acute phase and long term, including management of individuals with sinus rhythm and those with atrial fibrillation. The difficulties in tailoring therapy according to the variable atherothrombotic risk in different individuals are emphasized, in addition to the varying risk within an individual secondary to DM duration, presence of complications and predisposition to bleeding events. This review provides the reader with an up-to-date guide for antithrombotic management of individuals with DM and highlights gaps in knowledge that represent areas for future research, aiming to improve clinical outcome in this high-risk population.

Atherothrombosis in diabetes.

Atherothrombosis in diabetes.

Introduction

Despite advances in therapy, a diagnosis of diabetes mellitus (DM) is associated with increased morbidity and reduced lifespan, mainly due to vascular complications.1–3 Premature and more severe vascular disease, as well as a prothrombotic environment, represent key mechanisms for adverse vascular outcomes in this population.4 The prothrombotic milieu develops secondary to increased platelet reactivity coupled with hypofibrinolysis.5  ,  6

Current treatment strategies to improve vascular outcomes in individuals with DM are focused on revascularization of acute atherothrombotic occlusions, where possible, together with early introduction of antithrombotic therapies, usually by inhibiting platelet function. This continues long-term coupled with multifactorial therapy targeting hypertension, dyslipidaemia and dysglycaemia in order to limit the progression of vascular pathology.

In this review, we discuss the latest in antithrombotic therapies for the management of coronary artery disease (CAD), cerebrovascular disease, and peripheral artery disease (PAD) in DM, covering therapies for primary prevention, acute vascular occlusion and long-term secondary prevention. Special emphasis is placed on the benefits and risks of antithrombotic therapy combinations, with the overall aim of providing the reader with an up-to-date guide for antithrombotic management in DM. Search strategy is detailed in the Supplementary material online, S1.

The thrombotic environment in diabetes

Individuals with DM are prone to both arterial and venous thrombosis.7 DM is characterized by multiple pathological processes, including hyperglycaemia, chronic inflammation, oxidative stress, and associated metabolic conditions, that damage the endothelium and increase platelet reactivity, resulting in a prothrombotic environment. Endothelial dysfunction is a consistent finding in DM patients and contributes to the prothrombotic shift (Figure 1).4

Diabetes enhances the risk of thrombosis. Diabetes induces endothelial dysfunction with subsequent decline in the expression/release of molecules that can reduce platelet activation and associated thrombus formation. At a platelet level, there are several mechanisms by which diabetes could enhance platelet susceptibility to activation including: (i) a higher abundance of advanced glycation end-products (AGEs) which induces insulin resistance and alters membrane fluidity; (ii) an enhanced oxidative stress which leads to the formation of isoprostanes which in turn induce platelet activation by interacting with the thromboxane receptor (TP); (iii) a higher production of thromboxane (TXA2); and (iv) an increased expression of multiple platelet activation receptors and a higher reactivity to several platelet agonists. As for coagulation, diabetes is associated with a higher amount of tissue factor (TF), thrombin (factor II), and fibrinogen production, which, in concurrence with lower anticoagulant proteins [protein C-antithrombin III complex (PC/ATIII)], favours the formation of the fibrin mesh, which undergoes glycation and oxidative modifications, becoming more dense and resistant to fibrinolysis. Diabetes is also associated with a hypofibrinolytic state characterized by higher abundance of inhibitors of tissue plasminogen activator (tPA) such as plasminogen activator inhibitor-1 (PAI-1) and thrombin-activatable fibrinolysis inhibitor (TAFI), and increased incorporation of antifibrinolytic proteins into the clot [plasmin inhibitor (PI) and complement 3 (C3)] which collectively reduce the efficiency of fibrinolysis. AA: arachidonic acid; ADP: adenosine diphosphate; Cox: cyclooxygenase; GP: glycoprotein; IRc: insulin receptors; miR: microRNAs; NO: nitric oxide; PAR: protease-activated receptor; PGI2: prostacyclin; ROS: reactive oxygen species; TM: thrombomodulin; VLDL: very-low-density lipoprotein; vWF: von Willebrand factor.
Figure 1

Diabetes enhances the risk of thrombosis. Diabetes induces endothelial dysfunction with subsequent decline in the expression/release of molecules that can reduce platelet activation and associated thrombus formation. At a platelet level, there are several mechanisms by which diabetes could enhance platelet susceptibility to activation including: (i) a higher abundance of advanced glycation end-products (AGEs) which induces insulin resistance and alters membrane fluidity; (ii) an enhanced oxidative stress which leads to the formation of isoprostanes which in turn induce platelet activation by interacting with the thromboxane receptor (TP); (iii) a higher production of thromboxane (TXA2); and (iv) an increased expression of multiple platelet activation receptors and a higher reactivity to several platelet agonists. As for coagulation, diabetes is associated with a higher amount of tissue factor (TF), thrombin (factor II), and fibrinogen production, which, in concurrence with lower anticoagulant proteins [protein C-antithrombin III complex (PC/ATIII)], favours the formation of the fibrin mesh, which undergoes glycation and oxidative modifications, becoming more dense and resistant to fibrinolysis. Diabetes is also associated with a hypofibrinolytic state characterized by higher abundance of inhibitors of tissue plasminogen activator (tPA) such as plasminogen activator inhibitor-1 (PAI-1) and thrombin-activatable fibrinolysis inhibitor (TAFI), and increased incorporation of antifibrinolytic proteins into the clot [plasmin inhibitor (PI) and complement 3 (C3)] which collectively reduce the efficiency of fibrinolysis. AA: arachidonic acid; ADP: adenosine diphosphate; Cox: cyclooxygenase; GP: glycoprotein; IRc: insulin receptors; miR: microRNAs; NO: nitric oxide; PAR: protease-activated receptor; PGI2: prostacyclin; ROS: reactive oxygen species; TM: thrombomodulin; VLDL: very-low-density lipoprotein; vWF: von Willebrand factor.

An array of mechanisms operate in platelets to enhance their reactivity.8 Hyperglycaemia is associated with higher expression of platelet receptors, including glycoprotein (GP) Ibα, GPIIb/IIIa and P2Y12,9 reduced platelet membrane fluidity secondary to increased glycation, higher thromboxane (TX) A2 synthesis together with increased platelet activation markers.10–12 Diabetes-associated oxidative stress also increases production of F2-isoprostanes.13 TXA2 and F2-isoprostanes, in turn, activate the thromboxane receptors and amplify platelet activation (Figure 1).14 Platelet hyper-reactivity also results from diminished sensitivity to the inhibitory agents prostacyclin, nitric oxide, and insulin,15–17 and from changes in platelet content of miRNAs known to regulate platelet function (miR-223, miR-26b, miR-126, miR-140).18  ,  19 Moreover, the imbalance in intraplatelet magnesium and calcium homeostasis renders platelets more sensitive to epinephrine, adenosine diphosphate (ADP), and thrombin.20 DM is also characterized by accelerated platelet turnover, as evidenced by release of more reactive, reticulated platelets21  ,  22 that display a reduced response to antiplatelet agents.23 Finally, platelets from DM patients more easily externalize phosphatidylserine in the outer platelet membrane, thereby providing a better surface for the assembly of clotting factors and tissue factor activation.21  ,  22

Other associated metabolic conditions like obesity, dyslipidaemia, and systemic inflammation also contribute to thrombosis risk.6  ,  24 Circulating inflammatory molecules [tumour necrosis factor-α, interleukin (IL)-1 and IL-6, selectin, soluble CD40 ligand],17  ,  25 besides enhancing platelet reactivity, favour a hypercoagulable environment. Furthermore, bone marrow transplants that created chimeras of normal rats with bone marrow cells from diabetic rats resulted in a prothrombotic phenotype similar to the donor animals, indicating the imprinting effects of DM on haematopoietic cells.22

Several prothrombotic alterations in the coagulation-fibrinolytic system also occur in DM,26 including increased levels of tissue factor, prothrombin, factor VII and fibrinogen coupled with impaired anticoagulant and fibrinolytic activity (Figure 1).27 Diabetic thrombi display compact fibrin networks with densely-packed thin fibres that are resistant to fibrinolysis.6  ,  26 Furthermore, hyperglycaemia induces qualitative changes in plasminogen, hindering its fibrinolytic activity.28 Concomitantly, elevated levels of anti-fibrinolytic proteins (plasminogen activator inhibitor-1 and thrombin-activatable fibrinolysis inhibitor),29 along with increased incorporation of anti-fibrinolytic proteins (complement C3 and plasmin inhibitor) into the clot further compromise fibrinolysis.6 Despite this prothrombotic environment, DM patients have a paradoxical increased risk of bleeding, particularly following an acute coronary syndrome (ACS).30 However, data on stable patients are less clear: the dual antiplatelet therapy (DAPT) study (detailed below under ‘Secondary Prevention’) reported no increase in long-term moderate or severe bleeding events in those with DM, possibly related to excluding those with bleeding events in the first 12 months, while increased risk was documented in the REACH and CORONOR registries.31  ,  32 The exact mechanisms for the increase in both thrombosis and bleeding risk in some diabetes patients are not fully understood, although renal complications may have a role.33 Also, chronic activation of platelet and coagulation proteins may ‘exhaust’ the system in some DM patients, thus increasing bleeding risk.34

Antithrombotic targets

For decades, the two main antithrombotic targets have been platelet TXA2 production and platelet P2Y12 receptor activation.

Aspirin

Low-dose aspirin irreversibly inhibits platelet cyclooxygenase-1 enzyme, preventing the conversion of arachidonic acid into bioactive prostanoid TXA2.35 Given the short half-life of aspirin and increased platelet turnover in DM, a proportion of platelets may escape 24-h inhibition by once-daily aspirin, which can be re-established by twice-daily dosing.23  ,  36

P2Y12 receptor antagonists

ADP-stimulated effects on platelets are mediated primarily by Gi-coupled P2Y12 receptor activation, leading to persistent platelet aggregation, whereas P2Y1 is responsible for an initial weak, transient phase of platelet aggregation.37 There are two main classes of orally administered P2Y12 inhibitors: thienopyridines (ticlopidine, clopidogrel, and prasugrel) and non-thienopyridine agents (ticagrelor).38 Thienopyridines require conversion to an active metabolite that acts irreversibly. Ticlopidine is no longer marketed in many countries due to safety concerns.38 Ticagrelor is a direct-acting cyclopentyltriazolopyrimidine that requires no metabolism and binds reversibly to the P2Y12 receptor.38

Other antithrombotic approaches

Warfarin and other vitamin K antagonists (VKAs) require regular monitoring and this, together with high bleeding risk when combined with antiplatelet therapy, prevented widespread use.39 More modern approaches include modulation of thrombin activity either by blocking protease-activated receptor-1 on platelet membrane (vorapaxar)40 or by directly inhibiting protein function (dabigatran).41 Other non-VKA oral anticoagulants (NOAC) include inhibitors of activated factor Xa (apixaban, rivaroxaban, and edoxaban).41  Supplementary material online, Table S1 provides a summary of the main antithrombotic agents.

Antiplatelet therapy for primary prevention of ischaemic events

Primary prevention is defined as offering therapy to individuals without a history of a vascular ischaemic event. In the largest individual data meta-analysis of primary prevention trials (n = 95 000 individuals), aspirin use in DM was associated with a non-significant 12% relative risk reduction (RRR) of major adverse cardiac events (MACE), from 1.87% to 1.63% per year [hazard ratio (HR) 0.88 (0.67–1.15); Table 1].42 Although non-significant, this benefit was comparable to non-DM individuals, in whom aspirin reduced yearly MACE from 0.57% to 0.51% [HR 0.88 (0.82–0.94); P = 0.0001].42 Aspirin was associated with an increase in extracranial, mainly gastrointestinal, bleeding in both non-DM and DM populations (P = 0.20 for heterogeneity; Table 1).42 Following this meta-analysis, the Japanese Primary Prevention of Atherosclerosis With Aspirin for Diabetes (JPAD) (n = 2539)43 and prevention of progression of arterial disease and diabetes (POPADAD) (n = 1276)44 trials investigated aspirin in primary prevention but, being small and underpowered, failed to provide conclusive data. The recent ASCEND trial is the largest, longest and only adequately powered trial investigating primary prevention in DM, randomizing 15 480 DM patients without symptomatic cardiovascular disease to aspirin (100 mg daily) or placebo.45 Serious vascular events occurred in 8.5% of individuals on aspirin vs. 9.6% on placebo [RRR 12%, HR 0.88 (0.79–0.97); P = 0.01]. Major bleeding, according to the Bleeding Academic Research Consortium (BARC) 2, 3, and 5 categories,46 occurred in 4.1% and 3.2% in the aspirin and placebo arms, respectively, without significant differences in fatal or intracranial bleeding, although the absolute number of events was low (Table 1).45 Notably, >50% of major bleeding excess with aspirin was gastrointestinal. The number needed to treat (NNT)/number needed to harm (NNH) ratio was 0.8, favouring treatment. Importantly, BARC 2–5 bleeding criteria are less restrictive as compared to the Thrombolysis in Myocardial Infarction (TIMI) major criteria.47–49 Of note, there was no significant heterogeneity in the effect of aspirin according to the estimated vascular risk at baseline. A meta-analysis of 12 randomized controlled trials (RCTs) (34 227 individuals), including the ASCEND population, showed that aspirin reduces MACE by 11% compared with placebo [HR 0.89 (0.83–0.95)] (Table 1).50

Table 1

Primary prevention in diabetes

StudyPatientsPrimary efficacy endpointMedian follow-upPredicted vs. observed incidence and expected benefitAbsolute and relative benefitAbsolute and relative harmComments
ATT meta-analysis (2009)4295 000 patients from six primary prevention trials which included 4% of DM patients (n = 3818)Stroke, MI, and CV deathNANA

Overall population:

 

Aspirin: 0.51%

 

Control: 0.57%

 

HR 0.88 (0.82–0.94)

 

DM subgroup:

 

Aspirin: 1.63%

 

Control: 1.87%

 

HR 0.88 (0.67–1.15)

GI/extracranial bleed

 

Overall population:

 

Aspirin: 0.10%

 

Control: 0.07%

 

HR 1.54 (1.30–1.82)

 

DM subgroup:

 

Aspirin: 0.23%/year

 

Control: 0.21%/year

 

HR 1.10 (0.52–2.34)

NNT/NNH ratio: 0.83

 

No difference in fatal bleeding

JPAD (2008)432539 T2DM patients without a history of atherosclerotic diseaseSudden death; death from coronary, cerebrovascular, and aortic causes; non-fatal acute MI; UA; exertional angina; non-fatal ischaemic and haemorrhagic stroke; TIA; or non-fatal aortic and PVD4.4 years

Predicted: 5.2%/year

 

vs.

 

Observed: 1.7%/year

 

Expected benefit:

 

30% RRR

Aspirin: 5.4%

 

Placebo: 6.7%

 

HR 0.80 (0.58–1.10)

Any GI bleeding:

 

Aspirin: n = 12

 

Placebo: n = 4

Observed primary endpoint rate ∼1/3 of predicted.

 

Expected benefit likely unrealistic based on previous data (trial largely underpowered).

POPADAD (2008)441276 adults aged ≥40 years with T1DM or T2DM and ABI ≤0.99 (asymptomatic)Death from CAD or stroke, non-fatal MI or stroke, or amputation for critical limb ischaemia; and death from CAD or stroke6.7 years

Predicted: 28%/year

 

vs.

 

observed: 2.9%/year

 

Expected benefit:

 

25% RRR

Aspirin: 18.2%

 

Placebo: 18.3%

 

HR 0.98 (0.76–1.26)

Any GI bleeding:

 

Aspirin: 4.4%

 

Placebo: 4.9%

 

HR 0.90 (0.53–1.52)

Observed events were approx. 1/10 of predicted.

 

The expected benefit was likely unrealistic based on previous data (trial was largely underpowered).

ASCEND (2018)4515 480 Patients aged ≥40 years with DM and no evident CV diseaseNon-fatal MI, non-fatal stroke (excluding confirmed ICH), TIA, or death from any vascular cause (excluding confirmed ICH)7.4 years

Predicted: 1.2–1.3%/year

 

vs.

 

Observed: 1.3%/year

 

Expected benefit:

 

15% RRR

Aspirin: 8.5%

 

Placebo: 9.6%

 

HR 0.88 (0.79–0.97)

BARC 2, 3, and 5 bleeding:

 

Aspirin: 4.1%

 

Placebo 3.2%

 

HR 1.29 (1.09–1.52)

 

ICH:

 

Aspirin: 0.7%

 

Placebo: 0.6%

 

HR 1.22 (0.82–1.81)

 

Fatal bleeding:

 

Aspirin: 0.2%

 

Placebo: 0.2%

 

HR 1.18 (0.61–2.30)

Consistency between predicted and observed incidence event rate

 

NNT/NNH: 0.81

THEMIS (2019)47

19 220 patients with DM, ≥50 years, stable CAD with no previous MI or stroke

 

Randomized to ticagrelor or placebo on a background of aspirin therapy

Stroke, MI, and CV death3.3 years

Predicted benefit: 16% RRR

 

Predicted: 2.5%/year

 

vs.

 

Observed: 2.5%/year

Ticagrelor: 7.7%

 

Placebo: 8.5%

 

HR 0.90 (0.81–0.99)

TIMI major bleeding:

 

Ticagrelor: 2.2%

 

Placebo: 1.0%

 

HR 2.32 (1.82–2.94)

 

BARC 3–5 bleeding:

 

Ticagrelor: 3.7%

 

Placebo: 1.7%

 

HR 2.36 (1.96–2.84)

 

ICH:

 

Ticagrelor: 0.7%

 

Placebo: 0.5%

 

HR 1.71 (1.18–2.48)

High rate of ticagrelor discontinuation:

 

Placebo 25% vs. Ticagrelor: 35%

 

HR 1.50 (1.42–1.58)

 

Predicted benefit higher than observed.

 

NNT/NNH: 1.48 (TIMI-major defined bleeding)

Meta-analysis Seidu et al. (2019)50

34 227 participants with DM, individual patient data from 2306 participantsStroke, MI, and CV death5 yearsNA

Aspirin: 8.6%

 

Control: 9.6%

 

HR 0.89 (0.83–0.95)

Major bleeding:

 

Aspirin: 4%

 

Control: 3.5%

 

HR 1.30 (0.92–1.82)

StudyPatientsPrimary efficacy endpointMedian follow-upPredicted vs. observed incidence and expected benefitAbsolute and relative benefitAbsolute and relative harmComments
ATT meta-analysis (2009)4295 000 patients from six primary prevention trials which included 4% of DM patients (n = 3818)Stroke, MI, and CV deathNANA

Overall population:

 

Aspirin: 0.51%

 

Control: 0.57%

 

HR 0.88 (0.82–0.94)

 

DM subgroup:

 

Aspirin: 1.63%

 

Control: 1.87%

 

HR 0.88 (0.67–1.15)

GI/extracranial bleed

 

Overall population:

 

Aspirin: 0.10%

 

Control: 0.07%

 

HR 1.54 (1.30–1.82)

 

DM subgroup:

 

Aspirin: 0.23%/year

 

Control: 0.21%/year

 

HR 1.10 (0.52–2.34)

NNT/NNH ratio: 0.83

 

No difference in fatal bleeding

JPAD (2008)432539 T2DM patients without a history of atherosclerotic diseaseSudden death; death from coronary, cerebrovascular, and aortic causes; non-fatal acute MI; UA; exertional angina; non-fatal ischaemic and haemorrhagic stroke; TIA; or non-fatal aortic and PVD4.4 years

Predicted: 5.2%/year

 

vs.

 

Observed: 1.7%/year

 

Expected benefit:

 

30% RRR

Aspirin: 5.4%

 

Placebo: 6.7%

 

HR 0.80 (0.58–1.10)

Any GI bleeding:

 

Aspirin: n = 12

 

Placebo: n = 4

Observed primary endpoint rate ∼1/3 of predicted.

 

Expected benefit likely unrealistic based on previous data (trial largely underpowered).

POPADAD (2008)441276 adults aged ≥40 years with T1DM or T2DM and ABI ≤0.99 (asymptomatic)Death from CAD or stroke, non-fatal MI or stroke, or amputation for critical limb ischaemia; and death from CAD or stroke6.7 years

Predicted: 28%/year

 

vs.

 

observed: 2.9%/year

 

Expected benefit:

 

25% RRR

Aspirin: 18.2%

 

Placebo: 18.3%

 

HR 0.98 (0.76–1.26)

Any GI bleeding:

 

Aspirin: 4.4%

 

Placebo: 4.9%

 

HR 0.90 (0.53–1.52)

Observed events were approx. 1/10 of predicted.

 

The expected benefit was likely unrealistic based on previous data (trial was largely underpowered).

ASCEND (2018)4515 480 Patients aged ≥40 years with DM and no evident CV diseaseNon-fatal MI, non-fatal stroke (excluding confirmed ICH), TIA, or death from any vascular cause (excluding confirmed ICH)7.4 years

Predicted: 1.2–1.3%/year

 

vs.

 

Observed: 1.3%/year

 

Expected benefit:

 

15% RRR

Aspirin: 8.5%

 

Placebo: 9.6%

 

HR 0.88 (0.79–0.97)

BARC 2, 3, and 5 bleeding:

 

Aspirin: 4.1%

 

Placebo 3.2%

 

HR 1.29 (1.09–1.52)

 

ICH:

 

Aspirin: 0.7%

 

Placebo: 0.6%

 

HR 1.22 (0.82–1.81)

 

Fatal bleeding:

 

Aspirin: 0.2%

 

Placebo: 0.2%

 

HR 1.18 (0.61–2.30)

Consistency between predicted and observed incidence event rate

 

NNT/NNH: 0.81

THEMIS (2019)47

19 220 patients with DM, ≥50 years, stable CAD with no previous MI or stroke

 

Randomized to ticagrelor or placebo on a background of aspirin therapy

Stroke, MI, and CV death3.3 years

Predicted benefit: 16% RRR

 

Predicted: 2.5%/year

 

vs.

 

Observed: 2.5%/year

Ticagrelor: 7.7%

 

Placebo: 8.5%

 

HR 0.90 (0.81–0.99)

TIMI major bleeding:

 

Ticagrelor: 2.2%

 

Placebo: 1.0%

 

HR 2.32 (1.82–2.94)

 

BARC 3–5 bleeding:

 

Ticagrelor: 3.7%

 

Placebo: 1.7%

 

HR 2.36 (1.96–2.84)

 

ICH:

 

Ticagrelor: 0.7%

 

Placebo: 0.5%

 

HR 1.71 (1.18–2.48)

High rate of ticagrelor discontinuation:

 

Placebo 25% vs. Ticagrelor: 35%

 

HR 1.50 (1.42–1.58)

 

Predicted benefit higher than observed.

 

NNT/NNH: 1.48 (TIMI-major defined bleeding)

Meta-analysis Seidu et al. (2019)50

34 227 participants with DM, individual patient data from 2306 participantsStroke, MI, and CV death5 yearsNA

Aspirin: 8.6%

 

Control: 9.6%

 

HR 0.89 (0.83–0.95)

Major bleeding:

 

Aspirin: 4%

 

Control: 3.5%

 

HR 1.30 (0.92–1.82)

Summary of primary prevention studies.

Significant differences are reported in bold.

ABI, ankle-brachial index; BARC, Bleeding Academic Research Consortium; CAD, coronary artery disease; CV, cardiovascular; DM, diabetes mellitus; GI, gastrointestinal; HR, hazard ratio; ICH, intracranial haemorrhage; MI, myocardial infarction; NA, not applicable; NNH, number needed to harm; NNT, number needed to treat; PVD, peripheral vascular disease; RRR, relative risk reduction; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; TIA, transient ischaemic attack; TIMI, Thrombolysis in Myocardial Infarction; UA, unstable angina.

Table 1

Primary prevention in diabetes

StudyPatientsPrimary efficacy endpointMedian follow-upPredicted vs. observed incidence and expected benefitAbsolute and relative benefitAbsolute and relative harmComments
ATT meta-analysis (2009)4295 000 patients from six primary prevention trials which included 4% of DM patients (n = 3818)Stroke, MI, and CV deathNANA

Overall population:

 

Aspirin: 0.51%

 

Control: 0.57%

 

HR 0.88 (0.82–0.94)

 

DM subgroup:

 

Aspirin: 1.63%

 

Control: 1.87%

 

HR 0.88 (0.67–1.15)

GI/extracranial bleed

 

Overall population:

 

Aspirin: 0.10%

 

Control: 0.07%

 

HR 1.54 (1.30–1.82)

 

DM subgroup:

 

Aspirin: 0.23%/year

 

Control: 0.21%/year

 

HR 1.10 (0.52–2.34)

NNT/NNH ratio: 0.83

 

No difference in fatal bleeding

JPAD (2008)432539 T2DM patients without a history of atherosclerotic diseaseSudden death; death from coronary, cerebrovascular, and aortic causes; non-fatal acute MI; UA; exertional angina; non-fatal ischaemic and haemorrhagic stroke; TIA; or non-fatal aortic and PVD4.4 years

Predicted: 5.2%/year

 

vs.

 

Observed: 1.7%/year

 

Expected benefit:

 

30% RRR

Aspirin: 5.4%

 

Placebo: 6.7%

 

HR 0.80 (0.58–1.10)

Any GI bleeding:

 

Aspirin: n = 12

 

Placebo: n = 4

Observed primary endpoint rate ∼1/3 of predicted.

 

Expected benefit likely unrealistic based on previous data (trial largely underpowered).

POPADAD (2008)441276 adults aged ≥40 years with T1DM or T2DM and ABI ≤0.99 (asymptomatic)Death from CAD or stroke, non-fatal MI or stroke, or amputation for critical limb ischaemia; and death from CAD or stroke6.7 years

Predicted: 28%/year

 

vs.

 

observed: 2.9%/year

 

Expected benefit:

 

25% RRR

Aspirin: 18.2%

 

Placebo: 18.3%

 

HR 0.98 (0.76–1.26)

Any GI bleeding:

 

Aspirin: 4.4%

 

Placebo: 4.9%

 

HR 0.90 (0.53–1.52)

Observed events were approx. 1/10 of predicted.

 

The expected benefit was likely unrealistic based on previous data (trial was largely underpowered).

ASCEND (2018)4515 480 Patients aged ≥40 years with DM and no evident CV diseaseNon-fatal MI, non-fatal stroke (excluding confirmed ICH), TIA, or death from any vascular cause (excluding confirmed ICH)7.4 years

Predicted: 1.2–1.3%/year

 

vs.

 

Observed: 1.3%/year

 

Expected benefit:

 

15% RRR

Aspirin: 8.5%

 

Placebo: 9.6%

 

HR 0.88 (0.79–0.97)

BARC 2, 3, and 5 bleeding:

 

Aspirin: 4.1%

 

Placebo 3.2%

 

HR 1.29 (1.09–1.52)

 

ICH:

 

Aspirin: 0.7%

 

Placebo: 0.6%

 

HR 1.22 (0.82–1.81)

 

Fatal bleeding:

 

Aspirin: 0.2%

 

Placebo: 0.2%

 

HR 1.18 (0.61–2.30)

Consistency between predicted and observed incidence event rate

 

NNT/NNH: 0.81

THEMIS (2019)47

19 220 patients with DM, ≥50 years, stable CAD with no previous MI or stroke

 

Randomized to ticagrelor or placebo on a background of aspirin therapy

Stroke, MI, and CV death3.3 years

Predicted benefit: 16% RRR

 

Predicted: 2.5%/year

 

vs.

 

Observed: 2.5%/year

Ticagrelor: 7.7%

 

Placebo: 8.5%

 

HR 0.90 (0.81–0.99)

TIMI major bleeding:

 

Ticagrelor: 2.2%

 

Placebo: 1.0%

 

HR 2.32 (1.82–2.94)

 

BARC 3–5 bleeding:

 

Ticagrelor: 3.7%

 

Placebo: 1.7%

 

HR 2.36 (1.96–2.84)

 

ICH:

 

Ticagrelor: 0.7%

 

Placebo: 0.5%

 

HR 1.71 (1.18–2.48)

High rate of ticagrelor discontinuation:

 

Placebo 25% vs. Ticagrelor: 35%

 

HR 1.50 (1.42–1.58)

 

Predicted benefit higher than observed.

 

NNT/NNH: 1.48 (TIMI-major defined bleeding)

Meta-analysis Seidu et al. (2019)50

34 227 participants with DM, individual patient data from 2306 participantsStroke, MI, and CV death5 yearsNA

Aspirin: 8.6%

 

Control: 9.6%

 

HR 0.89 (0.83–0.95)

Major bleeding:

 

Aspirin: 4%

 

Control: 3.5%

 

HR 1.30 (0.92–1.82)

StudyPatientsPrimary efficacy endpointMedian follow-upPredicted vs. observed incidence and expected benefitAbsolute and relative benefitAbsolute and relative harmComments
ATT meta-analysis (2009)4295 000 patients from six primary prevention trials which included 4% of DM patients (n = 3818)Stroke, MI, and CV deathNANA

Overall population:

 

Aspirin: 0.51%

 

Control: 0.57%

 

HR 0.88 (0.82–0.94)

 

DM subgroup:

 

Aspirin: 1.63%

 

Control: 1.87%

 

HR 0.88 (0.67–1.15)

GI/extracranial bleed

 

Overall population:

 

Aspirin: 0.10%

 

Control: 0.07%

 

HR 1.54 (1.30–1.82)

 

DM subgroup:

 

Aspirin: 0.23%/year

 

Control: 0.21%/year

 

HR 1.10 (0.52–2.34)

NNT/NNH ratio: 0.83

 

No difference in fatal bleeding

JPAD (2008)432539 T2DM patients without a history of atherosclerotic diseaseSudden death; death from coronary, cerebrovascular, and aortic causes; non-fatal acute MI; UA; exertional angina; non-fatal ischaemic and haemorrhagic stroke; TIA; or non-fatal aortic and PVD4.4 years

Predicted: 5.2%/year

 

vs.

 

Observed: 1.7%/year

 

Expected benefit:

 

30% RRR

Aspirin: 5.4%

 

Placebo: 6.7%

 

HR 0.80 (0.58–1.10)

Any GI bleeding:

 

Aspirin: n = 12

 

Placebo: n = 4

Observed primary endpoint rate ∼1/3 of predicted.

 

Expected benefit likely unrealistic based on previous data (trial largely underpowered).

POPADAD (2008)441276 adults aged ≥40 years with T1DM or T2DM and ABI ≤0.99 (asymptomatic)Death from CAD or stroke, non-fatal MI or stroke, or amputation for critical limb ischaemia; and death from CAD or stroke6.7 years

Predicted: 28%/year

 

vs.

 

observed: 2.9%/year

 

Expected benefit:

 

25% RRR

Aspirin: 18.2%

 

Placebo: 18.3%

 

HR 0.98 (0.76–1.26)

Any GI bleeding:

 

Aspirin: 4.4%

 

Placebo: 4.9%

 

HR 0.90 (0.53–1.52)

Observed events were approx. 1/10 of predicted.

 

The expected benefit was likely unrealistic based on previous data (trial was largely underpowered).

ASCEND (2018)4515 480 Patients aged ≥40 years with DM and no evident CV diseaseNon-fatal MI, non-fatal stroke (excluding confirmed ICH), TIA, or death from any vascular cause (excluding confirmed ICH)7.4 years

Predicted: 1.2–1.3%/year

 

vs.

 

Observed: 1.3%/year

 

Expected benefit:

 

15% RRR

Aspirin: 8.5%

 

Placebo: 9.6%

 

HR 0.88 (0.79–0.97)

BARC 2, 3, and 5 bleeding:

 

Aspirin: 4.1%

 

Placebo 3.2%

 

HR 1.29 (1.09–1.52)

 

ICH:

 

Aspirin: 0.7%

 

Placebo: 0.6%

 

HR 1.22 (0.82–1.81)

 

Fatal bleeding:

 

Aspirin: 0.2%

 

Placebo: 0.2%

 

HR 1.18 (0.61–2.30)

Consistency between predicted and observed incidence event rate

 

NNT/NNH: 0.81

THEMIS (2019)47

19 220 patients with DM, ≥50 years, stable CAD with no previous MI or stroke

 

Randomized to ticagrelor or placebo on a background of aspirin therapy

Stroke, MI, and CV death3.3 years

Predicted benefit: 16% RRR

 

Predicted: 2.5%/year

 

vs.

 

Observed: 2.5%/year

Ticagrelor: 7.7%

 

Placebo: 8.5%

 

HR 0.90 (0.81–0.99)

TIMI major bleeding:

 

Ticagrelor: 2.2%

 

Placebo: 1.0%

 

HR 2.32 (1.82–2.94)

 

BARC 3–5 bleeding:

 

Ticagrelor: 3.7%

 

Placebo: 1.7%

 

HR 2.36 (1.96–2.84)

 

ICH:

 

Ticagrelor: 0.7%

 

Placebo: 0.5%

 

HR 1.71 (1.18–2.48)

High rate of ticagrelor discontinuation:

 

Placebo 25% vs. Ticagrelor: 35%

 

HR 1.50 (1.42–1.58)

 

Predicted benefit higher than observed.

 

NNT/NNH: 1.48 (TIMI-major defined bleeding)

Meta-analysis Seidu et al. (2019)50

34 227 participants with DM, individual patient data from 2306 participantsStroke, MI, and CV death5 yearsNA

Aspirin: 8.6%

 

Control: 9.6%

 

HR 0.89 (0.83–0.95)

Major bleeding:

 

Aspirin: 4%

 

Control: 3.5%

 

HR 1.30 (0.92–1.82)

Summary of primary prevention studies.

Significant differences are reported in bold.

ABI, ankle-brachial index; BARC, Bleeding Academic Research Consortium; CAD, coronary artery disease; CV, cardiovascular; DM, diabetes mellitus; GI, gastrointestinal; HR, hazard ratio; ICH, intracranial haemorrhage; MI, myocardial infarction; NA, not applicable; NNH, number needed to harm; NNT, number needed to treat; PVD, peripheral vascular disease; RRR, relative risk reduction; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; TIA, transient ischaemic attack; TIMI, Thrombolysis in Myocardial Infarction; UA, unstable angina.

The THEMIS study tested intensification of antiplatelet regimen in 19 220 DM patients without previous myocardial infarction (MI) or stroke but with evidence of clinical CAD and already on low-dose aspirin therapy (Table 1).47 Individuals randomized to aspirin and ticagrelor had a modest reduction in vascular events compared with aspirin alone [7.7% and 8.5%, respectively, HR 0.90 (0.81–0.99); P = 0.04], associated with a 2.3-fold increase in TIMI major bleeding and a 1.7-fold increase in intracranial bleeding (Table 1), giving an unfavourable NNT/NNH ratio of 1.48 and arguing against routine DAPT with aspirin and ticagrelor in this population.

The recent European Society of Cardiology (ESC) guidelines indicate that those with DM and ≥1 organ damage or ≥3 major risk factors, or any risk factor and ≥10 years disease duration without organ damage, should be considered for primary prevention, in the absence of contraindications (Supplementary material online, Table S2) but routine use of aspirin for all DM individuals is not recommended.51 Overall, guidelines recommend aspirin monotherapy for DM patients with additional risk factor(s) and/or with an estimated annual risk of vascular events ≥1% (Supplementary material online, Table S2).52–54

Secondary prevention in the absence of atrial tachyarrhythmias

Following acute coronary events

ACS guidelines recommend DAPT comprising aspirin and prasugrel or ticagrelor, which applies to DM individuals.3  ,  51  ,  55  ,  56 Patients with DM, however, exhibit enhanced platelet reactivity and reduced sensitivity to thienopyridines (but not ticagrelor),57  ,  58 although the clinical significance of these biochemical observations remains unclear.

Aspirin

Guidelines recommend routine early administration of aspirin in ACS, which seems to offer similar benefits in individuals with and without DM. Based on pharmacodynamic studies in DM,23  ,  59  ,  60 the clinical benefit of twice-daily aspirin administration is being evaluated in the ANDAMAN trial (NCT02520921). Higher aspirin doses (300–325 mg vs. 75–100 mg) failed to reduce MACE 30 days post-ACS in the CURRENT-OASIS 7 study (23% had DM).61 The ongoing ADAPTABLE study is assessing alternative aspirin dosing, although this is not limited to the DM population.62 Moreover, ongoing studies are aiming to identify new low-dose aspirin formulations with potentially improved safety and efficacy profiles.63  ,  64

P2Y12 inhibitors

In individuals with DM, prasugrel or ticagrelor combination with aspirin is preferred to clopidogrel, which shows reduced efficacy.30  ,  56  ,  65–67  Post hoc analysis of the DM population in the TRITON-TIMI 38 trial showed marked benefit of prasugrel over clopidogrel,66 while, in PLATO, the absolute benefit of ticagrelor over clopidogrel was greatest in patients with both DM and chronic kidney disease (CKD).68 In patients with ACS and insulin-requiring DM, ticagrelor may achieve more potent platelet inhibition than prasugrel,57 although the clinical significance is unclear. The recent ISAR-REACT 5 study, an open-label trial, demonstrated superiority of a prasugrel-based strategy over a ticagrelor-based strategy in reducing MACE in ACS patients.69 However, this was not the case in the DM subgroup: the composite primary endpoint (death, stroke, or MI) occurred in 11.2% and 13.0% in ticagrelor and prasugrel arms, respectively [HR 0.84 (0.58–1.24); P = 0.383] with treatment interaction shown for DM status (P = 0.0035).70 Bleeding complications were similar in ticagrelor- and prasugrel-treated DM individuals.

A difficulty with more potent oral P2Y12 inhibitors is the limited evidence in the older population who are at higher bleeding risk. Two smaller studies in ACS patients aged ≥70 years, of whom a third had DM, indicated that de-escalation from prasugrel or ticagrelor to clopidogrel may be safe.71 Moreover, platelet-function-guided de-escalation from prasugrel to clopidogrel at hospital discharge may be non-inferior to continued prasugrel but this strategy appears safer in those without DM.72 The TWILIGHT study (n = 7119) assessed safety of de-escalating DAPT, from ticagrelor plus aspirin to ticagrelor monotherapy, after 3 months of DAPT following high-risk percutaneous coronary intervention (PCI) for ACS or chronic coronary syndromes (CCS).73 Monotherapy reduced the primary endpoint of BARC type 2, 3, or 5 bleeding compared with DAPT at 12 months [4.0% vs. 7.1%, HR 0.56 (0.45–0.68); P < 0.001], similarly in those with and without DM, without increasing the secondary combined endpoint of death, MI, or stroke. More specifically, ticagrelor monotherapy in the DM subgroup did not increase ischaemic events compared with DAPT [4.6% vs. 5.9%; HR 0.77 (0.55–1.09); P = 0.14] but significantly decreased bleeding complications [4.5% vs. 6.7%; HR 0.65 (0.47–0.91); P = 0.012].74 The GLOBAL LEADERS trial randomized individuals undergoing PCI with drug-eluting stents for CCS or ACS to standard care (DAPT for 12 months followed by aspirin alone) or ticagrelor with aspirin for 1 month followed by ticagrelor monotherapy for 23 months. The study failed to show superiority for the intervention, although a trend towards a reduction in the primary composite endpoint of death or new Q-wave infarction was apparent [HR 0.87 (0.75–1.01); P = 0.073]. Risk of bleeding was almost identical in the two groups, regardless of DM status.75  ,  76 The more recent analysis of the subgroup of DM individuals and CKD (higher risk of thrombosis and bleeding) showed no significant reduction in the primary endpoint with the intervention, although lower rates of the patient-oriented composite endpoint (POCE; death, stroke, site-reported MI/revascularization) were observed in the ticagrelor group compared with controls [20.6% vs. 25.9%, HR 0.74 (0.55–0.99)] with similar reduction in net adverse clinical events (POCE plus BARC 3 and 5 bleeding events) [22.7% vs. 28.3%, HR 0.75 (0.56–0.99)].77 Moreover, a recent meta-analysis has shown that, following PCI, monotherapy with a P2Y12 inhibitor is preferable to DAPT in older individuals and those with diabetes, CKD or multivessel disease due to reduction in bleeding risk.78 Therefore, de-escalation of DAPT may be an option in some patients, particularly when using potent P2Y12 inhibitors as monotherapy.79 However, de-escalation is perhaps best avoided in the DM population, given the high vascular risk, unless there are major concerns over bleeding risk and this remains an area for future research.

Glycoprotein IIb/IIIa inhibitors

GP inhibitor (GPI) use in ACS significantly reduced 30-day mortality, particularly in DM patients undergoing PCI, but this benefit was observed before routine P2Y12 inhibitor use.80 Abciximab reduced MACE in ACS patients undergoing PCI, even with clopidogrel pre-treatment, but the benefit in DM patients was less pronounced (abciximab has now been withdrawn in Europe).81 In contemporary practice using potent P2Y12 inhibitors, GPI therapy is mainly reserved for ‘bail-out’ in case of no-reflow or a thrombotic complication during PCI,82 although some benefit has been suggested also in opiate-treated patients undergoing emergency PCI.83

Very-low-dose non-VKA oral anticoagulant

In the ATLAS ACS 2-TIMI 51 trial, the addition of very-low-dose rivaroxaban (2.5 mg twice daily) to DAPT (in the form of aspirin and clopidogrel) in ACS patients, of whom 32% had DM, significantly reduced MACE compared to placebo but the DM group appeared to derive less benefit.84 An increase in bleeding events, including intracranial, was documented and therefore this triple therapy (TT) can only be advocated for individuals at very high vascular risk with relatively low bleeding risk, accepting the challenge that ischaemic and bleeding risk factors overlap substantially.55 A summary of the agents used following ACS is given in Figure 2.

Summary of antiplatelet and anticoagulant therapies in individuals with diabetes and vascular disease. ACS: acute coronary syndrome; AF: atrial fibrillation; CAD: coronary artery disease; CVD: cerebrovascular disease; DAPT: dual antiplatelet therapy; NOAC: non-vitamin K antagonist oral anticoagulants; PAD: peripheral artery disease; SR: sinus rhythm. aDiabetes mellitus individuals with ≥1 organ damage or ≥3 major risk factors, or any risk factor and ≥10-year disease duration without organ damage. bActive bleeding or comorbidities with high bleeding risk. cHistory of intracerebral haemorrhage or ischaemic stroke, history of other intracranial pathology, recent gastrointestinal bleeding or anaemia due to possible gastrointestinal blood loss, other gastrointestinal pathology associated with increased bleeding risk, liver failure, bleeding diathesis or coagulopathy, extreme old age or frailty, or renal failure requiring dialysis or with estimated glomerular filtration rate <15 mL/min/1.73 m2. dDiffuse multivessel CAD with at least one of the following: diabetes mellitus requiring medication, recurrent myocardial infarction, PAD, or chronic kidney disease with estimated glomerular filtration rate 15–59 mL/min/1.73 m2.
Figure 2

Summary of antiplatelet and anticoagulant therapies in individuals with diabetes and vascular disease. ACS: acute coronary syndrome; AF: atrial fibrillation; CAD: coronary artery disease; CVD: cerebrovascular disease; DAPT: dual antiplatelet therapy; NOAC: non-vitamin K antagonist oral anticoagulants; PAD: peripheral artery disease; SR: sinus rhythm. aDiabetes mellitus individuals with ≥1 organ damage or ≥3 major risk factors, or any risk factor and ≥10-year disease duration without organ damage. bActive bleeding or comorbidities with high bleeding risk. cHistory of intracerebral haemorrhage or ischaemic stroke, history of other intracranial pathology, recent gastrointestinal bleeding or anaemia due to possible gastrointestinal blood loss, other gastrointestinal pathology associated with increased bleeding risk, liver failure, bleeding diathesis or coagulopathy, extreme old age or frailty, or renal failure requiring dialysis or with estimated glomerular filtration rate <15 mL/min/1.73 m2. dDiffuse multivessel CAD with at least one of the following: diabetes mellitus requiring medication, recurrent myocardial infarction, PAD, or chronic kidney disease with estimated glomerular filtration rate 15–59 mL/min/1.73 m2.

Long-term therapy for secondary prevention

Default practice is DAPT for 1 year post-ACS followed by antiplatelet monotherapy, usually with aspirin. However, DM patients have increased long-term risk of recurrent atherothrombotic events and should be carefully considered for more intensive long-term antithrombotic therapy.85

The CAPRIE trial (n = 19 185) showed that clopidogrel for secondary prevention (75 mg daily) reduced the composite endpoint of ischaemic stroke, MI, or vascular death compared with daily 325 mg aspirin [5.32% vs. 5.83% (0.3–16.5); P = 0.043], mostly driven by PAD events, which showed a significant heterogeneity vs. MI and stroke.86 DM patients (n = 3866) showed a similar pattern (P = 0.36 for interaction) but with an amplified absolute risk reduction (15.6% vs. 17.7%; P = 0.042), without an increase in bleeding events.87 Given the high aspirin dose used, it is difficult to recommend a routine switch to clopidogrel for secondary prevention, except in special clinical scenarios, such as individuals with PAD (discussed below). The benefit of 12 vs. 30 months of DAPT, mostly consisting of aspirin and clopidogrel, was tested in the DAPT trial,88 including 9961 individuals who had not experienced ischaemic or bleeding events at 1 year post-PCI. Prolonged DAPT significantly reduced the composite of all-cause mortality, MI, or stroke [4.3% vs. 5.9%, HR 0.71 (0.59–0.85); P < 0.001] but at the expense of increased moderate/severe bleeding events [2.5% vs. 1.6%, HR 1.61 (1.21–2.16); P = 0.001]. However, in DM patients (n = 3391), this strategy did not affect the composite outcome [6.6% vs. 7.0%, HR 0.92 (0.71–1.20); P = 0.55] although the limitation of subgroup analysis should be acknowledged.89  ,  90

The PEGASUS-TIMI 54 trial evaluated prolonged ticagrelor use in 21 162 patients with a history of MI 1–3 years prior to enrolment. Patients also needed to have at least one additional risk factor, which included DM requiring medication.91 Patients were randomized to either one of two doses of ticagrelor (90 mg twice daily or 60 mg twice daily) or placebo in addition to aspirin. At 3 years, the primary efficacy endpoint (cardiovascular death, MI, and stroke) was reduced with ticagrelor 60 mg twice daily compared with placebo [7.8% vs. 9.0% in placebo, HR 0.84 (0.74–0.95); P = 0.004]. TIMI major bleeding events increased [2.30% vs. 1.06% in placebo, HR 2.32 (1.68–3.21); P < 0.001], but no difference was detected in fatal or intracranial bleeding. Similar data were documented in the DM subgroup (n = 6806, 32% of study population) with a higher absolute risk reduction in the 60 mg twice daily ticagrelor arm compared with placebo (11.6% vs. 10.0% in DM subgroup and 7.8% vs. 6.7% in non-DM subgroup). TIMI major bleeding in those with DM was higher in ticagrelor-treated individuals compared with placebo [2.5% and 1.0%, HR 2.5 (1.4–4.4); P = 0.0004], an increase that was similar to the non-DM group (2.39%; P = 0.89).91

The COMPASS study in patients with either prior MI or multivessel CAD (n = 27 395; 38% with DM) showed that rivaroxaban 2.5 mg twice daily added to low-dose aspirin reduced the risk of MACE compared with aspirin alone [4.1% vs. 5.4%, HR 0.76 (0.66–0.86); P < 0.001],92 making this an option,85  ,  92  ,  93 particularly in DM patients who showed greater absolute net benefit.94 While the combination therapy increased bleeding risk, there was still a net clinical benefit. Vorapaxar was investigated in the TRA 2°P-TIMI 50 study, detailed in Supplementary material online given the limited clinical use of this agent.95–97

In summary, following ACS, DAPT for 1 year is the current standard of care. De-escalation of DAPT intensity or duration may be considered after 3 months if bleeding concerns prevail.98 One year post-ACS, options include switching to aspirin monotherapy or, in high ischaemic and low bleeding risk DM patients, continuation of dual antithrombotic therapy in the form of aspirin and low-dose ticagrelor (PEGASUS-TIMI 54 study) or aspirin and very-low-dose rivaroxaban (COMPASS trial).3  ,  51  ,  85 Studies addressing antithrombotic agents for secondary prevention are summarized in Table 2 and Supplementary material online, Figure S1.

Table 2

Secondary prevention in diabetes

Sample sizePopulationInterventionControlDiabetes (%)Primary endpointDuration of follow-upRelative and absolute benefitRelative and absolute harmComments

CAPRIE (1996)86 RCT 1:1

19 185Prior ischaemic stroke (within 1 week–6 months), recent MI (within 35 days), or symptomatic atherosclerotic PADClopidogrel (75 mg)Aspirin (325 mg)20Aggregate of MI, ischaemic stroke, and vascular death1–3 years

5.32% vs. 5.83% RRR 8.7%

 

(0.30–16.5%); P = 0.043

GI bleed 1.99% vs. 2.66%; P < 0.002Treatment effect by subgroup suggests heterogeneity in response with a benefit in PAD, but not is post-MI or stroke patients

DAPT (2014)88 RCT 1:1

9961Prior coronary stent with DES after 12 months of DAPT (thienopyridine and aspirin)Thienopyridine (clopidogrel 65% or prasugrel 35%)Placebo30

(i) Stent thrombosis

 

and

 

(ii) MACCE (death, MI, or stroke)

18 months

(i) Stent thrombosis 0.4% vs. 1.4%; HR 0.29 (0.17–0.48); P < 0.001

 

(ii) MACCE 4.3% vs. 5.9% HR 0.71 (0.59–0.85); P < 0.001

Moderate–severe bleeding 2.5% vs. 1.6%; P = 0.001

PEGASUS-TIMI 54 (2015)91 RCT 1:1:1

21 162MI 1–3 years earlierTicagrelor 90 mg b.i.d.vs. placebo32Composite of CV death, MI, or stroke33 months

7.85% vs. 9.04% HR 0.85 (0.75–0.96); P = 0.008

TIMI major bleeding

 

2.60% vs. 1.06%, P < 0.001

No difference was detected in fatal or intracranial bleeding
Ticagrelor 60 mg b.i.d.

7.77% vs. 9.04% HR 0.84 (0.74–0.95); P = 0.004

TIMI major bleeding

 

2.30% vs. 1.06%;

 

P < 0.001

TRA 2P-TIMI 50 (2012)95 RCT 1:1

26 449History of MI, ischaemic stroke, or PADVorapaxar (2.5 mg daily)Placebo25Composite of death from CV causes, MI, or stroke30 months

9.3% vs. 10.5% HR 0.87 (0.80–0.94); P < 0.001

Moderate or severe bleeding

 

4.2% vs. 2.5%,

 

HR 1.66 (1.43–1.93); P < 0.001

 

ICH

 

1.0% vs. 0.5%; P < 0.001

Premature trial termination at 2 years, due to safety concerns over ICH in patients with history of stroke

COMPASS (2017)92 RCT

 

1:1:1

27 395Stable CAD, PAD, or bothRivaroxaban (2.5 mg b.i.d.) plus aspirin (100 mg/day)Aspirin (100 mg/day)38Composite of CV death, stroke, or MI23 months

4.1% vs. 5.4% HR 0.76 (0.66–0.86); P < 0.001

Any bleeding

 

3.1% vs. 1.9%

 

HR 1.70 (1.40–2.05); P < 0.001

Major bleeding was not significantly different
Rivaroxaban (5 mg b.i.d.)

4.9% vs. 5.4%

 

HR 0.90 (0.79–1.03); P = 0.12

Any bleeding

 

2.8% vs. 1.9%

 

HR 1.51 (1.25–1.84); P < 0.001

Sample sizePopulationInterventionControlDiabetes (%)Primary endpointDuration of follow-upRelative and absolute benefitRelative and absolute harmComments

CAPRIE (1996)86 RCT 1:1

19 185Prior ischaemic stroke (within 1 week–6 months), recent MI (within 35 days), or symptomatic atherosclerotic PADClopidogrel (75 mg)Aspirin (325 mg)20Aggregate of MI, ischaemic stroke, and vascular death1–3 years

5.32% vs. 5.83% RRR 8.7%

 

(0.30–16.5%); P = 0.043

GI bleed 1.99% vs. 2.66%; P < 0.002Treatment effect by subgroup suggests heterogeneity in response with a benefit in PAD, but not is post-MI or stroke patients

DAPT (2014)88 RCT 1:1

9961Prior coronary stent with DES after 12 months of DAPT (thienopyridine and aspirin)Thienopyridine (clopidogrel 65% or prasugrel 35%)Placebo30

(i) Stent thrombosis

 

and

 

(ii) MACCE (death, MI, or stroke)

18 months

(i) Stent thrombosis 0.4% vs. 1.4%; HR 0.29 (0.17–0.48); P < 0.001

 

(ii) MACCE 4.3% vs. 5.9% HR 0.71 (0.59–0.85); P < 0.001

Moderate–severe bleeding 2.5% vs. 1.6%; P = 0.001

PEGASUS-TIMI 54 (2015)91 RCT 1:1:1

21 162MI 1–3 years earlierTicagrelor 90 mg b.i.d.vs. placebo32Composite of CV death, MI, or stroke33 months

7.85% vs. 9.04% HR 0.85 (0.75–0.96); P = 0.008

TIMI major bleeding

 

2.60% vs. 1.06%, P < 0.001

No difference was detected in fatal or intracranial bleeding
Ticagrelor 60 mg b.i.d.

7.77% vs. 9.04% HR 0.84 (0.74–0.95); P = 0.004

TIMI major bleeding

 

2.30% vs. 1.06%;

 

P < 0.001

TRA 2P-TIMI 50 (2012)95 RCT 1:1

26 449History of MI, ischaemic stroke, or PADVorapaxar (2.5 mg daily)Placebo25Composite of death from CV causes, MI, or stroke30 months

9.3% vs. 10.5% HR 0.87 (0.80–0.94); P < 0.001

Moderate or severe bleeding

 

4.2% vs. 2.5%,

 

HR 1.66 (1.43–1.93); P < 0.001

 

ICH

 

1.0% vs. 0.5%; P < 0.001

Premature trial termination at 2 years, due to safety concerns over ICH in patients with history of stroke

COMPASS (2017)92 RCT

 

1:1:1

27 395Stable CAD, PAD, or bothRivaroxaban (2.5 mg b.i.d.) plus aspirin (100 mg/day)Aspirin (100 mg/day)38Composite of CV death, stroke, or MI23 months

4.1% vs. 5.4% HR 0.76 (0.66–0.86); P < 0.001

Any bleeding

 

3.1% vs. 1.9%

 

HR 1.70 (1.40–2.05); P < 0.001

Major bleeding was not significantly different
Rivaroxaban (5 mg b.i.d.)

4.9% vs. 5.4%

 

HR 0.90 (0.79–1.03); P = 0.12

Any bleeding

 

2.8% vs. 1.9%

 

HR 1.51 (1.25–1.84); P < 0.001

Long-term therapy for secondary prevention trials in patients with established cardiovascular disease.

This is a general guide and healthcare professionals should follow local guidelines as appropriate.

Significant differences are highlighted in bold.

b.i.d., twice daily; CAD, coronary artery disease; CV, cardiovascular; DAPT, dual antiplatelet therapy; DES, drug-eluting stent; GI, gastrointestinal; HR, hazard ratio; ICH, intracranial haemorrhage; MACE, major adverse cardiovascular or cerebrovascular events; MI, myocardial infarction; PAD, peripheral arterial disease; RCT, randomized controlled trial; RRR, relative risk reduction.

Table 2

Secondary prevention in diabetes

Sample sizePopulationInterventionControlDiabetes (%)Primary endpointDuration of follow-upRelative and absolute benefitRelative and absolute harmComments

CAPRIE (1996)86 RCT 1:1

19 185Prior ischaemic stroke (within 1 week–6 months), recent MI (within 35 days), or symptomatic atherosclerotic PADClopidogrel (75 mg)Aspirin (325 mg)20Aggregate of MI, ischaemic stroke, and vascular death1–3 years

5.32% vs. 5.83% RRR 8.7%

 

(0.30–16.5%); P = 0.043

GI bleed 1.99% vs. 2.66%; P < 0.002Treatment effect by subgroup suggests heterogeneity in response with a benefit in PAD, but not is post-MI or stroke patients

DAPT (2014)88 RCT 1:1

9961Prior coronary stent with DES after 12 months of DAPT (thienopyridine and aspirin)Thienopyridine (clopidogrel 65% or prasugrel 35%)Placebo30

(i) Stent thrombosis

 

and

 

(ii) MACCE (death, MI, or stroke)

18 months

(i) Stent thrombosis 0.4% vs. 1.4%; HR 0.29 (0.17–0.48); P < 0.001

 

(ii) MACCE 4.3% vs. 5.9% HR 0.71 (0.59–0.85); P < 0.001

Moderate–severe bleeding 2.5% vs. 1.6%; P = 0.001

PEGASUS-TIMI 54 (2015)91 RCT 1:1:1

21 162MI 1–3 years earlierTicagrelor 90 mg b.i.d.vs. placebo32Composite of CV death, MI, or stroke33 months

7.85% vs. 9.04% HR 0.85 (0.75–0.96); P = 0.008

TIMI major bleeding

 

2.60% vs. 1.06%, P < 0.001

No difference was detected in fatal or intracranial bleeding
Ticagrelor 60 mg b.i.d.

7.77% vs. 9.04% HR 0.84 (0.74–0.95); P = 0.004

TIMI major bleeding

 

2.30% vs. 1.06%;

 

P < 0.001

TRA 2P-TIMI 50 (2012)95 RCT 1:1

26 449History of MI, ischaemic stroke, or PADVorapaxar (2.5 mg daily)Placebo25Composite of death from CV causes, MI, or stroke30 months

9.3% vs. 10.5% HR 0.87 (0.80–0.94); P < 0.001

Moderate or severe bleeding

 

4.2% vs. 2.5%,

 

HR 1.66 (1.43–1.93); P < 0.001

 

ICH

 

1.0% vs. 0.5%; P < 0.001

Premature trial termination at 2 years, due to safety concerns over ICH in patients with history of stroke

COMPASS (2017)92 RCT

 

1:1:1

27 395Stable CAD, PAD, or bothRivaroxaban (2.5 mg b.i.d.) plus aspirin (100 mg/day)Aspirin (100 mg/day)38Composite of CV death, stroke, or MI23 months

4.1% vs. 5.4% HR 0.76 (0.66–0.86); P < 0.001

Any bleeding

 

3.1% vs. 1.9%

 

HR 1.70 (1.40–2.05); P < 0.001

Major bleeding was not significantly different
Rivaroxaban (5 mg b.i.d.)

4.9% vs. 5.4%

 

HR 0.90 (0.79–1.03); P = 0.12

Any bleeding

 

2.8% vs. 1.9%

 

HR 1.51 (1.25–1.84); P < 0.001

Sample sizePopulationInterventionControlDiabetes (%)Primary endpointDuration of follow-upRelative and absolute benefitRelative and absolute harmComments

CAPRIE (1996)86 RCT 1:1

19 185Prior ischaemic stroke (within 1 week–6 months), recent MI (within 35 days), or symptomatic atherosclerotic PADClopidogrel (75 mg)Aspirin (325 mg)20Aggregate of MI, ischaemic stroke, and vascular death1–3 years

5.32% vs. 5.83% RRR 8.7%

 

(0.30–16.5%); P = 0.043

GI bleed 1.99% vs. 2.66%; P < 0.002Treatment effect by subgroup suggests heterogeneity in response with a benefit in PAD, but not is post-MI or stroke patients

DAPT (2014)88 RCT 1:1

9961Prior coronary stent with DES after 12 months of DAPT (thienopyridine and aspirin)Thienopyridine (clopidogrel 65% or prasugrel 35%)Placebo30

(i) Stent thrombosis

 

and

 

(ii) MACCE (death, MI, or stroke)

18 months

(i) Stent thrombosis 0.4% vs. 1.4%; HR 0.29 (0.17–0.48); P < 0.001

 

(ii) MACCE 4.3% vs. 5.9% HR 0.71 (0.59–0.85); P < 0.001

Moderate–severe bleeding 2.5% vs. 1.6%; P = 0.001

PEGASUS-TIMI 54 (2015)91 RCT 1:1:1

21 162MI 1–3 years earlierTicagrelor 90 mg b.i.d.vs. placebo32Composite of CV death, MI, or stroke33 months

7.85% vs. 9.04% HR 0.85 (0.75–0.96); P = 0.008

TIMI major bleeding

 

2.60% vs. 1.06%, P < 0.001

No difference was detected in fatal or intracranial bleeding
Ticagrelor 60 mg b.i.d.

7.77% vs. 9.04% HR 0.84 (0.74–0.95); P = 0.004

TIMI major bleeding

 

2.30% vs. 1.06%;

 

P < 0.001

TRA 2P-TIMI 50 (2012)95 RCT 1:1

26 449History of MI, ischaemic stroke, or PADVorapaxar (2.5 mg daily)Placebo25Composite of death from CV causes, MI, or stroke30 months

9.3% vs. 10.5% HR 0.87 (0.80–0.94); P < 0.001

Moderate or severe bleeding

 

4.2% vs. 2.5%,

 

HR 1.66 (1.43–1.93); P < 0.001

 

ICH

 

1.0% vs. 0.5%; P < 0.001

Premature trial termination at 2 years, due to safety concerns over ICH in patients with history of stroke

COMPASS (2017)92 RCT

 

1:1:1

27 395Stable CAD, PAD, or bothRivaroxaban (2.5 mg b.i.d.) plus aspirin (100 mg/day)Aspirin (100 mg/day)38Composite of CV death, stroke, or MI23 months

4.1% vs. 5.4% HR 0.76 (0.66–0.86); P < 0.001

Any bleeding

 

3.1% vs. 1.9%

 

HR 1.70 (1.40–2.05); P < 0.001

Major bleeding was not significantly different
Rivaroxaban (5 mg b.i.d.)

4.9% vs. 5.4%

 

HR 0.90 (0.79–1.03); P = 0.12

Any bleeding

 

2.8% vs. 1.9%

 

HR 1.51 (1.25–1.84); P < 0.001

Long-term therapy for secondary prevention trials in patients with established cardiovascular disease.

This is a general guide and healthcare professionals should follow local guidelines as appropriate.

Significant differences are highlighted in bold.

b.i.d., twice daily; CAD, coronary artery disease; CV, cardiovascular; DAPT, dual antiplatelet therapy; DES, drug-eluting stent; GI, gastrointestinal; HR, hazard ratio; ICH, intracranial haemorrhage; MACE, major adverse cardiovascular or cerebrovascular events; MI, myocardial infarction; PAD, peripheral arterial disease; RCT, randomized controlled trial; RRR, relative risk reduction.

Antithrombotic therapy in the presence of atrial fibrillation

Individuals with DM have a 40% greater risk of developing atrial fibrillation (AF) compared to those without DM.99  ,  100 Whilst epidemiological data suggest a causal association, the effect of confounders cannot be excluded (further discussed in Supplementary material online, S1).101–109

Antithrombotic therapy

Oral anticoagulation (OAC) is recommended for male and female AF patients with CHA2DS2-VASc score ≥2 and ≥3, respectively, but can also be considered in those with lower scores on an individual basis.51 In those without absolute indication for VKAs (e.g. mechanical valve or moderate/severe mitral stenosis), NOACs are preferred due to lower rates of severe bleeding and reduced monitoring requirements.51  ,  110 In studies comparing NOACs with VKA in non-valvular AF, about a third of individuals had DM and showed similar RRR to those without DM.111 However, given the increased risk in DM, therapy with NOACs translated into a greater absolute benefit, while rates of major bleeding are similar regardless of DM status. If OAC is contraindicated, percutaneous left atrial appendage closure is an option in those with or without DM.112

Antithrombotic therapy in patients with atrial fibrillation and acute coronary syndrome

Patients with AF on OAC who develop ACS and/or undergo PCI generally require combination treatment with OAC and antiplatelet therapy, with NOACs preferred over VKA.82  ,  85  ,  113 For TT with OAC and DAPT, clopidogrel is recommended over more potent P2Y12 inhibitors.82  ,  85  ,  113

After elective PCI in patients with AF who require OAC, a switch from TT (DAPT and OAC) to dual therapy (OAC and single antiplatelet therapy) should be considered in those at low risk of stent thrombosis or when bleeding risk is high. North American guidance encourages dual therapy with early aspirin cessation (i.e. by the time of hospital discharge).114  ,  115 ESC guidance endorses TT for at least 1 month if stent thrombosis risk outweighs bleeding risk, followed by an antiplatelet agent (usually clopidogrel) and OAC until 12 months post-PCI, and thereafter OAC monotherapy, unless long-term dual therapy is considered due to very high ischaemic risk with low bleeding risk.82  ,  85  ,  102  ,  113 Similar differences in international guidance exist for AF patients with ACS treated with stent implantation.55  ,  56  ,  116  ,  117 The above applies to all individuals regardless of DM status as no specific studies have been conducted in this group. A summary of the agents used in patients with AF and ACS is provided in Figure 2.

Peripheral artery disease

PAD is thought to affect 202 million people worldwide118 and these individuals are at a higher MACE risk,119 with an even higher event rate with two or more arterial beds affected.119  ,  120

Asymptomatic peripheral artery disease

Two relatively small trials have compared aspirin vs. placebo in asymptomatic PAD, the POPADAD trial44 specific to DM and the AAA trial,121 which included 3% (n = 88) of DM patients. Neither showed a difference in MACE in a combined overall cohort of 4626 patients (1256 with DM). While it can be argued these studies were underpowered, guidelines generally do not support routine antiplatelet therapy for asymptomatic lower extremity arterial disease and these individuals are best managed as per primary prevention recommendations described above.

Symptomatic peripheral artery disease

A meta-analysis of 17 000 individuals with symptomatic PAD has shown that aspirin reduced serious vascular events by 18.2% per year (P < 0.0001), marginally offset by a non-significant increase in haemorrhagic stroke.42

Subgroup analysis of 6452 patients with PAD (21% with DM) in the CAPRIE study showed potentially greater benefit with clopidogrel vs. aspirin [3.71% vs. 4.86%; RRR 24% (8.9–36.2); P = 0.0028] compared with the overall study population [5.32% vs. 5.83%; RRR 8.7% (0.3–16.5); P = 0.043].86 The EUCLID trial compared ticagrelor and clopidogrel in 13 885 patients with symptomatic PAD (38.4% with DM), finding no difference in MACE [10.8% vs. 10.6%, HR 1.02 (0.92–1.13); P = 0.65] or major bleeding over a median follow-up of 30 months, regardless of DM status.122

A subgroup analysis of PAD patients in the CHARISMA trial (n = 3096, 36.2% with DM) showed no significant difference in MACE comparing aspirin and clopidogrel therapy with aspirin and placebo [7.6% vs. 8.9%, HR 0.85 (0.66–1.08); P = 0.18], similar to the overall trial cohort [6.8% vs. 7.3%, HR 0.93 (0.83–1.05); P = 0.22].123 There was an increase in minor bleeding with DAPT [34.4% vs. 20.8%, odds ratio 1.99 (1.69–2.34); P < 0.001] but no difference in severe/moderate bleeding. The role of vorapaxar in PAD is described in the Supplementary material online.124

A systematic review and network meta-analysis reported that aspirin, ticlopidine, and ticagrelor or clopidogrel used as monotherapy (or in combination with aspirin) were effective in reducing MACE in patients with PAD, and that ticlopidine, vorapaxar, and DAPT increased bleeding risk.125 Clopidogrel had the best balance between efficacy [MACE RRR 0.72 (0.58–0.91); NNT 80] and safety profile, making it the preferred agent to use.

There were 7470 patients with PAD in the COMPASS trial, 44% of whom had DM with a median follow-up of 21 months.126 The combination of rivaroxaban and aspirin reduced MACE and major adverse limb events vs. aspirin alone to a similar degree in those with DM [8% vs. 12%, HR 0.69 (0.53–0.91)] or without [5% vs. 7%, HR 0.69 (0.50–0.94)]. This was associated with a lower incidence of major adverse limb events in the whole group [1% vs. 2%, HR 0.54 (0.35–0.84); P = 0.005], including lower incidence of major amputation [HR 0.30 (0.11–0.80); P = 0.011].

Post-revascularization

Limited evidence suggests that DAPT with aspirin and clopidogrel is beneficial after lower limb revascularization, particularly following prosthetic bypass.125  ,  127 Similarly, warfarin, with or without aspirin, may improve graft patency after vein bypass.128  ,  129 The VOYAGER PAD trial, assessing aspirin plus rivaroxaban vs. aspirin post-lower limb revascularization, included 6564 individuals (40% had DM) and combination therapy reduced the composite of acute limb ischaemia, major amputation, MI, ischaemic stroke, or cardiovascular death [HR 0.85 (0.76–0.96); P = 0.009]. A trend towards an increase in TIMI major bleeding, but not BARC bleeding, was documented with the combination therapy [HR 1.43 (0.97–2.10); P = 0.07].130 Results of the DM subgroup analysis are awaited. Antithrombotic management of individuals with DM and PAD is summarized in Table 3 and Supplementary material online, Figure S1.

Table 3

Antithrombotic therapy in peripheral vascular disease

TrialSample sizePopulationInvestigationControl% with diabetesFollow-upOutcomesAbsolute and relative benefitsAbsolute and relative harmsOther comments
Asymptomatic
 POPADAD (2008)441276Type 1 or 2 diabetes mellitus and ABPI ≤0.99 with no PAD symptomsAspirin 100 mg ± antioxidantPlacebo ± antioxidant100%

Median

 

6.7 years

MACCE or above ankle amputation for critical limb ischaemia

18.2% vs. 18.3%

 

HR 0.98 (0.76–1.26); P = 0.86

GI bleed

 

4.4% vs. 4.9%

 

HR 0.90 (0.53–1.52); P = 0.69

 AAA (2010)1213350ABPI ≤0.95; free from clinical CV diseaseAspirin 100 mgPlacebo3%

Mean

 

8.2 years

MACCE or revascularization

13.7 vs. 13.3 events/1000 person-years

 

HR 1.03 (0.84–1.27)

Major bleed

 

2.0% vs. 1.2%

 

HR 1.71 (0.99–2.97)

Symptomatic
 ATT Collaboration (2009)4217 000Meta-analysis of secondary prevention trials (not PAD specific)Aspirin 75–500 mgNo aspirinNot statedNAMACCE

6.7% vs. 8.2% per year;

 

HR 0.81 (0.75–0.87); P < 0.0001

Major extracranial bleed (incompletely reported)

 

23 vs. 6 events

 

HR 2.69 (1.25–5.76)

Non-significant increase haemorrhagic stroke, significant decrease ischaemic stroke and coronary events
 CAPRIE (1996)866452Symptomatic PAD and ABPI ≤0.85; or symptomatic PAD with previous amputation or revascularizationClopidogrel 75 mgAspirin 325 mg21%

Mean

 

1.9 years

MACCE

3.71% vs. 4.86% per year;

 

RR 23.8% (8.9–36.2); P = 0.0028

GI bleed 1.99% vs. 2.66%; P < 0.002 (for the whole group)

No difference in amputation rate across CAPRIE cohorts; not reported specific to PAD subgroup
 EUCLID (2017)12213 885PAD with ABPI ≤0.8 or previous lower limb revascularization >30 days before randomizationTicagrelor 90 mg b.i.d.Clopidogrel 75 mg38%

Median

 

30 months

MACCE

10.8% vs. 10.6%

 

HR 1.02 (0.92–1.13); P = 0.65

TIMI major bleeding

 

1.6% vs. 1.6%

 

HR 1.10 (0.84–1.43); P = 0.49

Lower limb revascularization

12.2% vs. 12.8%

 

HR 0.95 (0.87–1.05); P = 0.30

 CHARISMA

 

subgroup PAD (2009)123

3096

 

(2838 symptomatic, 258 asymptomatic)

Symptomatic PAD and ABPI ≤0.85; or symptomatic PAD with previous amputation or revascularization; asymptomatic with APBI <0.9 identified within those with other eligibility for CHARISMA study

Aspirin

 

75–162 mg + clopidogrel 75 mg (DAPT)

Aspirin

 

75–162 mg + placebo

36%

Median

 

28 months

MACCE

7.6% vs. 8.9%

 

HR 0.85 (0.66–1.08); P = 0.183

Severe bleeding

 

1.7% vs. 1.7%

 

HR 0.97 (0.56–1.66); P = 0.90

 

Minor bleeding 34.4% vs. 20.8%

 

HR 1.99 (1.69–2.34); P < 0.001

Non-significant trend towards increase of fatal, intracranial, and moderate bleeding with DAPT
 TRA2°P-TIMI 50 (2013)1243787Symptomatic PAD and ABPI <0.85 or previous lower limb revascularizationVorapaxar 2.5 mgPlacebo36%

Median

 

36 months

MACCE

11.3% vs. 11.9%

 

HR 0.94 (0.78–1.14); P = 0.53

GUSTO moderate/severe bleeding:

 

7.4% vs. 4.5%

 

HR 1.62 (1.21–2.18); P = 0.001

Acute limb ischaemia

2.3% vs. 3.9%

 

HR 0.58 (0.39–0.86); P = 0.006

Revascularization

18.4% vs. 22.2%

 

HR 0.84 (0.73–0.97); P = 0.017

 COMPASS (2018)126

7470

 

(4129 symptomatic lower limb; 1422 asymptomatic lower limb; 1919 carotid disease)

Previous lower limb revascularization or amputation; symptomatic PAD and ABPI <0.9 or stenosis ≥50% on arterial imaging; carotid revascularization or asymptomatic carotid artery stenosis ≥50%Rivaroxaban 2.5 mg b.i.d + aspirin 100 mgAspirin 100 mg + placebo44%

Median

 

21 months

MACCE

5% vs. 7%

 

HR 0.72 (0.57–0.90); P = 0.005

Major bleeding 3.1% vs. 1.9%

 

HR 1.61 (1.12–2.31); P = 0.009

Major adverse limb event (acute/chronic ischaemia; amputation)

1.2% vs. 2.2%

 

HR 0.54 (0.35–0.84); P = 0.005

Post-revascularization
 CASPAR (2010)127851Vascular bypass graft for treatment of PADAspirin 75–100 mg + clopidogrel 75 mg (DAPT)Aspirin 75–100 mg + placebo38%

Median

 

12 months

Graft occlusion/revascularization/amputation/death

All grafts

 

35.4% vs. 35.0%

 

HR 0.98 (0.78–1.23)

 

Venous

 

23.8% vs. 20.0%

 

HR 1.25 (0.94–1.67)

 

Prosthetic

 

37.5% vs. 52.8%

 

HR 0.65 (0.45–0.95); P = 0.025

Total bleeding

 

16.7% vs. 7.1%; P < 0.001

 

Severe bleeding

 

2.1% vs. 1.2%; P = NS

Graft occlusion

 

HR 0.63 (0.42–0.93) and amputation

 

HR 0.48 (0.24–0.96) significantly reduced in prosthetic but not vein bypass

 BOA (2000)1282690Infrainguinal bypass graft for obstructive arterial diseaseOral anticoagulants (target INR 3.0–4.5)Pulverized carbasalate calcium 100 mg (equivalent to aspirin 80 mg)26%

Mean

 

21 months

Occlusion

23.2% vs. 24.3%

 

HR 0.95 (0.82–1.11)

Total bleeding

 

119 vs. 59 events

 

Fatal bleeding

 

16 vs. 12 events

 

Gastrointestinal bleeding

 

51 vs. 29 events

 

Intracranial bleeding

 

18 vs. 4 events

Fatal intracranial bleeding events were higher (8 vs. 3 events) in oral anticoagulants, whereas bleeding events in other sites were similar between groups
MACE plus amputation

18.7% vs. 20.8%

 

HR 0.89 (0.75–1.06)

Vein graft occlusion

14.3% vs. 20.3%

 

HR 0.69 (0.54–0.88)

Non-vein grafts occlusion

36% vs. 30%

 

HR 1.26 (1.03–1.55)

 Sarac et al. (1998)12956Infrainguinal bypass with autogenous vein and deemed high risk for graft occlusion (suboptimal venous conduit, poor arterial runoff or redo bypass)Warfarin (target INR 2–3) + aspirin 325 mgAspirin 325 mg64%

Not stated

 

(outcomes derived from Kaplan–Meier survival curves)

30-day graft patency97.3% vs. 85.2%; P = 0.07

Haematoma

 

32% vs. 4%; P = 0.004

 

GI bleeding

 

3% vs. 11%; P = NS

 

Intracranial bleeding

 

3% vs. 4%; P = NS

30-day amputation rate0% vs. 11.1%; P = 0.04
3-year primary assisted patency:77% vs. 56%; P = 0.05
3-year secondary patency81% vs. 56%; P = 0.02
 VOYAGER-PAD (2020)1306564Post-lower limb revascularizationRivaroxaban 2.5 mg b.i.d. + aspirin 100 mgAspirin 100 mg + placebo40%Median 28 monthsMACE plus acute limb ischaemia or amputation

15.5% vs. 17.8%

 

HR 0.85 (0.76–0.96)

Major bleeding

 

1.9% vs. 1.35%

 

HR 1.43 (0.97–2.10); P = 0.07

TrialSample sizePopulationInvestigationControl% with diabetesFollow-upOutcomesAbsolute and relative benefitsAbsolute and relative harmsOther comments
Asymptomatic
 POPADAD (2008)441276Type 1 or 2 diabetes mellitus and ABPI ≤0.99 with no PAD symptomsAspirin 100 mg ± antioxidantPlacebo ± antioxidant100%

Median

 

6.7 years

MACCE or above ankle amputation for critical limb ischaemia

18.2% vs. 18.3%

 

HR 0.98 (0.76–1.26); P = 0.86

GI bleed

 

4.4% vs. 4.9%

 

HR 0.90 (0.53–1.52); P = 0.69

 AAA (2010)1213350ABPI ≤0.95; free from clinical CV diseaseAspirin 100 mgPlacebo3%

Mean

 

8.2 years

MACCE or revascularization

13.7 vs. 13.3 events/1000 person-years

 

HR 1.03 (0.84–1.27)

Major bleed

 

2.0% vs. 1.2%

 

HR 1.71 (0.99–2.97)

Symptomatic
 ATT Collaboration (2009)4217 000Meta-analysis of secondary prevention trials (not PAD specific)Aspirin 75–500 mgNo aspirinNot statedNAMACCE

6.7% vs. 8.2% per year;

 

HR 0.81 (0.75–0.87); P < 0.0001

Major extracranial bleed (incompletely reported)

 

23 vs. 6 events

 

HR 2.69 (1.25–5.76)

Non-significant increase haemorrhagic stroke, significant decrease ischaemic stroke and coronary events
 CAPRIE (1996)866452Symptomatic PAD and ABPI ≤0.85; or symptomatic PAD with previous amputation or revascularizationClopidogrel 75 mgAspirin 325 mg21%

Mean

 

1.9 years

MACCE

3.71% vs. 4.86% per year;

 

RR 23.8% (8.9–36.2); P = 0.0028

GI bleed 1.99% vs. 2.66%; P < 0.002 (for the whole group)

No difference in amputation rate across CAPRIE cohorts; not reported specific to PAD subgroup
 EUCLID (2017)12213 885PAD with ABPI ≤0.8 or previous lower limb revascularization >30 days before randomizationTicagrelor 90 mg b.i.d.Clopidogrel 75 mg38%

Median

 

30 months

MACCE

10.8% vs. 10.6%

 

HR 1.02 (0.92–1.13); P = 0.65

TIMI major bleeding

 

1.6% vs. 1.6%

 

HR 1.10 (0.84–1.43); P = 0.49

Lower limb revascularization

12.2% vs. 12.8%

 

HR 0.95 (0.87–1.05); P = 0.30

 CHARISMA

 

subgroup PAD (2009)123

3096

 

(2838 symptomatic, 258 asymptomatic)

Symptomatic PAD and ABPI ≤0.85; or symptomatic PAD with previous amputation or revascularization; asymptomatic with APBI <0.9 identified within those with other eligibility for CHARISMA study

Aspirin

 

75–162 mg + clopidogrel 75 mg (DAPT)

Aspirin

 

75–162 mg + placebo

36%

Median

 

28 months

MACCE

7.6% vs. 8.9%

 

HR 0.85 (0.66–1.08); P = 0.183

Severe bleeding

 

1.7% vs. 1.7%

 

HR 0.97 (0.56–1.66); P = 0.90

 

Minor bleeding 34.4% vs. 20.8%

 

HR 1.99 (1.69–2.34); P < 0.001

Non-significant trend towards increase of fatal, intracranial, and moderate bleeding with DAPT
 TRA2°P-TIMI 50 (2013)1243787Symptomatic PAD and ABPI <0.85 or previous lower limb revascularizationVorapaxar 2.5 mgPlacebo36%

Median

 

36 months

MACCE

11.3% vs. 11.9%

 

HR 0.94 (0.78–1.14); P = 0.53

GUSTO moderate/severe bleeding:

 

7.4% vs. 4.5%

 

HR 1.62 (1.21–2.18); P = 0.001

Acute limb ischaemia

2.3% vs. 3.9%

 

HR 0.58 (0.39–0.86); P = 0.006

Revascularization

18.4% vs. 22.2%

 

HR 0.84 (0.73–0.97); P = 0.017

 COMPASS (2018)126

7470

 

(4129 symptomatic lower limb; 1422 asymptomatic lower limb; 1919 carotid disease)

Previous lower limb revascularization or amputation; symptomatic PAD and ABPI <0.9 or stenosis ≥50% on arterial imaging; carotid revascularization or asymptomatic carotid artery stenosis ≥50%Rivaroxaban 2.5 mg b.i.d + aspirin 100 mgAspirin 100 mg + placebo44%

Median

 

21 months

MACCE

5% vs. 7%

 

HR 0.72 (0.57–0.90); P = 0.005

Major bleeding 3.1% vs. 1.9%

 

HR 1.61 (1.12–2.31); P = 0.009

Major adverse limb event (acute/chronic ischaemia; amputation)

1.2% vs. 2.2%

 

HR 0.54 (0.35–0.84); P = 0.005

Post-revascularization
 CASPAR (2010)127851Vascular bypass graft for treatment of PADAspirin 75–100 mg + clopidogrel 75 mg (DAPT)Aspirin 75–100 mg + placebo38%

Median

 

12 months

Graft occlusion/revascularization/amputation/death

All grafts

 

35.4% vs. 35.0%

 

HR 0.98 (0.78–1.23)

 

Venous

 

23.8% vs. 20.0%

 

HR 1.25 (0.94–1.67)

 

Prosthetic

 

37.5% vs. 52.8%

 

HR 0.65 (0.45–0.95); P = 0.025

Total bleeding

 

16.7% vs. 7.1%; P < 0.001

 

Severe bleeding

 

2.1% vs. 1.2%; P = NS

Graft occlusion

 

HR 0.63 (0.42–0.93) and amputation

 

HR 0.48 (0.24–0.96) significantly reduced in prosthetic but not vein bypass

 BOA (2000)1282690Infrainguinal bypass graft for obstructive arterial diseaseOral anticoagulants (target INR 3.0–4.5)Pulverized carbasalate calcium 100 mg (equivalent to aspirin 80 mg)26%

Mean

 

21 months

Occlusion

23.2% vs. 24.3%

 

HR 0.95 (0.82–1.11)

Total bleeding

 

119 vs. 59 events

 

Fatal bleeding

 

16 vs. 12 events

 

Gastrointestinal bleeding

 

51 vs. 29 events

 

Intracranial bleeding

 

18 vs. 4 events

Fatal intracranial bleeding events were higher (8 vs. 3 events) in oral anticoagulants, whereas bleeding events in other sites were similar between groups
MACE plus amputation

18.7% vs. 20.8%

 

HR 0.89 (0.75–1.06)

Vein graft occlusion

14.3% vs. 20.3%

 

HR 0.69 (0.54–0.88)

Non-vein grafts occlusion

36% vs. 30%

 

HR 1.26 (1.03–1.55)

 Sarac et al. (1998)12956Infrainguinal bypass with autogenous vein and deemed high risk for graft occlusion (suboptimal venous conduit, poor arterial runoff or redo bypass)Warfarin (target INR 2–3) + aspirin 325 mgAspirin 325 mg64%

Not stated

 

(outcomes derived from Kaplan–Meier survival curves)

30-day graft patency97.3% vs. 85.2%; P = 0.07

Haematoma

 

32% vs. 4%; P = 0.004

 

GI bleeding

 

3% vs. 11%; P = NS

 

Intracranial bleeding

 

3% vs. 4%; P = NS

30-day amputation rate0% vs. 11.1%; P = 0.04
3-year primary assisted patency:77% vs. 56%; P = 0.05
3-year secondary patency81% vs. 56%; P = 0.02
 VOYAGER-PAD (2020)1306564Post-lower limb revascularizationRivaroxaban 2.5 mg b.i.d. + aspirin 100 mgAspirin 100 mg + placebo40%Median 28 monthsMACE plus acute limb ischaemia or amputation

15.5% vs. 17.8%

 

HR 0.85 (0.76–0.96)

Major bleeding

 

1.9% vs. 1.35%

 

HR 1.43 (0.97–2.10); P = 0.07

Summary of antiplatelet and anticoagulant studies in individuals with peripheral vascular disease.

Significant differences are highlighted in bold.

ABPI, ankle brachial pressure index; b.i.d., twice daily; CV, cardiovascular; DAPT, dual antiplatelet therapy; GI, gastrointestinal; HR, hazard ratio; INR, international normalized ratio; MACE, major adverse cardiovascular or cerebrovascular events; NA, not available; PAD, peripheral artery disease.

Table 3

Antithrombotic therapy in peripheral vascular disease

TrialSample sizePopulationInvestigationControl% with diabetesFollow-upOutcomesAbsolute and relative benefitsAbsolute and relative harmsOther comments
Asymptomatic
 POPADAD (2008)441276Type 1 or 2 diabetes mellitus and ABPI ≤0.99 with no PAD symptomsAspirin 100 mg ± antioxidantPlacebo ± antioxidant100%

Median

 

6.7 years

MACCE or above ankle amputation for critical limb ischaemia

18.2% vs. 18.3%

 

HR 0.98 (0.76–1.26); P = 0.86

GI bleed

 

4.4% vs. 4.9%

 

HR 0.90 (0.53–1.52); P = 0.69

 AAA (2010)1213350ABPI ≤0.95; free from clinical CV diseaseAspirin 100 mgPlacebo3%

Mean

 

8.2 years

MACCE or revascularization

13.7 vs. 13.3 events/1000 person-years

 

HR 1.03 (0.84–1.27)

Major bleed

 

2.0% vs. 1.2%

 

HR 1.71 (0.99–2.97)

Symptomatic
 ATT Collaboration (2009)4217 000Meta-analysis of secondary prevention trials (not PAD specific)Aspirin 75–500 mgNo aspirinNot statedNAMACCE

6.7% vs. 8.2% per year;

 

HR 0.81 (0.75–0.87); P < 0.0001

Major extracranial bleed (incompletely reported)

 

23 vs. 6 events

 

HR 2.69 (1.25–5.76)

Non-significant increase haemorrhagic stroke, significant decrease ischaemic stroke and coronary events
 CAPRIE (1996)866452Symptomatic PAD and ABPI ≤0.85; or symptomatic PAD with previous amputation or revascularizationClopidogrel 75 mgAspirin 325 mg21%

Mean

 

1.9 years

MACCE

3.71% vs. 4.86% per year;

 

RR 23.8% (8.9–36.2); P = 0.0028

GI bleed 1.99% vs. 2.66%; P < 0.002 (for the whole group)

No difference in amputation rate across CAPRIE cohorts; not reported specific to PAD subgroup
 EUCLID (2017)12213 885PAD with ABPI ≤0.8 or previous lower limb revascularization >30 days before randomizationTicagrelor 90 mg b.i.d.Clopidogrel 75 mg38%

Median

 

30 months

MACCE

10.8% vs. 10.6%

 

HR 1.02 (0.92–1.13); P = 0.65

TIMI major bleeding

 

1.6% vs. 1.6%

 

HR 1.10 (0.84–1.43); P = 0.49

Lower limb revascularization

12.2% vs. 12.8%

 

HR 0.95 (0.87–1.05); P = 0.30

 CHARISMA

 

subgroup PAD (2009)123

3096

 

(2838 symptomatic, 258 asymptomatic)

Symptomatic PAD and ABPI ≤0.85; or symptomatic PAD with previous amputation or revascularization; asymptomatic with APBI <0.9 identified within those with other eligibility for CHARISMA study

Aspirin

 

75–162 mg + clopidogrel 75 mg (DAPT)

Aspirin

 

75–162 mg + placebo

36%

Median

 

28 months

MACCE

7.6% vs. 8.9%

 

HR 0.85 (0.66–1.08); P = 0.183

Severe bleeding

 

1.7% vs. 1.7%

 

HR 0.97 (0.56–1.66); P = 0.90

 

Minor bleeding 34.4% vs. 20.8%

 

HR 1.99 (1.69–2.34); P < 0.001

Non-significant trend towards increase of fatal, intracranial, and moderate bleeding with DAPT
 TRA2°P-TIMI 50 (2013)1243787Symptomatic PAD and ABPI <0.85 or previous lower limb revascularizationVorapaxar 2.5 mgPlacebo36%

Median

 

36 months

MACCE

11.3% vs. 11.9%

 

HR 0.94 (0.78–1.14); P = 0.53

GUSTO moderate/severe bleeding:

 

7.4% vs. 4.5%

 

HR 1.62 (1.21–2.18); P = 0.001

Acute limb ischaemia

2.3% vs. 3.9%

 

HR 0.58 (0.39–0.86); P = 0.006

Revascularization

18.4% vs. 22.2%

 

HR 0.84 (0.73–0.97); P = 0.017

 COMPASS (2018)126

7470

 

(4129 symptomatic lower limb; 1422 asymptomatic lower limb; 1919 carotid disease)

Previous lower limb revascularization or amputation; symptomatic PAD and ABPI <0.9 or stenosis ≥50% on arterial imaging; carotid revascularization or asymptomatic carotid artery stenosis ≥50%Rivaroxaban 2.5 mg b.i.d + aspirin 100 mgAspirin 100 mg + placebo44%

Median

 

21 months

MACCE

5% vs. 7%

 

HR 0.72 (0.57–0.90); P = 0.005

Major bleeding 3.1% vs. 1.9%

 

HR 1.61 (1.12–2.31); P = 0.009

Major adverse limb event (acute/chronic ischaemia; amputation)

1.2% vs. 2.2%

 

HR 0.54 (0.35–0.84); P = 0.005

Post-revascularization
 CASPAR (2010)127851Vascular bypass graft for treatment of PADAspirin 75–100 mg + clopidogrel 75 mg (DAPT)Aspirin 75–100 mg + placebo38%

Median

 

12 months

Graft occlusion/revascularization/amputation/death

All grafts

 

35.4% vs. 35.0%

 

HR 0.98 (0.78–1.23)

 

Venous

 

23.8% vs. 20.0%

 

HR 1.25 (0.94–1.67)

 

Prosthetic

 

37.5% vs. 52.8%

 

HR 0.65 (0.45–0.95); P = 0.025

Total bleeding

 

16.7% vs. 7.1%; P < 0.001

 

Severe bleeding

 

2.1% vs. 1.2%; P = NS

Graft occlusion

 

HR 0.63 (0.42–0.93) and amputation

 

HR 0.48 (0.24–0.96) significantly reduced in prosthetic but not vein bypass

 BOA (2000)1282690Infrainguinal bypass graft for obstructive arterial diseaseOral anticoagulants (target INR 3.0–4.5)Pulverized carbasalate calcium 100 mg (equivalent to aspirin 80 mg)26%

Mean

 

21 months

Occlusion

23.2% vs. 24.3%

 

HR 0.95 (0.82–1.11)

Total bleeding

 

119 vs. 59 events

 

Fatal bleeding

 

16 vs. 12 events

 

Gastrointestinal bleeding

 

51 vs. 29 events

 

Intracranial bleeding

 

18 vs. 4 events

Fatal intracranial bleeding events were higher (8 vs. 3 events) in oral anticoagulants, whereas bleeding events in other sites were similar between groups
MACE plus amputation

18.7% vs. 20.8%

 

HR 0.89 (0.75–1.06)

Vein graft occlusion

14.3% vs. 20.3%

 

HR 0.69 (0.54–0.88)

Non-vein grafts occlusion

36% vs. 30%

 

HR 1.26 (1.03–1.55)

 Sarac et al. (1998)12956Infrainguinal bypass with autogenous vein and deemed high risk for graft occlusion (suboptimal venous conduit, poor arterial runoff or redo bypass)Warfarin (target INR 2–3) + aspirin 325 mgAspirin 325 mg64%

Not stated

 

(outcomes derived from Kaplan–Meier survival curves)

30-day graft patency97.3% vs. 85.2%; P = 0.07

Haematoma

 

32% vs. 4%; P = 0.004

 

GI bleeding

 

3% vs. 11%; P = NS

 

Intracranial bleeding

 

3% vs. 4%; P = NS

30-day amputation rate0% vs. 11.1%; P = 0.04
3-year primary assisted patency:77% vs. 56%; P = 0.05
3-year secondary patency81% vs. 56%; P = 0.02
 VOYAGER-PAD (2020)1306564Post-lower limb revascularizationRivaroxaban 2.5 mg b.i.d. + aspirin 100 mgAspirin 100 mg + placebo40%Median 28 monthsMACE plus acute limb ischaemia or amputation

15.5% vs. 17.8%

 

HR 0.85 (0.76–0.96)

Major bleeding

 

1.9% vs. 1.35%

 

HR 1.43 (0.97–2.10); P = 0.07

TrialSample sizePopulationInvestigationControl% with diabetesFollow-upOutcomesAbsolute and relative benefitsAbsolute and relative harmsOther comments
Asymptomatic
 POPADAD (2008)441276Type 1 or 2 diabetes mellitus and ABPI ≤0.99 with no PAD symptomsAspirin 100 mg ± antioxidantPlacebo ± antioxidant100%

Median

 

6.7 years

MACCE or above ankle amputation for critical limb ischaemia

18.2% vs. 18.3%

 

HR 0.98 (0.76–1.26); P = 0.86

GI bleed

 

4.4% vs. 4.9%

 

HR 0.90 (0.53–1.52); P = 0.69

 AAA (2010)1213350ABPI ≤0.95; free from clinical CV diseaseAspirin 100 mgPlacebo3%

Mean

 

8.2 years

MACCE or revascularization

13.7 vs. 13.3 events/1000 person-years

 

HR 1.03 (0.84–1.27)

Major bleed

 

2.0% vs. 1.2%

 

HR 1.71 (0.99–2.97)

Symptomatic
 ATT Collaboration (2009)4217 000Meta-analysis of secondary prevention trials (not PAD specific)Aspirin 75–500 mgNo aspirinNot statedNAMACCE

6.7% vs. 8.2% per year;

 

HR 0.81 (0.75–0.87); P < 0.0001

Major extracranial bleed (incompletely reported)

 

23 vs. 6 events

 

HR 2.69 (1.25–5.76)

Non-significant increase haemorrhagic stroke, significant decrease ischaemic stroke and coronary events
 CAPRIE (1996)866452Symptomatic PAD and ABPI ≤0.85; or symptomatic PAD with previous amputation or revascularizationClopidogrel 75 mgAspirin 325 mg21%

Mean

 

1.9 years

MACCE

3.71% vs. 4.86% per year;

 

RR 23.8% (8.9–36.2); P = 0.0028

GI bleed 1.99% vs. 2.66%; P < 0.002 (for the whole group)

No difference in amputation rate across CAPRIE cohorts; not reported specific to PAD subgroup
 EUCLID (2017)12213 885PAD with ABPI ≤0.8 or previous lower limb revascularization >30 days before randomizationTicagrelor 90 mg b.i.d.Clopidogrel 75 mg38%

Median

 

30 months

MACCE

10.8% vs. 10.6%

 

HR 1.02 (0.92–1.13); P = 0.65

TIMI major bleeding

 

1.6% vs. 1.6%

 

HR 1.10 (0.84–1.43); P = 0.49

Lower limb revascularization

12.2% vs. 12.8%

 

HR 0.95 (0.87–1.05); P = 0.30

 CHARISMA

 

subgroup PAD (2009)123

3096

 

(2838 symptomatic, 258 asymptomatic)

Symptomatic PAD and ABPI ≤0.85; or symptomatic PAD with previous amputation or revascularization; asymptomatic with APBI <0.9 identified within those with other eligibility for CHARISMA study

Aspirin

 

75–162 mg + clopidogrel 75 mg (DAPT)

Aspirin

 

75–162 mg + placebo

36%

Median

 

28 months

MACCE

7.6% vs. 8.9%

 

HR 0.85 (0.66–1.08); P = 0.183

Severe bleeding

 

1.7% vs. 1.7%

 

HR 0.97 (0.56–1.66); P = 0.90

 

Minor bleeding 34.4% vs. 20.8%

 

HR 1.99 (1.69–2.34); P < 0.001

Non-significant trend towards increase of fatal, intracranial, and moderate bleeding with DAPT
 TRA2°P-TIMI 50 (2013)1243787Symptomatic PAD and ABPI <0.85 or previous lower limb revascularizationVorapaxar 2.5 mgPlacebo36%

Median

 

36 months

MACCE

11.3% vs. 11.9%

 

HR 0.94 (0.78–1.14); P = 0.53

GUSTO moderate/severe bleeding:

 

7.4% vs. 4.5%

 

HR 1.62 (1.21–2.18); P = 0.001

Acute limb ischaemia

2.3% vs. 3.9%

 

HR 0.58 (0.39–0.86); P = 0.006

Revascularization

18.4% vs. 22.2%

 

HR 0.84 (0.73–0.97); P = 0.017

 COMPASS (2018)126

7470

 

(4129 symptomatic lower limb; 1422 asymptomatic lower limb; 1919 carotid disease)

Previous lower limb revascularization or amputation; symptomatic PAD and ABPI <0.9 or stenosis ≥50% on arterial imaging; carotid revascularization or asymptomatic carotid artery stenosis ≥50%Rivaroxaban 2.5 mg b.i.d + aspirin 100 mgAspirin 100 mg + placebo44%

Median

 

21 months

MACCE

5% vs. 7%

 

HR 0.72 (0.57–0.90); P = 0.005

Major bleeding 3.1% vs. 1.9%

 

HR 1.61 (1.12–2.31); P = 0.009

Major adverse limb event (acute/chronic ischaemia; amputation)

1.2% vs. 2.2%

 

HR 0.54 (0.35–0.84); P = 0.005

Post-revascularization
 CASPAR (2010)127851Vascular bypass graft for treatment of PADAspirin 75–100 mg + clopidogrel 75 mg (DAPT)Aspirin 75–100 mg + placebo38%

Median

 

12 months

Graft occlusion/revascularization/amputation/death

All grafts

 

35.4% vs. 35.0%

 

HR 0.98 (0.78–1.23)

 

Venous

 

23.8% vs. 20.0%

 

HR 1.25 (0.94–1.67)

 

Prosthetic

 

37.5% vs. 52.8%

 

HR 0.65 (0.45–0.95); P = 0.025

Total bleeding

 

16.7% vs. 7.1%; P < 0.001

 

Severe bleeding

 

2.1% vs. 1.2%; P = NS

Graft occlusion

 

HR 0.63 (0.42–0.93) and amputation

 

HR 0.48 (0.24–0.96) significantly reduced in prosthetic but not vein bypass

 BOA (2000)1282690Infrainguinal bypass graft for obstructive arterial diseaseOral anticoagulants (target INR 3.0–4.5)Pulverized carbasalate calcium 100 mg (equivalent to aspirin 80 mg)26%

Mean

 

21 months

Occlusion

23.2% vs. 24.3%

 

HR 0.95 (0.82–1.11)

Total bleeding

 

119 vs. 59 events

 

Fatal bleeding

 

16 vs. 12 events

 

Gastrointestinal bleeding

 

51 vs. 29 events

 

Intracranial bleeding

 

18 vs. 4 events

Fatal intracranial bleeding events were higher (8 vs. 3 events) in oral anticoagulants, whereas bleeding events in other sites were similar between groups
MACE plus amputation

18.7% vs. 20.8%

 

HR 0.89 (0.75–1.06)

Vein graft occlusion

14.3% vs. 20.3%

 

HR 0.69 (0.54–0.88)

Non-vein grafts occlusion

36% vs. 30%

 

HR 1.26 (1.03–1.55)

 Sarac et al. (1998)12956Infrainguinal bypass with autogenous vein and deemed high risk for graft occlusion (suboptimal venous conduit, poor arterial runoff or redo bypass)Warfarin (target INR 2–3) + aspirin 325 mgAspirin 325 mg64%

Not stated

 

(outcomes derived from Kaplan–Meier survival curves)

30-day graft patency97.3% vs. 85.2%; P = 0.07

Haematoma

 

32% vs. 4%; P = 0.004

 

GI bleeding

 

3% vs. 11%; P = NS

 

Intracranial bleeding

 

3% vs. 4%; P = NS

30-day amputation rate0% vs. 11.1%; P = 0.04
3-year primary assisted patency:77% vs. 56%; P = 0.05
3-year secondary patency81% vs. 56%; P = 0.02
 VOYAGER-PAD (2020)1306564Post-lower limb revascularizationRivaroxaban 2.5 mg b.i.d. + aspirin 100 mgAspirin 100 mg + placebo40%Median 28 monthsMACE plus acute limb ischaemia or amputation

15.5% vs. 17.8%

 

HR 0.85 (0.76–0.96)

Major bleeding

 

1.9% vs. 1.35%

 

HR 1.43 (0.97–2.10); P = 0.07

Summary of antiplatelet and anticoagulant studies in individuals with peripheral vascular disease.

Significant differences are highlighted in bold.

ABPI, ankle brachial pressure index; b.i.d., twice daily; CV, cardiovascular; DAPT, dual antiplatelet therapy; GI, gastrointestinal; HR, hazard ratio; INR, international normalized ratio; MACE, major adverse cardiovascular or cerebrovascular events; NA, not available; PAD, peripheral artery disease.

Treatment of individuals with cerebrovascular disease

Due to lack of DM-specific studies, antithrombotic therapy in individuals sustaining a stroke is similar regardless of DM status and therefore studies are discussed accordingly.

Following acute events

In acute severe ischaemic stroke, reperfusion is attempted either through thrombolysis or endovascular thrombectomy, followed by antiplatelet monotherapy, usually with aspirin, administered 24 h later.131  ,  132 Ticagrelor monotherapy showed no superiority over aspirin133 and, therefore, is only recommended if aspirin is contraindicated.132

In those with minor events [National Institute of Health Stroke Scale (NIHSS) score ≤3], high-risk transient ischaemic attack (TIA) (ABCD2 score ≥4) or TIA not requiring thrombolysis or invasive measures, antiplatelet therapy can be immediately started provided haemorrhagic stroke is excluded. DAPT (aspirin and clopidogrel) is recommended given findings from the CHANCE and POINT trials (21% and 28% of the study population had diabetes, respectively),134  ,  135 starting within 24 h of the event for 21 days followed by clopidogrel only.132 While severe haemorrhagic events showed no increase in CHANCE, a doubling was noticed in POINT (Table 4 and Supplementary material online, Figure S1), although the benefit of DAPT still outweighed bleeding risk.135 The more recent THALES trial randomized 11 016 individuals (29% with diabetes), with ischaemic stroke or TIA (NIHSS score ≤5; 29% with DM) within 24 h of presentation to DAPT with ticagrelor and aspirin or aspirin alone for 30 days. The primary composite outcome of stroke or death at 30 days occurred in 5.5% in the combination group vs. 6.6% in those on aspirin alone [HR 0.83 (0.71–0.96); P = 0.02] but incidence of disability showed no difference, while DAPT was associated with increased rate of severe bleeding (0.5% vs. 0.1%; P = 0.001).136 There was no suggestion in any of the studies that the diabetes subgroup behaved differently and therefore DAPT in DM should be initiated within 24 h following acute minor stroke not requiring thrombolysis or thrombectomy and continued for 21–30 days. Future work is required to clarify the optimal duration of DAPT after acute minor stroke, or the benefit of DAPT following reperfusion therapy.132  ,  137

Table 4

Antithrombotic therapy in cerebrovascular disease

Antiplatelet randomized trial for secondary prevention in patients with acute minor ischaemic stroke/high-risk TIA
StudyPatientsInterventionControlFollow-upComposite vascular events (stroke, MI or CVD death)Recurrent ischaemic strokeIntracranial haemorrhageMajor haemorrhage

CHANCE (2013)134

 

(N = 5170; 21.1% with DM)

Minor stroke (NIHSS <3)/high-risk TIA, onset <24 h

Clopidogrel 300 mg loading then 75 mg/day on days 2–90

 

Aspirin 75–300 mg/day on days 2–21

Clopidogrel 75 mg/day on days 1–9090 days

8.4% vs. 11.9%

 

HR 0.69 (0.58–0.82)

7.9% vs. 11.4%

 

HR 0.67 (0.56–0.81)

0.3% vs. 0.3%

 

HR 1.01 (0.38–2.70)

 

(haemorrhagic stroke)

0.2% vs. 0.2%

 

HR 0.94 (0.24–3.79)

 

(severe bleeding)

 

0.1% vs. 0.2%

 

HR 0.73 (0.16–3.26)

 

(moderate bleeding)

POINT (2018)135

 

(N = 4881; 27.5% with DM)

Minor stroke (NIHSS <3)/high-risk TIA, onset <12 h

Clopidogrel 600 mg loading then 75 mg/day on days 2–90

 

Aspirin 50–325 mg/day on days 2–21

Aspirin 50–325 mg on days 1–90

 

(recommend 162 mg/day on day 1–5, then 81 mg/day afterward)

90 days

5.0% vs. 6.5%

 

HR 0.75 (0.59–0.95)

4.6% vs. 6.3%

 

HR 0.72 (0.56–0.92)

0.2% vs. 0.1%

 

HR 1.68 (0.40–7.03)

 

(haemorrhagic stroke)

0.9% vs. 0.4%

 

HR 2.32 (1.10–4.87)

SOCRATES (2016)133

 

(N = 6589; 24.3% with DM)

Non-severe stroke

 

(NIHSS <5)/high-risk TIA, onset <24 h

Ticagrelor 180 mg loading then 90 mg b.i.d. on days 2–90Aspirin 300 mg loading then 100 mg/day on days 2–9090 days

6.5% vs. 7.2%

 

HR 0.89 (0.78–1.01)

5.9% vs. 6.6%

 

HR 0.87 (0.76–1.00)

0.2% vs. 0.3%

 

HR 0.68 (0.33–1.41)

0.5% vs. 0.6%

 

HR 0.83 (0.52–1.34)

THALES (2020)136

 

(N = 11 016; 28.6% with DM)

Mild–moderate stroke (NIHSS <5)/high-risk TIA (ABCD2 > 6), onset <24 h

Ticagrelor 180 mg loading then 90 mg b.i.d. on days 2–30

 

Aspirin 300–325 mg loading then 75 to 100 mg/day on days 2–30

Aspirin 300–325 mg loading then 75–100 mg o.d. on days 2–3030 days

5.5% vs. 6.6%

 

HR 0.83 (0.71–0.96)

 

(stroke or death)

5.0% vs. 6.3%

 

HR 0.79 (0.68–0.93)

0.4% vs. 0.1%

 

HR 3.33 (1.34–8.28)

0.5% vs. 0.1%

 

HR 3.99 (1.74–9.14)

Antiplatelet randomized trial for secondary prevention in patients with acute minor ischaemic stroke/high-risk TIA
StudyPatientsInterventionControlFollow-upComposite vascular events (stroke, MI or CVD death)Recurrent ischaemic strokeIntracranial haemorrhageMajor haemorrhage

CHANCE (2013)134

 

(N = 5170; 21.1% with DM)

Minor stroke (NIHSS <3)/high-risk TIA, onset <24 h

Clopidogrel 300 mg loading then 75 mg/day on days 2–90

 

Aspirin 75–300 mg/day on days 2–21

Clopidogrel 75 mg/day on days 1–9090 days

8.4% vs. 11.9%

 

HR 0.69 (0.58–0.82)

7.9% vs. 11.4%

 

HR 0.67 (0.56–0.81)

0.3% vs. 0.3%

 

HR 1.01 (0.38–2.70)

 

(haemorrhagic stroke)

0.2% vs. 0.2%

 

HR 0.94 (0.24–3.79)

 

(severe bleeding)

 

0.1% vs. 0.2%

 

HR 0.73 (0.16–3.26)

 

(moderate bleeding)

POINT (2018)135

 

(N = 4881; 27.5% with DM)

Minor stroke (NIHSS <3)/high-risk TIA, onset <12 h

Clopidogrel 600 mg loading then 75 mg/day on days 2–90

 

Aspirin 50–325 mg/day on days 2–21

Aspirin 50–325 mg on days 1–90

 

(recommend 162 mg/day on day 1–5, then 81 mg/day afterward)

90 days

5.0% vs. 6.5%

 

HR 0.75 (0.59–0.95)

4.6% vs. 6.3%

 

HR 0.72 (0.56–0.92)

0.2% vs. 0.1%

 

HR 1.68 (0.40–7.03)

 

(haemorrhagic stroke)

0.9% vs. 0.4%

 

HR 2.32 (1.10–4.87)

SOCRATES (2016)133

 

(N = 6589; 24.3% with DM)

Non-severe stroke

 

(NIHSS <5)/high-risk TIA, onset <24 h

Ticagrelor 180 mg loading then 90 mg b.i.d. on days 2–90Aspirin 300 mg loading then 100 mg/day on days 2–9090 days

6.5% vs. 7.2%

 

HR 0.89 (0.78–1.01)

5.9% vs. 6.6%

 

HR 0.87 (0.76–1.00)

0.2% vs. 0.3%

 

HR 0.68 (0.33–1.41)

0.5% vs. 0.6%

 

HR 0.83 (0.52–1.34)

THALES (2020)136

 

(N = 11 016; 28.6% with DM)

Mild–moderate stroke (NIHSS <5)/high-risk TIA (ABCD2 > 6), onset <24 h

Ticagrelor 180 mg loading then 90 mg b.i.d. on days 2–30

 

Aspirin 300–325 mg loading then 75 to 100 mg/day on days 2–30

Aspirin 300–325 mg loading then 75–100 mg o.d. on days 2–3030 days

5.5% vs. 6.6%

 

HR 0.83 (0.71–0.96)

 

(stroke or death)

5.0% vs. 6.3%

 

HR 0.79 (0.68–0.93)

0.4% vs. 0.1%

 

HR 3.33 (1.34–8.28)

0.5% vs. 0.1%

 

HR 3.99 (1.74–9.14)

Anti-platelet randomized trials for long-term secondary prevention in patients with previous non-cardioembolic ischaemic stroke/TIA
StudyPatientInterventionControlFollow-upNon-fatal MI, non-fatal stroke, death from vascular causesRecurrent ischaemic strokeIntracranial haemorrhageMajor haemorrhage

CAPRIE (1996)86

 

(N = 19 185; 20% with DM)

Recent MI, PAD, or strokeClopidogrel 75 mg/dayAspirin 325 mg/day1.9 years

5.32% vs. 5.83%

 

HR 0.91 (0.84–1.00)

Not reported0.35% vs. 0.49%

1.38% vs. 1.55%

 

(severe bleeding)

CAPRIE (1996)86 stroke subgroup

 

(N = 6431; 25% with DM)

Recent strokeClopidogrel 75 mg/dayAspirin 325 mg/day

7.15% vs. 7.71%

 

HR 0.91 (0.81–1.06)

5.2% vs. 5.7%Not reportedNot reported

ESPRIT (2006)140

 

(N = 2739; 18.7% with DM)

Recent minor stroke/TIA (mRS <3) within 6 months

Dipyridamole 200 mg b.i.d.

 

plus

 

Aspirin 30–325 mg/day

 

(median 75 mg/day)

Aspirin 30–325 mg/day

 

(median 75 mg/day)

3.5 years

3.3% vs. 4.3%

 

HR 0.78 (0·63–0·97)

2.1% vs. 2.6%

 

HR 0.84 (0.64–1.10)

0.8% vs. 1.5%2.5% vs. 3.9%

PRoFESS (2008)141

 

(N = 20 332; 28% with DM)

Recent stroke within 90 days

Extended release dipyridamole 200 mg b.i.d.

 

plus

 

Aspirin 25 mg b.i.d.

Clopidogrel 75 mg/day2.5 year

13.1% vs. 13.1%

 

HR 0.99 (0.92–1.07)

7.7% vs. 7.9%

 

HR 0.97 (0.88–1.07)

1.4% vs. 1.0%

 

HR 1.42 (1.11–1.83)

4.1% vs. 3.6%

 

HR 1.15 (1.00–1.32)

MATCH (2004)145

 

(N = 7599; 68% with DM)

Recent stroke/TIA within 3 months

 

plus >1 risk factors

Clopidogrel 75 mg/day

 

plus

 

Aspirin 75 mg/day

Clopidogrel 75 mg/day1.5 years

16% vs. 17%

 

HR 0.94 (0.84–1.05)

8% vs. 9%

 

HR 0.93 (0.80–1.09)

1.1% vs. 0.7%

1.9% vs. 0.6%

 

(P < 0.001)

CHARISMA (2006)142

 

(N = 15 603; 42.7% with DM)

Atherosclerotic risks, CVD, stroke/TIA within 5 years

Clopidogrel 75 mg/day

 

plus

 

Aspirin 75–162 mg/day

Aspirin 75–162 mg/day2.3 years

6.8% vs. 7.3%

 

HR 0.93 (0.83–1.05)

1.7% vs. 2.1%

 

HR 0.81 (0.64–1.02)

0.3% vs. 0.3%

 

HR 0.96 (0.56–1.65)

2.1% vs. 1.3%

 

HR 1.62 (1.27–2.08)

SPS3 (2012)143

 

(N = 3020; 36.5% with DM)

Symptomatic lacuna stroke within 6 months

Clopidogrel 75 mg/day

 

plus

 

Aspirin 325 mg/day

Aspirin 325 mg/day3.4 years

3.1% vs. 3.4%

 

HR 0.89 (0.72–1.11)

2.0% vs. 2.4%

 

HR 0.82 (0.63–1.09)

0.4% vs. 0.3%

 

HR 1.65 (0.83–3.31)

2.1% vs. 1.1%

 

HR 1.97 (1.41–2.71)

Greving et al. (2019)144

 

(N = 43 112; 33.3% with DM)

Meta-analysis (6 RCTs)ClopidogrelAspirin2.0 years0.88 (0.78–0.98)0.91 (0.81–1.02)0.63 (0.43–0.91)0.76 (0.63–0.91)
Aspirin/dipyridamole0.83 (0.74–0.94)0.86 (0.76–0.97)0.88 (0.60–1.31)0.86 (0.71–1.05)
Aspirin/clopidogrel0.83 (0.71–0.96)0.83 (0.71–0.97)1.19 (0.68–2.08)1.63 (1.29–2.07)
Aspirin/dipyridamoleClopidogrel0.95 (0.85–1.06)0.95 (0.87–1.04)1.40 (1.08–1.82)1.14 (1.00–1.30)
Aspirin/clopidogrel0.94 (0.82–1.08)0.91 (0.80–1.04)1.88 (1.12–3.16)2.16 (1.72–2.71)
Aspirin/clopidogrelAspirin/dipyridamole0.99 (0.84–1.17)0.96 (0.82–1.13)1.34 (0.77–2.36)1.89 (1.47–2.42)
Anti-platelet randomized trials for long-term secondary prevention in patients with previous non-cardioembolic ischaemic stroke/TIA
StudyPatientInterventionControlFollow-upNon-fatal MI, non-fatal stroke, death from vascular causesRecurrent ischaemic strokeIntracranial haemorrhageMajor haemorrhage

CAPRIE (1996)86

 

(N = 19 185; 20% with DM)

Recent MI, PAD, or strokeClopidogrel 75 mg/dayAspirin 325 mg/day1.9 years

5.32% vs. 5.83%

 

HR 0.91 (0.84–1.00)

Not reported0.35% vs. 0.49%

1.38% vs. 1.55%

 

(severe bleeding)

CAPRIE (1996)86 stroke subgroup

 

(N = 6431; 25% with DM)

Recent strokeClopidogrel 75 mg/dayAspirin 325 mg/day

7.15% vs. 7.71%

 

HR 0.91 (0.81–1.06)

5.2% vs. 5.7%Not reportedNot reported

ESPRIT (2006)140

 

(N = 2739; 18.7% with DM)

Recent minor stroke/TIA (mRS <3) within 6 months

Dipyridamole 200 mg b.i.d.

 

plus

 

Aspirin 30–325 mg/day

 

(median 75 mg/day)

Aspirin 30–325 mg/day

 

(median 75 mg/day)

3.5 years

3.3% vs. 4.3%

 

HR 0.78 (0·63–0·97)

2.1% vs. 2.6%

 

HR 0.84 (0.64–1.10)

0.8% vs. 1.5%2.5% vs. 3.9%

PRoFESS (2008)141

 

(N = 20 332; 28% with DM)

Recent stroke within 90 days

Extended release dipyridamole 200 mg b.i.d.

 

plus

 

Aspirin 25 mg b.i.d.

Clopidogrel 75 mg/day2.5 year

13.1% vs. 13.1%

 

HR 0.99 (0.92–1.07)

7.7% vs. 7.9%

 

HR 0.97 (0.88–1.07)

1.4% vs. 1.0%

 

HR 1.42 (1.11–1.83)

4.1% vs. 3.6%

 

HR 1.15 (1.00–1.32)

MATCH (2004)145

 

(N = 7599; 68% with DM)

Recent stroke/TIA within 3 months

 

plus >1 risk factors

Clopidogrel 75 mg/day

 

plus

 

Aspirin 75 mg/day

Clopidogrel 75 mg/day1.5 years

16% vs. 17%

 

HR 0.94 (0.84–1.05)

8% vs. 9%

 

HR 0.93 (0.80–1.09)

1.1% vs. 0.7%

1.9% vs. 0.6%

 

(P < 0.001)

CHARISMA (2006)142

 

(N = 15 603; 42.7% with DM)

Atherosclerotic risks, CVD, stroke/TIA within 5 years

Clopidogrel 75 mg/day

 

plus

 

Aspirin 75–162 mg/day

Aspirin 75–162 mg/day2.3 years

6.8% vs. 7.3%

 

HR 0.93 (0.83–1.05)

1.7% vs. 2.1%

 

HR 0.81 (0.64–1.02)

0.3% vs. 0.3%

 

HR 0.96 (0.56–1.65)

2.1% vs. 1.3%

 

HR 1.62 (1.27–2.08)

SPS3 (2012)143

 

(N = 3020; 36.5% with DM)

Symptomatic lacuna stroke within 6 months

Clopidogrel 75 mg/day

 

plus

 

Aspirin 325 mg/day

Aspirin 325 mg/day3.4 years

3.1% vs. 3.4%

 

HR 0.89 (0.72–1.11)

2.0% vs. 2.4%

 

HR 0.82 (0.63–1.09)

0.4% vs. 0.3%

 

HR 1.65 (0.83–3.31)

2.1% vs. 1.1%

 

HR 1.97 (1.41–2.71)

Greving et al. (2019)144

 

(N = 43 112; 33.3% with DM)

Meta-analysis (6 RCTs)ClopidogrelAspirin2.0 years0.88 (0.78–0.98)0.91 (0.81–1.02)0.63 (0.43–0.91)0.76 (0.63–0.91)
Aspirin/dipyridamole0.83 (0.74–0.94)0.86 (0.76–0.97)0.88 (0.60–1.31)0.86 (0.71–1.05)
Aspirin/clopidogrel0.83 (0.71–0.96)0.83 (0.71–0.97)1.19 (0.68–2.08)1.63 (1.29–2.07)
Aspirin/dipyridamoleClopidogrel0.95 (0.85–1.06)0.95 (0.87–1.04)1.40 (1.08–1.82)1.14 (1.00–1.30)
Aspirin/clopidogrel0.94 (0.82–1.08)0.91 (0.80–1.04)1.88 (1.12–3.16)2.16 (1.72–2.71)
Aspirin/clopidogrelAspirin/dipyridamole0.99 (0.84–1.17)0.96 (0.82–1.13)1.34 (0.77–2.36)1.89 (1.47–2.42)
Anti-coagulant randomized trials for primary and secondary preventions in patients with atrial fibrillation
StudyPatientsInterventionControlFollow-upStroke or systemic embolic eventIschaemic strokeIntracranial haemorrhageMajor haemorrhage

ARISTOTLE (2011)149

 

(N = 18 201; 25% with DM)

Patients with AF

 

CHADS2  >1

Apixaban 5 mg b.i.d.

 

Apixaban 2.5 mg b.i.d. in age >80 years, body weight <60 kg, creatinine >1.5 mg/mL

Warfarin (keep INR 2.0–3.0)2 years

1.27% vs. 1.60%

 

HR 0.79 (0.66–0.95)

0.97% vs. 1.05%

 

HR 0.92 (0.74–1.13)

0.33% vs. 0.80%

 

HR 0.42 (0.30–0.58)

2.13% vs. 3.09%

 

HR 0.69 (0.60–0.80)

ARISTOTLE (2015)153

 

DM subgroup

 

(N = 4547)

DM patients were younger, more CAD, higher CHADS2 and HAS-BLED

1.39% vs. 1.86%

 

HR 0.75 (0.53–1.05)

Not reported

0.34% vs. 0.70%

 

HR 0.49 (0.25–0.95)

3.01% vs. 3.13%

 

HR 0.96 (0.74–1.25)

RE-LY (2009)148

 

(N = 18 113; 23.3% with DM)

Patients with AF

 

CHADS2  >1

 

or

 

CHA2DS2-VASc >2 for men or >3 for women

Dabigatran 110 mg b.i.d.Warfarin (keep INR 2.0–3.0)2 years

1.53% vs. 1.69%

 

HR 0.91 (0.74–1.11)

1.34% vs. 1.20%

 

HR 1.11 (0.89–1.40)

0.23% vs. 0.74%

 

HR 0.31 (0.20–0.47)

2.71% vs. 3.36%

 

HR 0.80 (0.69–0.93)

Dabigatran 150 mg b.i.d.

1.11% vs. 1.69%

 

HR 0.66 (0.53–0.82)

0.92% vs. 1.20%

 

HR 0.76 (0.60–0.98)

0.3% vs. 0.74%

 

HR 0.40 (0.27–0.60)

3.11% vs. 3.36%

 

HR 0.93 (0.81–1.07)

RE-LY (2015)152

 

DM subgroup

 

(N = 4221)

DM patients were younger, more CAD and PAD, higher CHA2DS2VASc scoresDabigatran 110 mg b.i.d.Warfarin (keep INR 2.0–3.0)

1.76% vs. 2.35%

 

HR 0.74 (0.51–1.07)

1.62% vs. 1.65%

 

HR 0.97 (0.64–1.40)

0.22% vs. 0.81%

 

HR 0.26 (0.11–0.65)

3.81% vs. 4.19%

 

HR 0.91 (0.70–1.19)

Dabigatran 150 mg b.i.d.

1.46% vs. 2.35%

 

HR 0.61 (0.41–0.91)

1.28% vs. 1.65%

 

HR 0.76 (0.49–1.19)

0.47% vs. 0.81%

 

HR 0.58 (0.29–1.16)

4.66% vs. 4.19%

 

HR 1.12 (0.87–1.44)

ROCKET AF (2011)150

 

(N = 14 264; 39.9% with DM)

Patients with AF

 

CHADS2  >2

Rivaroxaban 20 mg/day

 

(15 mg/day if creatinine clearance 30–49 mL/min)

Warfarin (keep INR 2.0–3.0)1.9 years

1.7% vs. 2.2%

 

HR 0.79 (0.66–0.96)

2.11% vs. 2.27%

 

HR 0.94 (0.75–1.17)

0.8% vs. 1.2%

 

HR 0.67 (0.47–0.93)

5.6% vs. 5.4%

 

HR 1.04 (0.90–1.20)

ROCKET AF (2015)154

 

DM subgroup

 

(N = 5695)

DM patients were younger, more obese, higher BP, similar CHADS2 scores

1.7% vs. 2.1%

 

HR 0.82 (0.63–1.08)

1.35% vs. 1.45%

 

HR 0.94 (0.69–1.30)

0.5% vs. 0.8%

 

HR 0.62 (0.36–1.05)

3.8% vs. 3.9%

 

HR 1.00 (0.81–1.24)

ENGAGE AF-TIMI 48 (2013)151

 

(N = 21 105; 36.1% with DM)

Patients with AF

 

CHADS2  >2

Edoxaban 30 mg/day

 

(15 mg/day if creatinine clearance 30–50 mL/min, body weight <60 kg, or concomitant use of verapamil or quinidine)

Warfarin (keep INR 2.0–3.0)2.8 years

1.61% vs. 1.50%

 

HR 1.07 (0.87–1.31)

1.77% vs. 1.25%

 

HR 1.41 (1.19–1.67)

0.26% vs. 0.85%

 

HR 0.30 (0.21–0.43)

1.61% vs. 3.43%

 

HR 0.47 (0.41–0.55)

Edoxaban 60 mg/day

 

(30 mg/day if creatinine clearance 30–50 mL/min, body weight <60 kg, or concomitant use of verapamil or quinidine)

1.18% vs. 1.50%

 

HR 0.79 (0.63–0.99)

1.25% vs. 1.25%

 

HR 1.00 (0.83–1.19)

0.39% vs. 0.85%

 

HR 0.47 (0.34–0.63)

2.75% vs. 3.43%

 

HR 0.80 (0.71–0.91)

Anti-coagulant randomized trials for primary and secondary preventions in patients with atrial fibrillation
StudyPatientsInterventionControlFollow-upStroke or systemic embolic eventIschaemic strokeIntracranial haemorrhageMajor haemorrhage

ARISTOTLE (2011)149

 

(N = 18 201; 25% with DM)

Patients with AF

 

CHADS2  >1

Apixaban 5 mg b.i.d.

 

Apixaban 2.5 mg b.i.d. in age >80 years, body weight <60 kg, creatinine >1.5 mg/mL

Warfarin (keep INR 2.0–3.0)2 years

1.27% vs. 1.60%

 

HR 0.79 (0.66–0.95)

0.97% vs. 1.05%

 

HR 0.92 (0.74–1.13)

0.33% vs. 0.80%

 

HR 0.42 (0.30–0.58)

2.13% vs. 3.09%

 

HR 0.69 (0.60–0.80)

ARISTOTLE (2015)153

 

DM subgroup

 

(N = 4547)

DM patients were younger, more CAD, higher CHADS2 and HAS-BLED

1.39% vs. 1.86%

 

HR 0.75 (0.53–1.05)

Not reported

0.34% vs. 0.70%

 

HR 0.49 (0.25–0.95)

3.01% vs. 3.13%

 

HR 0.96 (0.74–1.25)

RE-LY (2009)148

 

(N = 18 113; 23.3% with DM)

Patients with AF

 

CHADS2  >1

 

or

 

CHA2DS2-VASc >2 for men or >3 for women

Dabigatran 110 mg b.i.d.Warfarin (keep INR 2.0–3.0)2 years

1.53% vs. 1.69%

 

HR 0.91 (0.74–1.11)

1.34% vs. 1.20%

 

HR 1.11 (0.89–1.40)

0.23% vs. 0.74%

 

HR 0.31 (0.20–0.47)

2.71% vs. 3.36%

 

HR 0.80 (0.69–0.93)

Dabigatran 150 mg b.i.d.

1.11% vs. 1.69%

 

HR 0.66 (0.53–0.82)

0.92% vs. 1.20%

 

HR 0.76 (0.60–0.98)

0.3% vs. 0.74%

 

HR 0.40 (0.27–0.60)

3.11% vs. 3.36%

 

HR 0.93 (0.81–1.07)

RE-LY (2015)152

 

DM subgroup

 

(N = 4221)

DM patients were younger, more CAD and PAD, higher CHA2DS2VASc scoresDabigatran 110 mg b.i.d.Warfarin (keep INR 2.0–3.0)

1.76% vs. 2.35%

 

HR 0.74 (0.51–1.07)

1.62% vs. 1.65%

 

HR 0.97 (0.64–1.40)

0.22% vs. 0.81%

 

HR 0.26 (0.11–0.65)

3.81% vs. 4.19%

 

HR 0.91 (0.70–1.19)

Dabigatran 150 mg b.i.d.

1.46% vs. 2.35%

 

HR 0.61 (0.41–0.91)

1.28% vs. 1.65%

 

HR 0.76 (0.49–1.19)

0.47% vs. 0.81%

 

HR 0.58 (0.29–1.16)

4.66% vs. 4.19%

 

HR 1.12 (0.87–1.44)

ROCKET AF (2011)150

 

(N = 14 264; 39.9% with DM)

Patients with AF

 

CHADS2  >2

Rivaroxaban 20 mg/day

 

(15 mg/day if creatinine clearance 30–49 mL/min)

Warfarin (keep INR 2.0–3.0)1.9 years

1.7% vs. 2.2%

 

HR 0.79 (0.66–0.96)

2.11% vs. 2.27%

 

HR 0.94 (0.75–1.17)

0.8% vs. 1.2%

 

HR 0.67 (0.47–0.93)

5.6% vs. 5.4%

 

HR 1.04 (0.90–1.20)

ROCKET AF (2015)154

 

DM subgroup

 

(N = 5695)

DM patients were younger, more obese, higher BP, similar CHADS2 scores

1.7% vs. 2.1%

 

HR 0.82 (0.63–1.08)

1.35% vs. 1.45%

 

HR 0.94 (0.69–1.30)

0.5% vs. 0.8%

 

HR 0.62 (0.36–1.05)

3.8% vs. 3.9%

 

HR 1.00 (0.81–1.24)

ENGAGE AF-TIMI 48 (2013)151

 

(N = 21 105; 36.1% with DM)

Patients with AF

 

CHADS2  >2

Edoxaban 30 mg/day

 

(15 mg/day if creatinine clearance 30–50 mL/min, body weight <60 kg, or concomitant use of verapamil or quinidine)

Warfarin (keep INR 2.0–3.0)2.8 years

1.61% vs. 1.50%

 

HR 1.07 (0.87–1.31)

1.77% vs. 1.25%

 

HR 1.41 (1.19–1.67)

0.26% vs. 0.85%

 

HR 0.30 (0.21–0.43)

1.61% vs. 3.43%

 

HR 0.47 (0.41–0.55)

Edoxaban 60 mg/day

 

(30 mg/day if creatinine clearance 30–50 mL/min, body weight <60 kg, or concomitant use of verapamil or quinidine)

1.18% vs. 1.50%

 

HR 0.79 (0.63–0.99)

1.25% vs. 1.25%

 

HR 1.00 (0.83–1.19)

0.39% vs. 0.85%

 

HR 0.47 (0.34–0.63)

2.75% vs. 3.43%

 

HR 0.80 (0.71–0.91)

Antiplatelet platelet and anticoagulant for secondary prevention in atrial fibrillation patients ineligible for vitamin K antagonist
StudyPatientsInterventionControlFollow-upStroke, systemic emboli, MI, CVD deathIschaemic strokeIntracranial haemorrhageMajor haemorrhage

AVERROES (2011)155

 

(N = 5599; 19.6% with DM)

Patients with AF

 

Ineligible for VKA

 

CHADS2  >1, or documented PAD

Apixaban 5 mg b.i.d.

 

Apixaban 2.5 mg b.i.d. in age >80 years, body weight <60 kg, creatinine >1.5 mg/mL

Aspirin 81–324 mg/day1.1 years

4.2% vs. 6.4%

 

HR 0.66 (0.53–0.83)

1.1% vs. 3.0%

 

HR 0.37 (0.25–0.55)

0.4% vs. 0.4%

 

HR 0.85 (0.38–1.90)

1.4% vs. 1.2%

 

HR 1.13 (0.74–1.75)

Antiplatelet platelet and anticoagulant for secondary prevention in atrial fibrillation patients ineligible for vitamin K antagonist
StudyPatientsInterventionControlFollow-upStroke, systemic emboli, MI, CVD deathIschaemic strokeIntracranial haemorrhageMajor haemorrhage

AVERROES (2011)155

 

(N = 5599; 19.6% with DM)

Patients with AF

 

Ineligible for VKA

 

CHADS2  >1, or documented PAD

Apixaban 5 mg b.i.d.

 

Apixaban 2.5 mg b.i.d. in age >80 years, body weight <60 kg, creatinine >1.5 mg/mL

Aspirin 81–324 mg/day1.1 years

4.2% vs. 6.4%

 

HR 0.66 (0.53–0.83)

1.1% vs. 3.0%

 

HR 0.37 (0.25–0.55)

0.4% vs. 0.4%

 

HR 0.85 (0.38–1.90)

1.4% vs. 1.2%

 

HR 1.13 (0.74–1.75)

Antiplatelet and anticoagulant studies for secondary prevention in individuals with cerebrovascular disease.

Significant differences are highlighted in bold.

b.i.d., twice daily; CAD, coronary artery disease; CHA2DS2-VASc, score, Congestive Heart failure, hypertension, Age ≥75 (doubled), Diabetes, Stroke (doubled), Vascular disease, Age 65–74, and Sex (female); CHADS2 score, Cardiac failure, Hypertension, Age, Diabetes, Stroke (doubled); CVD, cardiovascular disease; DM, diabetes mellitus; HAS-BLED score, hypertension, abnormal renal/liver function (1 point each), stroke, bleeding history or predisposition, labile INR, elderly (65 years), drugs/alcohol concomitantly (1 point each); HR, hazard ratio; MI, myocardial infarction; mRS, modified Rankin scale; NIHSS, National Institutes of Health Stroke Scale; PAD, peripheral artery disease; TIA, transient ischaemic stroke; VKA, vitamin K antagonist.

Table 4

Antithrombotic therapy in cerebrovascular disease

Antiplatelet randomized trial for secondary prevention in patients with acute minor ischaemic stroke/high-risk TIA
StudyPatientsInterventionControlFollow-upComposite vascular events (stroke, MI or CVD death)Recurrent ischaemic strokeIntracranial haemorrhageMajor haemorrhage

CHANCE (2013)134

 

(N = 5170; 21.1% with DM)

Minor stroke (NIHSS <3)/high-risk TIA, onset <24 h

Clopidogrel 300 mg loading then 75 mg/day on days 2–90

 

Aspirin 75–300 mg/day on days 2–21

Clopidogrel 75 mg/day on days 1–9090 days

8.4% vs. 11.9%

 

HR 0.69 (0.58–0.82)

7.9% vs. 11.4%

 

HR 0.67 (0.56–0.81)

0.3% vs. 0.3%

 

HR 1.01 (0.38–2.70)

 

(haemorrhagic stroke)

0.2% vs. 0.2%

 

HR 0.94 (0.24–3.79)

 

(severe bleeding)

 

0.1% vs. 0.2%

 

HR 0.73 (0.16–3.26)

 

(moderate bleeding)

POINT (2018)135

 

(N = 4881; 27.5% with DM)

Minor stroke (NIHSS <3)/high-risk TIA, onset <12 h

Clopidogrel 600 mg loading then 75 mg/day on days 2–90

 

Aspirin 50–325 mg/day on days 2–21

Aspirin 50–325 mg on days 1–90

 

(recommend 162 mg/day on day 1–5, then 81 mg/day afterward)

90 days

5.0% vs. 6.5%

 

HR 0.75 (0.59–0.95)

4.6% vs. 6.3%

 

HR 0.72 (0.56–0.92)

0.2% vs. 0.1%

 

HR 1.68 (0.40–7.03)

 

(haemorrhagic stroke)

0.9% vs. 0.4%

 

HR 2.32 (1.10–4.87)

SOCRATES (2016)133

 

(N = 6589; 24.3% with DM)

Non-severe stroke

 

(NIHSS <5)/high-risk TIA, onset <24 h

Ticagrelor 180 mg loading then 90 mg b.i.d. on days 2–90Aspirin 300 mg loading then 100 mg/day on days 2–9090 days

6.5% vs. 7.2%

 

HR 0.89 (0.78–1.01)

5.9% vs. 6.6%

 

HR 0.87 (0.76–1.00)

0.2% vs. 0.3%

 

HR 0.68 (0.33–1.41)

0.5% vs. 0.6%

 

HR 0.83 (0.52–1.34)

THALES (2020)136

 

(N = 11 016; 28.6% with DM)

Mild–moderate stroke (NIHSS <5)/high-risk TIA (ABCD2 > 6), onset <24 h

Ticagrelor 180 mg loading then 90 mg b.i.d. on days 2–30

 

Aspirin 300–325 mg loading then 75 to 100 mg/day on days 2–30

Aspirin 300–325 mg loading then 75–100 mg o.d. on days 2–3030 days

5.5% vs. 6.6%

 

HR 0.83 (0.71–0.96)

 

(stroke or death)

5.0% vs. 6.3%

 

HR 0.79 (0.68–0.93)

0.4% vs. 0.1%

 

HR 3.33 (1.34–8.28)

0.5% vs. 0.1%

 

HR 3.99 (1.74–9.14)

Antiplatelet randomized trial for secondary prevention in patients with acute minor ischaemic stroke/high-risk TIA
StudyPatientsInterventionControlFollow-upComposite vascular events (stroke, MI or CVD death)Recurrent ischaemic strokeIntracranial haemorrhageMajor haemorrhage

CHANCE (2013)134

 

(N = 5170; 21.1% with DM)

Minor stroke (NIHSS <3)/high-risk TIA, onset <24 h

Clopidogrel 300 mg loading then 75 mg/day on days 2–90

 

Aspirin 75–300 mg/day on days 2–21

Clopidogrel 75 mg/day on days 1–9090 days

8.4% vs. 11.9%

 

HR 0.69 (0.58–0.82)

7.9% vs. 11.4%

 

HR 0.67 (0.56–0.81)

0.3% vs. 0.3%

 

HR 1.01 (0.38–2.70)

 

(haemorrhagic stroke)

0.2% vs. 0.2%

 

HR 0.94 (0.24–3.79)

 

(severe bleeding)

 

0.1% vs. 0.2%

 

HR 0.73 (0.16–3.26)

 

(moderate bleeding)

POINT (2018)135

 

(N = 4881; 27.5% with DM)

Minor stroke (NIHSS <3)/high-risk TIA, onset <12 h

Clopidogrel 600 mg loading then 75 mg/day on days 2–90

 

Aspirin 50–325 mg/day on days 2–21

Aspirin 50–325 mg on days 1–90

 

(recommend 162 mg/day on day 1–5, then 81 mg/day afterward)

90 days

5.0% vs. 6.5%

 

HR 0.75 (0.59–0.95)

4.6% vs. 6.3%

 

HR 0.72 (0.56–0.92)

0.2% vs. 0.1%

 

HR 1.68 (0.40–7.03)

 

(haemorrhagic stroke)

0.9% vs. 0.4%

 

HR 2.32 (1.10–4.87)

SOCRATES (2016)133

 

(N = 6589; 24.3% with DM)

Non-severe stroke

 

(NIHSS <5)/high-risk TIA, onset <24 h

Ticagrelor 180 mg loading then 90 mg b.i.d. on days 2–90Aspirin 300 mg loading then 100 mg/day on days 2–9090 days

6.5% vs. 7.2%

 

HR 0.89 (0.78–1.01)

5.9% vs. 6.6%

 

HR 0.87 (0.76–1.00)

0.2% vs. 0.3%

 

HR 0.68 (0.33–1.41)

0.5% vs. 0.6%

 

HR 0.83 (0.52–1.34)

THALES (2020)136

 

(N = 11 016; 28.6% with DM)

Mild–moderate stroke (NIHSS <5)/high-risk TIA (ABCD2 > 6), onset <24 h

Ticagrelor 180 mg loading then 90 mg b.i.d. on days 2–30

 

Aspirin 300–325 mg loading then 75 to 100 mg/day on days 2–30

Aspirin 300–325 mg loading then 75–100 mg o.d. on days 2–3030 days

5.5% vs. 6.6%

 

HR 0.83 (0.71–0.96)

 

(stroke or death)

5.0% vs. 6.3%

 

HR 0.79 (0.68–0.93)

0.4% vs. 0.1%

 

HR 3.33 (1.34–8.28)

0.5% vs. 0.1%

 

HR 3.99 (1.74–9.14)

Anti-platelet randomized trials for long-term secondary prevention in patients with previous non-cardioembolic ischaemic stroke/TIA
StudyPatientInterventionControlFollow-upNon-fatal MI, non-fatal stroke, death from vascular causesRecurrent ischaemic strokeIntracranial haemorrhageMajor haemorrhage

CAPRIE (1996)86

 

(N = 19 185; 20% with DM)

Recent MI, PAD, or strokeClopidogrel 75 mg/dayAspirin 325 mg/day1.9 years

5.32% vs. 5.83%

 

HR 0.91 (0.84–1.00)

Not reported0.35% vs. 0.49%

1.38% vs. 1.55%

 

(severe bleeding)

CAPRIE (1996)86 stroke subgroup

 

(N = 6431; 25% with DM)

Recent strokeClopidogrel 75 mg/dayAspirin 325 mg/day

7.15% vs. 7.71%

 

HR 0.91 (0.81–1.06)

5.2% vs. 5.7%Not reportedNot reported

ESPRIT (2006)140

 

(N = 2739; 18.7% with DM)

Recent minor stroke/TIA (mRS <3) within 6 months

Dipyridamole 200 mg b.i.d.

 

plus

 

Aspirin 30–325 mg/day

 

(median 75 mg/day)

Aspirin 30–325 mg/day

 

(median 75 mg/day)

3.5 years

3.3% vs. 4.3%

 

HR 0.78 (0·63–0·97)

2.1% vs. 2.6%

 

HR 0.84 (0.64–1.10)

0.8% vs. 1.5%2.5% vs. 3.9%

PRoFESS (2008)141

 

(N = 20 332; 28% with DM)

Recent stroke within 90 days

Extended release dipyridamole 200 mg b.i.d.

 

plus

 

Aspirin 25 mg b.i.d.

Clopidogrel 75 mg/day2.5 year

13.1% vs. 13.1%

 

HR 0.99 (0.92–1.07)

7.7% vs. 7.9%

 

HR 0.97 (0.88–1.07)

1.4% vs. 1.0%

 

HR 1.42 (1.11–1.83)

4.1% vs. 3.6%

 

HR 1.15 (1.00–1.32)

MATCH (2004)145

 

(N = 7599; 68% with DM)

Recent stroke/TIA within 3 months

 

plus >1 risk factors

Clopidogrel 75 mg/day

 

plus

 

Aspirin 75 mg/day

Clopidogrel 75 mg/day1.5 years

16% vs. 17%

 

HR 0.94 (0.84–1.05)

8% vs. 9%

 

HR 0.93 (0.80–1.09)

1.1% vs. 0.7%

1.9% vs. 0.6%

 

(P < 0.001)

CHARISMA (2006)142

 

(N = 15 603; 42.7% with DM)

Atherosclerotic risks, CVD, stroke/TIA within 5 years

Clopidogrel 75 mg/day

 

plus

 

Aspirin 75–162 mg/day

Aspirin 75–162 mg/day2.3 years

6.8% vs. 7.3%

 

HR 0.93 (0.83–1.05)

1.7% vs. 2.1%

 

HR 0.81 (0.64–1.02)

0.3% vs. 0.3%

 

HR 0.96 (0.56–1.65)

2.1% vs. 1.3%

 

HR 1.62 (1.27–2.08)

SPS3 (2012)143

 

(N = 3020; 36.5% with DM)

Symptomatic lacuna stroke within 6 months

Clopidogrel 75 mg/day

 

plus

 

Aspirin 325 mg/day

Aspirin 325 mg/day3.4 years

3.1% vs. 3.4%

 

HR 0.89 (0.72–1.11)

2.0% vs. 2.4%

 

HR 0.82 (0.63–1.09)

0.4% vs. 0.3%

 

HR 1.65 (0.83–3.31)

2.1% vs. 1.1%

 

HR 1.97 (1.41–2.71)

Greving et al. (2019)144

 

(N = 43 112; 33.3% with DM)

Meta-analysis (6 RCTs)ClopidogrelAspirin2.0 years0.88 (0.78–0.98)0.91 (0.81–1.02)0.63 (0.43–0.91)0.76 (0.63–0.91)
Aspirin/dipyridamole0.83 (0.74–0.94)0.86 (0.76–0.97)0.88 (0.60–1.31)0.86 (0.71–1.05)
Aspirin/clopidogrel0.83 (0.71–0.96)0.83 (0.71–0.97)1.19 (0.68–2.08)1.63 (1.29–2.07)
Aspirin/dipyridamoleClopidogrel0.95 (0.85–1.06)0.95 (0.87–1.04)1.40 (1.08–1.82)1.14 (1.00–1.30)
Aspirin/clopidogrel0.94 (0.82–1.08)0.91 (0.80–1.04)1.88 (1.12–3.16)2.16 (1.72–2.71)
Aspirin/clopidogrelAspirin/dipyridamole0.99 (0.84–1.17)0.96 (0.82–1.13)1.34 (0.77–2.36)1.89 (1.47–2.42)
Anti-platelet randomized trials for long-term secondary prevention in patients with previous non-cardioembolic ischaemic stroke/TIA
StudyPatientInterventionControlFollow-upNon-fatal MI, non-fatal stroke, death from vascular causesRecurrent ischaemic strokeIntracranial haemorrhageMajor haemorrhage

CAPRIE (1996)86

 

(N = 19 185; 20% with DM)

Recent MI, PAD, or strokeClopidogrel 75 mg/dayAspirin 325 mg/day1.9 years

5.32% vs. 5.83%

 

HR 0.91 (0.84–1.00)

Not reported0.35% vs. 0.49%

1.38% vs. 1.55%

 

(severe bleeding)

CAPRIE (1996)86 stroke subgroup

 

(N = 6431; 25% with DM)

Recent strokeClopidogrel 75 mg/dayAspirin 325 mg/day

7.15% vs. 7.71%

 

HR 0.91 (0.81–1.06)

5.2% vs. 5.7%Not reportedNot reported

ESPRIT (2006)140

 

(N = 2739; 18.7% with DM)

Recent minor stroke/TIA (mRS <3) within 6 months

Dipyridamole 200 mg b.i.d.

 

plus

 

Aspirin 30–325 mg/day

 

(median 75 mg/day)

Aspirin 30–325 mg/day

 

(median 75 mg/day)

3.5 years

3.3% vs. 4.3%

 

HR 0.78 (0·63–0·97)

2.1% vs. 2.6%

 

HR 0.84 (0.64–1.10)

0.8% vs. 1.5%2.5% vs. 3.9%

PRoFESS (2008)141

 

(N = 20 332; 28% with DM)

Recent stroke within 90 days

Extended release dipyridamole 200 mg b.i.d.

 

plus

 

Aspirin 25 mg b.i.d.

Clopidogrel 75 mg/day2.5 year

13.1% vs. 13.1%

 

HR 0.99 (0.92–1.07)

7.7% vs. 7.9%

 

HR 0.97 (0.88–1.07)

1.4% vs. 1.0%

 

HR 1.42 (1.11–1.83)

4.1% vs. 3.6%

 

HR 1.15 (1.00–1.32)

MATCH (2004)145

 

(N = 7599; 68% with DM)

Recent stroke/TIA within 3 months

 

plus >1 risk factors

Clopidogrel 75 mg/day

 

plus

 

Aspirin 75 mg/day

Clopidogrel 75 mg/day1.5 years

16% vs. 17%

 

HR 0.94 (0.84–1.05)

8% vs. 9%

 

HR 0.93 (0.80–1.09)

1.1% vs. 0.7%

1.9% vs. 0.6%

 

(P < 0.001)

CHARISMA (2006)142

 

(N = 15 603; 42.7% with DM)

Atherosclerotic risks, CVD, stroke/TIA within 5 years

Clopidogrel 75 mg/day

 

plus

 

Aspirin 75–162 mg/day

Aspirin 75–162 mg/day2.3 years

6.8% vs. 7.3%

 

HR 0.93 (0.83–1.05)

1.7% vs. 2.1%

 

HR 0.81 (0.64–1.02)

0.3% vs. 0.3%

 

HR 0.96 (0.56–1.65)

2.1% vs. 1.3%

 

HR 1.62 (1.27–2.08)

SPS3 (2012)143

 

(N = 3020; 36.5% with DM)

Symptomatic lacuna stroke within 6 months

Clopidogrel 75 mg/day

 

plus

 

Aspirin 325 mg/day

Aspirin 325 mg/day3.4 years

3.1% vs. 3.4%

 

HR 0.89 (0.72–1.11)

2.0% vs. 2.4%

 

HR 0.82 (0.63–1.09)

0.4% vs. 0.3%

 

HR 1.65 (0.83–3.31)

2.1% vs. 1.1%

 

HR 1.97 (1.41–2.71)

Greving et al. (2019)144

 

(N = 43 112; 33.3% with DM)

Meta-analysis (6 RCTs)ClopidogrelAspirin2.0 years0.88 (0.78–0.98)0.91 (0.81–1.02)0.63 (0.43–0.91)0.76 (0.63–0.91)
Aspirin/dipyridamole0.83 (0.74–0.94)0.86 (0.76–0.97)0.88 (0.60–1.31)0.86 (0.71–1.05)
Aspirin/clopidogrel0.83 (0.71–0.96)0.83 (0.71–0.97)1.19 (0.68–2.08)1.63 (1.29–2.07)
Aspirin/dipyridamoleClopidogrel0.95 (0.85–1.06)0.95 (0.87–1.04)1.40 (1.08–1.82)1.14 (1.00–1.30)
Aspirin/clopidogrel0.94 (0.82–1.08)0.91 (0.80–1.04)1.88 (1.12–3.16)2.16 (1.72–2.71)
Aspirin/clopidogrelAspirin/dipyridamole0.99 (0.84–1.17)0.96 (0.82–1.13)1.34 (0.77–2.36)1.89 (1.47–2.42)
Anti-coagulant randomized trials for primary and secondary preventions in patients with atrial fibrillation
StudyPatientsInterventionControlFollow-upStroke or systemic embolic eventIschaemic strokeIntracranial haemorrhageMajor haemorrhage

ARISTOTLE (2011)149

 

(N = 18 201; 25% with DM)

Patients with AF

 

CHADS2  >1

Apixaban 5 mg b.i.d.

 

Apixaban 2.5 mg b.i.d. in age >80 years, body weight <60 kg, creatinine >1.5 mg/mL

Warfarin (keep INR 2.0–3.0)2 years

1.27% vs. 1.60%

 

HR 0.79 (0.66–0.95)

0.97% vs. 1.05%

 

HR 0.92 (0.74–1.13)

0.33% vs. 0.80%

 

HR 0.42 (0.30–0.58)

2.13% vs. 3.09%

 

HR 0.69 (0.60–0.80)

ARISTOTLE (2015)153

 

DM subgroup

 

(N = 4547)

DM patients were younger, more CAD, higher CHADS2 and HAS-BLED

1.39% vs. 1.86%

 

HR 0.75 (0.53–1.05)

Not reported

0.34% vs. 0.70%

 

HR 0.49 (0.25–0.95)

3.01% vs. 3.13%

 

HR 0.96 (0.74–1.25)

RE-LY (2009)148

 

(N = 18 113; 23.3% with DM)

Patients with AF

 

CHADS2  >1

 

or

 

CHA2DS2-VASc >2 for men or >3 for women

Dabigatran 110 mg b.i.d.Warfarin (keep INR 2.0–3.0)2 years

1.53% vs. 1.69%

 

HR 0.91 (0.74–1.11)

1.34% vs. 1.20%

 

HR 1.11 (0.89–1.40)

0.23% vs. 0.74%

 

HR 0.31 (0.20–0.47)

2.71% vs. 3.36%

 

HR 0.80 (0.69–0.93)

Dabigatran 150 mg b.i.d.

1.11% vs. 1.69%

 

HR 0.66 (0.53–0.82)

0.92% vs. 1.20%

 

HR 0.76 (0.60–0.98)

0.3% vs. 0.74%

 

HR 0.40 (0.27–0.60)

3.11% vs. 3.36%

 

HR 0.93 (0.81–1.07)

RE-LY (2015)152

 

DM subgroup

 

(N = 4221)

DM patients were younger, more CAD and PAD, higher CHA2DS2VASc scoresDabigatran 110 mg b.i.d.Warfarin (keep INR 2.0–3.0)

1.76% vs. 2.35%

 

HR 0.74 (0.51–1.07)

1.62% vs. 1.65%

 

HR 0.97 (0.64–1.40)

0.22% vs. 0.81%

 

HR 0.26 (0.11–0.65)

3.81% vs. 4.19%

 

HR 0.91 (0.70–1.19)

Dabigatran 150 mg b.i.d.

1.46% vs. 2.35%

 

HR 0.61 (0.41–0.91)

1.28% vs. 1.65%

 

HR 0.76 (0.49–1.19)

0.47% vs. 0.81%

 

HR 0.58 (0.29–1.16)

4.66% vs. 4.19%

 

HR 1.12 (0.87–1.44)

ROCKET AF (2011)150

 

(N = 14 264; 39.9% with DM)

Patients with AF

 

CHADS2  >2

Rivaroxaban 20 mg/day

 

(15 mg/day if creatinine clearance 30–49 mL/min)

Warfarin (keep INR 2.0–3.0)1.9 years

1.7% vs. 2.2%

 

HR 0.79 (0.66–0.96)

2.11% vs. 2.27%

 

HR 0.94 (0.75–1.17)

0.8% vs. 1.2%

 

HR 0.67 (0.47–0.93)

5.6% vs. 5.4%

 

HR 1.04 (0.90–1.20)

ROCKET AF (2015)154

 

DM subgroup

 

(N = 5695)

DM patients were younger, more obese, higher BP, similar CHADS2 scores

1.7% vs. 2.1%

 

HR 0.82 (0.63–1.08)

1.35% vs. 1.45%

 

HR 0.94 (0.69–1.30)

0.5% vs. 0.8%

 

HR 0.62 (0.36–1.05)

3.8% vs. 3.9%

 

HR 1.00 (0.81–1.24)

ENGAGE AF-TIMI 48 (2013)151

 

(N = 21 105; 36.1% with DM)

Patients with AF

 

CHADS2  >2

Edoxaban 30 mg/day

 

(15 mg/day if creatinine clearance 30–50 mL/min, body weight <60 kg, or concomitant use of verapamil or quinidine)

Warfarin (keep INR 2.0–3.0)2.8 years

1.61% vs. 1.50%

 

HR 1.07 (0.87–1.31)

1.77% vs. 1.25%

 

HR 1.41 (1.19–1.67)

0.26% vs. 0.85%

 

HR 0.30 (0.21–0.43)

1.61% vs. 3.43%

 

HR 0.47 (0.41–0.55)

Edoxaban 60 mg/day

 

(30 mg/day if creatinine clearance 30–50 mL/min, body weight <60 kg, or concomitant use of verapamil or quinidine)

1.18% vs. 1.50%

 

HR 0.79 (0.63–0.99)

1.25% vs. 1.25%

 

HR 1.00 (0.83–1.19)

0.39% vs. 0.85%

 

HR 0.47 (0.34–0.63)

2.75% vs. 3.43%

 

HR 0.80 (0.71–0.91)

Anti-coagulant randomized trials for primary and secondary preventions in patients with atrial fibrillation
StudyPatientsInterventionControlFollow-upStroke or systemic embolic eventIschaemic strokeIntracranial haemorrhageMajor haemorrhage

ARISTOTLE (2011)149

 

(N = 18 201; 25% with DM)

Patients with AF

 

CHADS2  >1

Apixaban 5 mg b.i.d.

 

Apixaban 2.5 mg b.i.d. in age >80 years, body weight <60 kg, creatinine >1.5 mg/mL

Warfarin (keep INR 2.0–3.0)2 years

1.27% vs. 1.60%

 

HR 0.79 (0.66–0.95)

0.97% vs. 1.05%

 

HR 0.92 (0.74–1.13)

0.33% vs. 0.80%

 

HR 0.42 (0.30–0.58)

2.13% vs. 3.09%

 

HR 0.69 (0.60–0.80)

ARISTOTLE (2015)153

 

DM subgroup

 

(N = 4547)

DM patients were younger, more CAD, higher CHADS2 and HAS-BLED

1.39% vs. 1.86%

 

HR 0.75 (0.53–1.05)

Not reported

0.34% vs. 0.70%

 

HR 0.49 (0.25–0.95)

3.01% vs. 3.13%

 

HR 0.96 (0.74–1.25)

RE-LY (2009)148

 

(N = 18 113; 23.3% with DM)

Patients with AF

 

CHADS2  >1

 

or

 

CHA2DS2-VASc >2 for men or >3 for women

Dabigatran 110 mg b.i.d.Warfarin (keep INR 2.0–3.0)2 years

1.53% vs. 1.69%

 

HR 0.91 (0.74–1.11)

1.34% vs. 1.20%

 

HR 1.11 (0.89–1.40)

0.23% vs. 0.74%

 

HR 0.31 (0.20–0.47)

2.71% vs. 3.36%

 

HR 0.80 (0.69–0.93)

Dabigatran 150 mg b.i.d.

1.11% vs. 1.69%

 

HR 0.66 (0.53–0.82)

0.92% vs. 1.20%

 

HR 0.76 (0.60–0.98)

0.3% vs. 0.74%

 

HR 0.40 (0.27–0.60)

3.11% vs. 3.36%

 

HR 0.93 (0.81–1.07)

RE-LY (2015)152

 

DM subgroup

 

(N = 4221)

DM patients were younger, more CAD and PAD, higher CHA2DS2VASc scoresDabigatran 110 mg b.i.d.Warfarin (keep INR 2.0–3.0)

1.76% vs. 2.35%

 

HR 0.74 (0.51–1.07)

1.62% vs. 1.65%

 

HR 0.97 (0.64–1.40)

0.22% vs. 0.81%

 

HR 0.26 (0.11–0.65)

3.81% vs. 4.19%

 

HR 0.91 (0.70–1.19)

Dabigatran 150 mg b.i.d.

1.46% vs. 2.35%

 

HR 0.61 (0.41–0.91)

1.28% vs. 1.65%

 

HR 0.76 (0.49–1.19)

0.47% vs. 0.81%

 

HR 0.58 (0.29–1.16)

4.66% vs. 4.19%

 

HR 1.12 (0.87–1.44)

ROCKET AF (2011)150

 

(N = 14 264; 39.9% with DM)

Patients with AF

 

CHADS2  >2

Rivaroxaban 20 mg/day

 

(15 mg/day if creatinine clearance 30–49 mL/min)

Warfarin (keep INR 2.0–3.0)1.9 years

1.7% vs. 2.2%

 

HR 0.79 (0.66–0.96)

2.11% vs. 2.27%

 

HR 0.94 (0.75–1.17)

0.8% vs. 1.2%

 

HR 0.67 (0.47–0.93)

5.6% vs. 5.4%

 

HR 1.04 (0.90–1.20)

ROCKET AF (2015)154

 

DM subgroup

 

(N = 5695)

DM patients were younger, more obese, higher BP, similar CHADS2 scores

1.7% vs. 2.1%

 

HR 0.82 (0.63–1.08)

1.35% vs. 1.45%

 

HR 0.94 (0.69–1.30)

0.5% vs. 0.8%

 

HR 0.62 (0.36–1.05)

3.8% vs. 3.9%

 

HR 1.00 (0.81–1.24)

ENGAGE AF-TIMI 48 (2013)151

 

(N = 21 105; 36.1% with DM)

Patients with AF

 

CHADS2  >2

Edoxaban 30 mg/day

 

(15 mg/day if creatinine clearance 30–50 mL/min, body weight <60 kg, or concomitant use of verapamil or quinidine)

Warfarin (keep INR 2.0–3.0)2.8 years

1.61% vs. 1.50%

 

HR 1.07 (0.87–1.31)

1.77% vs. 1.25%

 

HR 1.41 (1.19–1.67)

0.26% vs. 0.85%

 

HR 0.30 (0.21–0.43)

1.61% vs. 3.43%

 

HR 0.47 (0.41–0.55)

Edoxaban 60 mg/day

 

(30 mg/day if creatinine clearance 30–50 mL/min, body weight <60 kg, or concomitant use of verapamil or quinidine)

1.18% vs. 1.50%

 

HR 0.79 (0.63–0.99)

1.25% vs. 1.25%

 

HR 1.00 (0.83–1.19)

0.39% vs. 0.85%

 

HR 0.47 (0.34–0.63)

2.75% vs. 3.43%

 

HR 0.80 (0.71–0.91)

Antiplatelet platelet and anticoagulant for secondary prevention in atrial fibrillation patients ineligible for vitamin K antagonist
StudyPatientsInterventionControlFollow-upStroke, systemic emboli, MI, CVD deathIschaemic strokeIntracranial haemorrhageMajor haemorrhage

AVERROES (2011)155

 

(N = 5599; 19.6% with DM)

Patients with AF

 

Ineligible for VKA

 

CHADS2  >1, or documented PAD

Apixaban 5 mg b.i.d.

 

Apixaban 2.5 mg b.i.d. in age >80 years, body weight <60 kg, creatinine >1.5 mg/mL

Aspirin 81–324 mg/day1.1 years

4.2% vs. 6.4%

 

HR 0.66 (0.53–0.83)

1.1% vs. 3.0%

 

HR 0.37 (0.25–0.55)

0.4% vs. 0.4%

 

HR 0.85 (0.38–1.90)

1.4% vs. 1.2%

 

HR 1.13 (0.74–1.75)

Antiplatelet platelet and anticoagulant for secondary prevention in atrial fibrillation patients ineligible for vitamin K antagonist
StudyPatientsInterventionControlFollow-upStroke, systemic emboli, MI, CVD deathIschaemic strokeIntracranial haemorrhageMajor haemorrhage

AVERROES (2011)155

 

(N = 5599; 19.6% with DM)

Patients with AF

 

Ineligible for VKA

 

CHADS2  >1, or documented PAD

Apixaban 5 mg b.i.d.

 

Apixaban 2.5 mg b.i.d. in age >80 years, body weight <60 kg, creatinine >1.5 mg/mL

Aspirin 81–324 mg/day1.1 years

4.2% vs. 6.4%

 

HR 0.66 (0.53–0.83)

1.1% vs. 3.0%

 

HR 0.37 (0.25–0.55)

0.4% vs. 0.4%

 

HR 0.85 (0.38–1.90)

1.4% vs. 1.2%

 

HR 1.13 (0.74–1.75)

Antiplatelet and anticoagulant studies for secondary prevention in individuals with cerebrovascular disease.

Significant differences are highlighted in bold.

b.i.d., twice daily; CAD, coronary artery disease; CHA2DS2-VASc, score, Congestive Heart failure, hypertension, Age ≥75 (doubled), Diabetes, Stroke (doubled), Vascular disease, Age 65–74, and Sex (female); CHADS2 score, Cardiac failure, Hypertension, Age, Diabetes, Stroke (doubled); CVD, cardiovascular disease; DM, diabetes mellitus; HAS-BLED score, hypertension, abnormal renal/liver function (1 point each), stroke, bleeding history or predisposition, labile INR, elderly (65 years), drugs/alcohol concomitantly (1 point each); HR, hazard ratio; MI, myocardial infarction; mRS, modified Rankin scale; NIHSS, National Institutes of Health Stroke Scale; PAD, peripheral artery disease; TIA, transient ischaemic stroke; VKA, vitamin K antagonist.

Long-term non-cardioembolic stroke prevention

The effect of aspirin on secondary prevention in stroke/TIA patients is well-established, as are the effects of clopidogrel and aspirin/dipyridamole combination.138 The benefits of aspirin (75–150 mg daily) appear to be most pronounced in the first 6–12 weeks following the event, while combination with dipyridamole may offer better longer-term protection.139 Clopidogrel is as good as aspirin/dipyridamole combination and is preferred for secondary prevention, particularly with the frequent headaches with aspirin/dipyridamole combination leading to discontinuation.140  ,  141

DAPT for long-term use is discouraged as studies showed excessive bleeding without a vascular benefit.142–145

Taken together, for the management of DM individuals, aspirin is justified 24 h after an acute event requiring reperfusion therapy followed by a switch to clopidogrel 3 months later (or continue aspirin while adding dipyridamole). In those not receiving reperfusion therapy, DAPT can be immediately started (provided haemorrhagic stroke is ruled out) and continued for 21 days followed by long-term monotherapy with clopidogrel (or a combination of aspirin/dipyridamole), which applies to individuals with and without diabetes (Figure 2).139–141

Stroke prevention in association with non-valvular atrial fibrillation

As discussed above, anticoagulation is recommended for those with AF and elevated CHA2DS2-VASc score, of which DM is a component.113  ,  146  ,  147

Potential superior efficacy of NOACs, together with reduced bleeding events and reduced need for monitoring, offers distinct advantages over VKAs. An analysis of four large RCTs [RE-LY, ARISTOTLE, ROCKET-AF, and ENGAGE AF-TIMI 48 (23%, 25%, 40%, and 36% with DM, respectively)],148–151 enrolling over 70 000 patients with non-valvular AF with at least one additional risk factor for stroke, demonstrated that dabigatran or factor Xa inhibitors (apixaban, rivaroxaban, edoxaban) are at least as efficacious as warfarin, and in some cases superior, in preventing stroke, whilst reducing bleeding risk. Sub-analysis of DM patients in these trials showed similar anti-thrombotic benefits of NOACs but bleeding risk reduction appeared to be attenuated.152–154

In AF patients who are ineligible for VKA, apixaban (AVERROES trial; 20% with diabetes) is the only NOAC that has demonstrated superior efficacy to aspirin in preventing MACE (stroke, systemic embolism, MI, and vascular death) with similar bleeding risk in the whole study population with no subgroup analysis conducted for those with DM.155

In summary, current evidence supports OAC in DM individuals with AF with or without a history of stroke who fulfil treatment criteria and do not have excessive bleeding risk. NOACs are preferable to VKAs in eligible patients.

Timing of initiation (or therapy resumption) of OAC in AF patients suffering an acute stroke is a challenging area. Based largely on two studies, RAF and RAF-NOACs,156  ,  157 the American Heart Association/American Stroke Association 2018/2019 guidelines recommend starting OAC within 4–14 days of an acute ischaemic stroke.132 The European Heart Rhythm Association-ESC guidelines give a more structured recommendation with the ‘1–3–6–12 days rule’.158 In brief, OAC should be initiated or reinstated after 1 day for TIA, 3 days for mild stroke (NIHSS score <8), 6 days for moderate stroke (NIHSS score 8–15), and 12 days for severe stroke (NIHSS score ≥16). These recommendations are based solely on expert consensus without robust RCTs supporting this approach. Of note, bridging with full-dose low-molecular-weight heparin before or together with VKA is not recommended.159  Table 4 summarizes key studies on antithrombotic agents in cerebrovascular disease.

Conclusions and future directions

While a large number of studies investigated the best antithrombotic strategy in vascular disease patients, there is still a distinct lack of DM-specific RCTs, particularly for secondary prevention. The heterogeneous vascular risk in DM patients, which can vary in the same individual according to DM duration and development of complications, adds to the complexity and prevents guidelines from making concrete recommendations. For example, advanced renal disease may alter both thrombosis and bleeding risk and may even limit the use of some antithrombotic therapies.33 The increased weight in DM individuals may also affect the response to antithrombotic agents, reviewed elsewhere.160 A key difficulty remains the lack of biomarker(s) that accurately predicts thrombotic/bleeding risk and response to therapy.

Given current knowledge, primary prevention with antiplatelet agents, mainly aspirin, may only be considered in higher-risk individuals. Following ACS, DAPT is necessary using aspirin and ticagrelor or prasugrel, usually for 12 months but also longer term with aspirin and ticagrelor in high thrombotic risk patients. In stable atherosclerotic disease, the combination of aspirin and very-low-dose rivaroxaban is useful, particularly in the presence of PAD (Figure 2).161 In individuals with stroke, the choice of antithrombotic therapy is dictated by whether the individual required reperfusion and the presence of AF (Figure 2 and Graphical Abstract).

Areas for future research include the development of reliable biomarkers and/or in silico model, able to assess thrombotic risk and response to therapy. Moreover, DM-specific studies are warranted rather than subgroup, and often post hoc, analyses of cardiovascular trials designed for the wider population (DM-specific studies are summarized in Supplementary material online, Table S3 and gaps in knowledge/future work in Supplementary material online, Table S4). This will require greater collaboration between metabolic and vascular medical disciplines to design appropriate studies aiming to reduce vascular events and improve clinical outcomes in the high-risk DM population.

Supplementary material

Supplementary material is available at European Heart Journal online.

Funding

N.K. is funded by Faculty of Medicine, Prince of Songkla University, Thailand. Research work in Ajjan’s laboratory is funded by the National Institute for Health Research, Diabetes UK, British Heart Foundation, Biotechnology and Biological Sciences Research Council, Abbott Diabetes Care and Avacta Life Sciences.

Conflict of interest: R.A.A. reports grants, personal fees and other from Abbott Diabetes Care, personal fees from AstraZeneca, personal fees from Boehringer Ingelheim, personal fees from Eli Lilly, personal fees from Menarini Pharmaceuticals, personal fees from Novo Nordisk, outside the submitted work; N.K. has nothing to disclose; L.B. reports grants from AstraZeneca, the European Union-IMI and -H2020, Carlos III Institute of Health-Spain, and CIBERCV-Spain; personal fees (scientific advisory boards/speaker fees) from AstraZeneca, Lilly, BMS/Pfizer, SANOFI, BAYER, International Aspirin Foundation, Glycardial SL, PACE and FICYE, all outside the submitted work; G.V. reports grants from AstraZeneca, outside the submitted work; D.A.G. reports personal fees and other from Astra Zeneca, grants from Bayer, personal fees from Boehringer Ingelheim, outside the submitted work; D.J.A. reports grants and personal fees from Amgen, grants and personal fees from Aralez, grants and personal fees from Bayer, grants and personal fees from Biosensors, grants and personal fees from Boehringer Ingelheim, grants and personal fees from Bristol-Myers Squibb, grants and personal fees from Chiesi, grants and personal fees from Daiichi-Sankyo, grants and personal fees from Eli Lilly, personal fees from Haemonetics, grants and personal fees from Janssen, grants and personal fees from Merck, personal fees from PhaseBio, personal fees from PLx Pharma, personal fees from Pfizer, grants and personal fees from Sanofi, personal fees from the Medicines company, grants and personal fees from CeloNova, personal fees from St Jude Medical, grants from CSL Behring, grants from Eisai, grants from Gilead, grants from Idorsia Pharmaceuticals Ltd, grants from Matsutani Chemical Industry Co., grants from Novartis, grants from Osprey Medical, grants from Renal Guard Solutions, grants from Scott R. MacKenzie Foundation, grants and personal fees from Astra Zeneca, outside the submitted work; D.R. has nothing to disclose; B.R. reports personal fees from Novartis, personal fees from Medscape, grants from Bayer AG, grants from Italian Medicines Agency, outside the submitted work; R.F.S. reports personal fees from Bayer, personal fees from Bristol-Myers Squibb/Pfizer, grants and personal fees from AstraZeneca, grants and personal fees from Thromboserin, personal fees from Haemonetics, personal fees from Amgen, grants and personal fees from Glycardial Diagnostics, personal fees from Portola, personal fees from Medscape, grants and personal fees from Cytosorbents, personal fees from Intas Pharmaceuticals, personal fees from Hengrui, personal fees from Sanofi Aventis, personal fees from Idorsia, personal fees from PhaseBio, outside the submitted work.

References

1

Emerging Risk Factors Collaboration;

Di Angelantonio
 
E
,
Kaptoge
 
S
,
Wormser
 
D
,
Willeit
 
P
,
Butterworth
 
AS
,
Bansal
 
N
,
O'Keeffe
 
LM
,
Gao
 
P
,
Wood
 
AM
,
Burgess
 
S
,
Freitag
 
DF
,
Pennells
 
L
,
Peters
 
SA
,
Hart
 
CL
,
Håheim
 
LL
,
Gillum
 
RF
,
Nordestgaard
 
BG
,
Psaty
 
BM
,
Yeap
 
BB
,
Knuiman
 
MW
,
Nietert
 
PJ
,
Kauhanen
 
J
,
Salonen
 
JT
,
Kuller
 
LH
,
Simons
 
LA
,
van der Schouw
 
YT
,
Barrett-Connor
 
E
,
Selmer
 
R
,
Crespo
 
CJ
,
Rodriguez
 
B
,
Verschuren
 
WMM
,
Salomaa
 
V
,
Svärdsudd
 
K
,
van der Harst
 
P
,
Björkelund
 
C
,
Wilhelmsen
 
L
,
Wallace
 
RB
,
Brenner
 
H
,
Amouyel
 
P
,
Barr
 
ELM
,
Iso
 
H
,
Onat
 
A
,
Trevisan
 
M
,
D'Agostino
 
RB
,
Cooper
 
C
,
Kavousi
 
M
,
Welin
 
L
,
Roussel
 
R
,
Hu
 
FB
,
Sato
 
S
,
Davidson
 
KW
,
Howard
 
BV
,
Leening
 
MJG
,
Leening
 
M
,
Rosengren
 
A
,
Dörr
 
M
,
Deeg
 
DJH
,
Kiechl
 
S
,
Stehouwer
 
CDA
,
Nissinen
 
A
,
Giampaoli
 
S
,
Donfrancesco
 
C
,
Kromhout
 
D
,
Price
 
JF
,
Peters
 
A
,
Meade
 
TW
,
Casiglia
 
E
,
Lawlor
 
DA
,
Gallacher
 
J
,
Nagel
 
D
,
Franco
 
OH
,
Assmann
 
G
,
Dagenais
 
GR
,
Jukema
 
JW
,
Sundström
 
J
,
Woodward
 
M
,
Brunner
 
EJ
,
Khaw
 
K-T
,
Wareham
 
NJ
,
Whitsel
 
EA
,
Njølstad
 
I
,
Hedblad
 
B
,
Wassertheil-Smoller
 
S
,
Engström
 
G
,
Rosamond
 
WD
,
Selvin
 
E
,
Sattar
 
N
,
Thompson
 
SG
,
Danesh
 
J.
 
Association of cardiometabolic multimorbidity with mortality
.
JAMA
 
2015
;
314
:
52
60
.

2

Emerging Risk Factors Collaboration;

Sarwar
 
N
,
Gao
 
P
,
Seshasai
 
SR
,
Gobin
 
R
,
Kaptoge
 
S
,
Di Angelantonio
 
E
,
Ingelsson
 
E
,
Lawlor
 
DA
,
Selvin
 
E
,
Stampfer
 
M
,
Stehouwer
 
CD
,
Lewington
 
S
,
Pennells
 
L
,
Thompson
 
A
,
Sattar
 
N
,
White
 
IR
,
Ray
 
KK
,
Danesh
 
J.
 
Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies
.
Lancet
 
2010
;
375
:
2215
2222
.

3

Cosentino
 
F
,
Ceriello
 
A
,
Baeres
 
FMM
,
Fioretto
 
P
,
Garber
 
A
,
Stough
 
WG
,
George
 
JT
,
Grant
 
PJ
,
Khunti
 
K
,
Langkilde
 
AM
,
Plutzky
 
J
,
Ryden
 
L
,
Scheen
 
A
,
Standl
 
E
,
Tuomilehto
 
J
,
Zannad
 
F.
 
Addressing cardiovascular risk in type 2 diabetes mellitus: a report from the European Society of Cardiology Cardiovascular Roundtable
.
Eur Heart J
 
2019
;
40
:
2907
2919
.

4

Carrizzo
 
A
,
Izzo
 
C
,
Oliveti
 
M
,
Alfano
 
A
,
Virtuoso
 
N
,
Capunzo
 
M
,
Di Pietro
 
P
,
Calabrese
 
M
,
De Simone
 
E
,
Sciarretta
 
S
,
Frati
 
G
,
Migliarino
 
S
,
Damato
 
A
,
Ambrosio
 
M
,
De Caro
 
F
,
Vecchione
 
C.
 
The main determinants of diabetes mellitus vascular complications: endothelial dysfunction and platelet hyperaggregation
.
Int J Mol Sci
 
2018
;
19
:
2968
.

5

Rivas Rios
 
JR
,
Franchi
 
F
,
Rollini
 
F
,
Angiolillo
 
DJ.
 
Diabetes and antiplatelet therapy: from bench to bedside
.
Cardiovasc Diagn Ther
 
2018
;
8
:
594
609
.

6

Kearney
 
K
,
Tomlinson
 
D
,
Smith
 
K
,
Ajjan
 
R.
 
Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk
.
Cardiovasc Diabetol
 
2017
;
16
:
34
.

7

Mi
 
Y
,
Yan
 
S
,
Lu
 
Y
,
Liang
 
Y
,
Li
 
C.
 
Venous thromboembolism has the same risk factors as atherosclerosis: a PRISMA-compliant systemic review and meta-analysis
.
Medicine (Baltimore)
 
2016
;
95
:
e4495
.

8

Pretorius
 
E.
 
Platelets as potent signaling entities in type 2 diabetes mellitus
.
Trends Endocrinol Metab
 
2019
;
30
:
532
545
.

9

Soma
 
P
,
Swanepoel
 
AC
,
Du Plooy
 
JN
,
Mqoco
 
T
,
Pretorius
 
E.
 
Flow cytometric analysis of platelets type 2 diabetes mellitus reveals ‘angry’ platelets
.
Cardiovasc Diabetol
 
2016
;
15
:
52
.

10

Ghoshal
 
K
,
Bhattacharyya
 
M.
 
Overview of platelet physiology: its hemostatic and nonhemostatic role in disease pathogenesis
.
ScientificWorldJournal
 
2014
;
2014
:
781857
.

11

Patrono
 
C
,
Rocca
 
B.
 
Measurement of thromboxane biosynthesis in health and disease
.
Front Pharmacol
 
2019
;
10
:
1244
.

12

Watala
 
C
,
Boncer
 
M
,
Golański
 
J
,
Koziołkiewicz
 
W
,
Trojanowski
 
Z
,
Walkowiak
 
B.
 
Platelet membrane lipid fluidity and intraplatelet calcium mobilization in type 2 diabetes mellitus
.
Eur J Haematol
 
2009
;
61
:
319
326
.

13

Santilli
 
F
,
Simeone
 
P
,
Liani
 
R
,
Davi
 
G.
 
Platelets and diabetes mellitus
.
Prostaglandins Other Lipid Mediat
 
2015
;
120
:
28
39
.

14

Audoly
 
LP
,
Rocca
 
B
,
Fabre
 
JE
,
Koller
 
BH
,
Thomas
 
D
,
Loeb
 
AL
,
Coffman
 
TM
,
FitzGerald
 
GA.
 
Cardiovascular responses to the isoprostanes iPF(2alpha)-III and iPE(2)-III are mediated via the thromboxane A(2) receptor in vivo
.
Circulation
 
2000
;
101
:
2833
2840
.

15

Hunter
 
RW
,
Hers
 
I.
 
Insulin/IGF-1 hybrid receptor expression on human platelets: consequences for the effect of insulin on platelet function
.
J Thromb Haemost
 
2009
;
7
:
2123
2130
.

16

Westein
 
E
,
Hoefer
 
T
,
Calkin
 
AC.
 
Thrombosis in diabetes: a shear flow effect?
 
Clin Sci (Lond)
 
2017
;
131
:
1245
1260
.

17

Vinik
 
AI
,
Erbas
 
T
,
Park
 
TS
,
Nolan
 
R
,
Pittenger
 
GL.
 
Platelet dysfunction in type 2 diabetes
.
Diabetes Care
 
2001
;
24
:
1476
1485
.

18

Fejes
 
Z
,
Poliska
 
S
,
Czimmerer
 
Z
,
Kaplar
 
M
,
Penyige
 
A
,
Gal Szabo
 
G
,
Beke Debreceni
 
I
,
Kunapuli
 
SP
,
Kappelmayer
 
J
,
Nagy
 
BJ.
 
Hyperglycaemia suppresses microRNA expression in platelets to increase P2RY12 and SELP levels in type 2 diabetes mellitus
.
Thromb Haemost
 
2017
;
117
:
529
542
.

19

Pordzik
 
J
,
Jakubik
 
D
,
Jarosz-Popek
 
J
,
Wicik
 
Z
,
Eyileten
 
C
,
De Rosa
 
S
,
Indolfi
 
C
,
Siller-Matula
 
JM
,
Czajka
 
P
,
Postula
 
M.
 
Significance of circulating microRNAs in diabetes mellitus type 2 and platelet reactivity: bioinformatic analysis and review
.
Cardiovasc Diabetol
 
2019
;
18
:
113
.

20

Gawaz
 
M
,
Ott
 
I
,
Reininger
 
AJ
,
Neumann
 
FJ.
 
Effects of magnesium on platelet aggregation and adhesion. Magnesium modulates surface expression of glycoproteins on platelets in vitro and ex vivo
.
Thromb Haemost
 
1994
;
72
:
912
918
.

21

Hernández Vera
 
R
,
Vilahur
 
G
,
Ferrer-Lorente
 
R
,
Peña
 
E
,
Badimon
 
L.
 
Platelets derived from the bone marrow of diabetic animals show dysregulated endoplasmic reticulum stress proteins that contribute to increased thrombosis
.
Arterioscler Thromb Vasc Biol
 
2012
;
32
:
2141
2148
.

22

Wang
 
Y
,
Beck
 
W
,
Deppisch
 
R
,
Marshall
 
SM
,
Hoenich
 
NA
,
Thompson
 
MG.
 
Advanced glycation end products elicit externalization of phosphatidylserine in a subpopulation of platelets via 5-HT2A/2C receptors
.
Am J Physiol Cell Physiol
 
2007
;
293
:
C328
C336
.

23

Rocca
 
B
,
Santilli
 
F
,
Pitocco
 
D
,
Mucci
 
L
,
Petrucci
 
G
,
Vitacolonna
 
E
,
Lattanzio
 
S
,
Mattoscio
 
D
,
Zaccardi
 
F
,
Liani
 
R
,
Vazzana
 
N
,
Del Ponte
 
A
,
Ferrante
 
E
,
Martini
 
F
,
Cardillo
 
C
,
Morosetti
 
R
,
Mirabella
 
M
,
Ghirlanda
 
G
,
Davi
 
G
,
Patrono
 
C.
 
The recovery of platelet cyclooxygenase activity explains interindividual variability in responsiveness to low-dose aspirin in patients with and without diabetes
.
J Thromb Haemost
 
2012
;
10
:
1220
1230
.

24

Vilahur
 
G
,
Ben-Aicha
 
S
,
Badimon
 
L.
 
New insights into the role of adipose tissue in thrombosis
.
Cardiovasc Res
 
2017
;
113
:
1046
1054
.

25

Ferreiro
 
JL
,
Gomez-Hospital
 
JA
,
Angiolillo
 
DJ.
 
Platelet abnormalities in diabetes mellitus
.
Diab Vasc Dis Res
 
2010
;
7
:
251
259
.

26

Alzahrani
 
SH
,
Ajjan
 
RA.
 
Coagulation and fibrinolysis in diabetes
.
Diab Vasc Dis Res
 
2010
;
7
:
260
273
.

27

Kim
 
HK
,
Kim
 
JE
,
Park
 
SH
,
Kim
 
YI
,
Nam-Goong
 
IS
,
Kim
 
ES.
 
High coagulation factor levels and low protein C levels contribute to enhanced thrombin generation in patients with diabetes who do not have macrovascular complications
.
J Diabetes Complications
 
2014
;
28
:
365
369
.

28

Ajjan
 
RA
,
Gamlen
 
T
,
Standeven
 
KF
,
Mughal
 
S
,
Hess
 
K
,
Smith
 
KA
,
Dunn
 
EJ
,
Anwar
 
MM
,
Rabbani
 
N
,
Thornalley
 
PJ
,
Philippou
 
H
,
Grant
 
PJ.
 
Diabetes is associated with posttranslational modifications in plasminogen resulting in reduced plasmin generation and enzyme-specific activity
.
Blood
 
2013
;
122
:
134
142
.

29

Du
 
XL
,
Edelstein
 
D
,
Rossetti
 
L
,
Fantus
 
IG
,
Goldberg
 
H
,
Ziyadeh
 
F
,
Wu
 
J
,
Brownlee
 
M.
 
Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation
.
Proc Natl Acad Sci USA
 
2000
;
97
:
12222
12226
.

30

James
 
S
,
Angiolillo
 
DJ
,
Cornel
 
JH
,
Erlinge
 
D
,
Husted
 
S
,
Kontny
 
F
,
Maya
 
J
,
Nicolau
 
JC
,
Spinar
 
J
,
Storey
 
RF
,
Stevens
 
SR
,
Wallentin
 
L
; PLATO Study Group.
Ticagrelor vs. clopidogrel in patients with acute coronary syndromes and diabetes: a substudy from the PLATelet inhibition and patient Outcomes (PLATO) trial
.
Eur Heart J
 
2010
;
31
:
3006
3016
.

31

Ducrocq
 
G
,
Wallace
 
JS
,
Baron
 
G
,
Ravaud
 
P
,
Alberts
 
MJ
,
Wilson
 
PWF
,
Ohman
 
EM
,
Brennan
 
DM
,
D'Agostino
 
RB
,
Bhatt
 
DL
,
Steg
 
PG
; on behalf of the REACH Investigators.
Risk score to predict serious bleeding in stable outpatients with or at risk of atherothrombosis
.
Eur Heart J
 
2010
;
31
:
1257
1265
.

32

Lemesle
 
G
,
Meurice
 
T
,
Tricot
 
O
,
Lamblin
 
N
,
Bauters
 
C.
 
Association of diabetic status and glycemic control with ischemic and bleeding outcomes in patients with stable coronary artery disease: the 5-Year CORONOR Registry
.
J Am Heart Assoc
 
2018
;
7
:
e008354
.

33

Goel
 
N
,
Jain
 
D
,
Haddad
 
DB
,
Shanbhogue
 
D.
 
Anticoagulation in patients with end-stage renal disease and atrial fibrillation: confusion, concerns and consequences
.
J Stroke
 
2020
;
22
:
306
316
.

34

Nogami
 
K
,
Muraki
 
I
,
Imano
 
H
,
Iso
 
H.
 
Risk of disseminated intravascular coagulation in patients with type 2 diabetes mellitus: retrospective cohort study
.
BMJ Open
 
2017
;
7
:
e013894
.

35

Patrono
 
C
,
Garcia Rodriguez
 
LA
,
Landolfi
 
R
,
Baigent
 
C.
 
Low-dose aspirin for the prevention of atherothrombosis
.
N Engl J Med
 
2005
;
353
:
2373
2383
.

36

Capodanno
 
D
,
Angiolillo
 
DJ.
 
Aspirin for primary cardiovascular risk prevention and beyond in diabetes mellitus
.
Circulation
 
2016
;
134
:
1579
1594
.

37

Angiolillo
 
DJ
,
Ueno
 
M
,
Goto
 
S.
 
Basic principles of platelet biology and clinical implications
.
Circ J
 
2010
;
74
:
597
607
.

38

Franchi
 
F
,
Angiolillo
 
DJ.
 
Novel antiplatelet agents in acute coronary syndrome
.
Nat Rev Cardiol
 
2015
;
12
:
30
47
.

39

Andreotti
 
F
,
Testa
 
L
,
Biondi-Zoccai
 
GG
,
Crea
 
F.
 
Aspirin plus warfarin compared to aspirin alone after acute coronary syndromes: an updated and comprehensive meta-analysis of 25,307 patients
.
Eur Heart J
 
2006
;
27
:
519
526
.

40

Angiolillo
 
DJ
,
Capodanno
 
D
,
Goto
 
S.
 
Platelet thrombin receptor antagonism and atherothrombosis
.
Eur Heart J
 
2010
;
31
:
17
28
.

41

Angiolillo
 
DJ
,
Ferreiro
 
JL.
 
Antiplatelet and anticoagulant therapy for atherothrombotic disease: the role of current and emerging agents
.
Am J Cardiovasc Drugs
 
2013
;
13
:
233
250
.

42

Baigent
 
C
,
Blackwell
 
L
,
Collins
 
R
,
Emberson
 
J
,
Godwin
 
J
,
Peto
 
R
,
Buring
 
J
,
Hennekens
 
C
,
Kearney
 
P
,
Meade
 
T
,
Patrono
 
C
,
Roncaglioni
 
MC
,
Zanchetti
 
A.
 
Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials
.
Lancet
 
2009
;
373
:
1849
1860
.

43

Ogawa
 
H
,
Nakayama
 
M
,
Morimoto
 
T
,
Uemura
 
S
,
Kanauchi
 
M
,
Doi
 
N
,
Jinnouchi
 
H
,
Sugiyama
 
S
,
Saito
 
Y
; Japanese Primary Prevention of Atherosclerosis With Aspirin for Diabetes (JPAD) Trial Investigators.
Low-dose aspirin for primary prevention of atherosclerotic events in patients with type 2 diabetes: a randomized controlled trial
.
JAMA
 
2008
;
300
:
2134
2141
.

44

Belch
 
J
,
MacCuish
 
A
,
Campbell
 
I
,
Cobbe
 
S
,
Taylor
 
R
,
Prescott
 
R
,
Lee
 
R
,
Bancroft
 
J
,
MacEwan
 
S
,
Shepherd
 
J
,
Macfarlane
 
P
,
Morris
 
A
,
Jung
 
R
,
Kelly
 
C
,
Connacher
 
A
,
Peden
 
N
,
Jamieson
 
A
,
Matthews
 
D
,
Leese
 
G
,
McKnight
 
J
,
O'Brien
 
I
,
Semple
 
C
,
Petrie
 
J
,
Gordon
 
D
,
Pringle
 
S
,
MacWalter
 
R
; Prevention of Progression of Arterial Disease and Diabetes Study Group; Diabetes Registry Group; Royal College of Physicians Edinburgh.
The prevention of progression of arterial disease and diabetes (POPADAD) trial: factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease
.
BMJ
 
2008
;
337
:
a1840
.

45

Bowman
 
L
,
Mafham
 
M
,
Wallendszus
 
K
,
Stevens
 
W
,
Buck
 
G
,
Barton
 
J
,
Murphy
 
K
,
Aung
 
T
,
Haynes
 
R
,
Cox
 
J
,
Murawska
 
A
,
Young
 
A
,
Lay
 
M
,
Chen
 
F
,
Sammons
 
E
,
Waters
 
E
,
Adler
 
A
,
Bodansky
 
J
,
Farmer
 
A
,
McPherson
 
R
,
Neil
 
A
,
Simpson
 
D
,
Peto
 
R
,
Baigent
 
C
,
Collins
 
R
,
Parish
 
S
,
Armitage
 
J
; ASCEND Study Collaborative Group.
Effects of aspirin for primary prevention in persons with diabetes mellitus
.
N Engl J Med
 
2018
;
379
:
1529
1539
.

46

Mehran
 
R
,
Rao
 
SV
,
Bhatt
 
DL
,
Gibson
 
CM
,
Caixeta
 
A
,
Eikelboom
 
J
,
Kaul
 
S
,
Wiviott
 
SD
,
Menon
 
V
,
Nikolsky
 
E
,
Serebruany
 
V
,
Valgimigli
 
M
,
Vranckx
 
P
,
Taggart
 
D
,
Sabik
 
JF
,
Cutlip
 
DE
,
Krucoff
 
MW
,
Ohman
 
EM
,
Steg
 
PG
,
White
 
H.
 
Standardized bleeding definitions for cardiovascular clinical trials: a consensus report from the Bleeding Academic Research Consortium
.
Circulation
 
2011
;
123
:
2736
2747
.

47

Steg
 
PG
,
Bhatt
 
DL
,
Simon
 
T
,
Fox
 
K
,
Mehta
 
SR
,
Harrington
 
RA
,
Held
 
C
,
Andersson
 
M
,
Himmelmann
 
A
,
Ridderstråle
 
W
,
Leonsson-Zachrisson
 
M
,
Liu
 
Y
,
Opolski
 
G
,
Zateyshchikov
 
D
,
Ge
 
J
,
Nicolau
 
JC
,
Corbalán
 
R
,
Cornel
 
JH
,
Widimský
 
P
,
Leiter
 
LA
; THEMIS Steering Committee and Investigators.
Ticagrelor in patients with stable coronary disease and diabetes
.
N Engl J Med
 
2019
;
381
:
1309
1320
.

48

Bhatt
 
DL
,
Bonaca
 
MP
,
Bansilal
 
S
,
Angiolillo
 
DJ
,
Cohen
 
M
,
Storey
 
RF
,
Im
 
K
,
Murphy
 
SA
,
Held
 
P
,
Braunwald
 
E
,
Sabatine
 
MS
,
Steg
 
PG.
 
Reduction in ischemic events with ticagrelor in diabetic patients with prior myocardial infarction in PEGASUS-TIMI 54
.
J Am Coll Cardiol
 
2016
;
67
:
2732
2740
.

49

Vranckx
 
P
,
White
 
HD
,
Huang
 
Z
,
Mahaffey
 
KW
,
Armstrong
 
PW
,
Van de Werf
 
F
,
Moliterno
 
DJ
,
Wallentin
 
L
,
Held
 
C
,
Aylward
 
PE
,
Cornel
 
JH
,
Bode
 
C
,
Huber
 
K
,
Nicolau
 
JC
,
Ruzyllo
 
W
,
Harrington
 
RA
,
Tricoci
 
P.
 
Validation of BARC bleeding criteria in patients with acute coronary syndromes: the TRACER trial
.
J Am Coll Cardiol
 
2016
;
67
:
2135
2144
.

50

Seidu
 
S
,
Kunutsor
 
SK
,
Sesso
 
HD
,
Gaziano
 
JM
,
Buring
 
JE
,
Roncaglioni
 
MC
,
Khunti
 
K.
 
Aspirin has potential benefits for primary prevention of cardiovascular outcomes in diabetes: updated literature-based and individual participant data meta-analyses of randomized controlled trials
.
Cardiovasc Diabetol
 
2019
;
18
:
70
.

51

Cosentino
 
F
,
Grant
 
PJ
,
Aboyans
 
V
,
Bailey
 
CJ
,
Ceriello
 
A
,
Delgado
 
V
,
Federici
 
M
,
Filippatos
 
G
,
Grobbee
 
DE
,
Hansen
 
TB
,
Huikuri
 
HV
,
Johansson
 
I
,
Juni
 
P
,
Lettino
 
M
,
Marx
 
N
,
Mellbin
 
LG
,
Ostgren
 
CJ
,
Rocca
 
B
,
Roffi
 
M
,
Sattar
 
N
,
Seferovic
 
PM
,
Sousa-Uva
 
M
,
Valensi
 
P
,
Wheeler
 
DC
; ESC Scientific Document Group.
2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD
.
Eur Heart J
 
2020
;
41
:
255
323
.

52

American Diabetes Association.

10. Cardiovascular Disease and Risk Management: standards of Medical Care in Diabetes-2019
.
Diabetes Care
 
2019
;
42(Suppl 1
):
S103
S123
.

53

Bibbins-Domingo
 
K
; U.S. Preventive Services Task Force.
Aspirin use for the primary prevention of cardiovascular disease and colorectal cancer: U.S. Preventive Services Task Force recommendation statement
.
Ann Intern Med
 
2016
;
164
:
836
845
.

54

Bell
 
AD
,
Roussin
 
A
,
Cartier
 
R
,
Chan
 
WS
,
Douketis
 
JD
,
Gupta
 
A
,
Kraw
 
ME
,
Lindsay
 
TF
,
Love
 
MP
,
Pannu
 
N
,
Rabasa-Lhoret
 
R
,
Shuaib
 
A
,
Teal
 
P
,
Theroux
 
P
,
Turpie
 
AG
,
Welsh
 
RC
,
Tanguay
 
JF.
 
The use of antiplatelet therapy in the outpatient setting: Canadian Cardiovascular Society Guidelines Executive Summary
.
Can J Cardiol
 
2011
;
27
:
208
221
.

55

Roffi
 
M
,
Patrono
 
C
,
Collet
 
JP
,
Mueller
 
C
,
Valgimigli
 
M
,
Andreotti
 
F
,
Bax
 
JJ
,
Borger
 
MA
,
Brotons
 
C
,
Chew
 
DP
,
Gencer
 
B
,
Hasenfuss
 
G
,
Kjeldsen
 
K
,
Lancellotti
 
P
,
Landmesser
 
U
,
Mehilli
 
J
,
Mukherjee
 
D
,
Storey
 
RF
,
Windecker
 
S
; ESC Scientific Document Group.
2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC
).
Eur Heart J
 
2016
;
37
:
267
315
.

56

Ibanez
 
B
,
James
 
S
,
Agewall
 
S
,
Antunes
 
MJ
,
Bucciarelli-Ducci
 
C
,
Bueno
 
H
,
Caforio
 
ALP
,
Crea
 
F
,
Goudevenos
 
JA
,
Halvorsen
 
S
,
Hindricks
 
G
,
Kastrati
 
A
,
Lenzen
 
MJ
,
Prescott
 
E
,
Roffi
 
M
,
Valgimigli
 
M
,
Varenhorst
 
C
,
Vranckx
 
P
,
Widimský
 
P
; ESC Scientific Document Group.
2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC
).
Eur Heart J
 
2018
;
39
:
119
177
.

57

Alexopoulos
 
D
,
Vogiatzi
 
C
,
Stavrou
 
K
,
Vlassopoulou
 
N
,
Perperis
 
A
,
Pentara
 
I
,
Xanthopoulou
 
I.
 
Diabetes mellitus and platelet reactivity in patients under prasugrel or ticagrelor treatment: an observational study
.
Cardiovasc Diabetol
 
2015
;
14
:
68
.

58

Thomas
 
MR
,
Angiolillo
 
DJ
,
Bonaca
 
MP
,
Ajjan
 
RA
,
Judge
 
HM
,
Rollini
 
F
,
Franchi
 
F
,
Ahsan
 
AJ
,
Bhatt
 
DL
,
Kuder
 
JF
,
Steg
 
PG
,
Cohen
 
M
,
Muthusamy
 
R
,
Sabatine
 
MS
,
Storey
 
RF.
 
Consistent platelet inhibition with ticagrelor 60 mg twice-daily following myocardial infarction regardless of diabetes status
.
Thromb Haemost
 
2017
;
117
:
940
947
.

59

Capodanno
 
D
,
Patel
 
A
,
Dharmashankar
 
K
,
Ferreiro
 
JL
,
Ueno
 
M
,
Kodali
 
M
,
Tomasello
 
SD
,
Capranzano
 
P
,
Seecheran
 
N
,
Darlington
 
A
,
Tello-Montoliu
 
A
,
Desai
 
B
,
Bass
 
TA
,
Angiolillo
 
DJ.
 
Pharmacodynamic effects of different aspirin dosing regimens in type 2 diabetes mellitus patients with coronary artery disease
.
Circ Cardiovasc Interv
 
2011
;
4
:
180
187
.

60

Spectre
 
G
,
Arnetz
 
L
,
Ostenson
 
CG
,
Brismar
 
K
,
Li
 
N
,
Hjemdahl
 
P.
 
Twice daily dosing of aspirin improves platelet inhibition in whole blood in patients with type 2 diabetes mellitus and micro- or macrovascular complications
.
Thromb Haemost
 
2011
;
106
:
491
499
.

61

Mehta
 
SR
,
Bassand
 
JP
,
Chrolavicius
 
S
,
Diaz
 
R
,
Eikelboom
 
JW
,
Fox
 
KA
,
Granger
 
CB
,
Jolly
 
S
,
Joyner
 
CD
,
Rupprecht
 
HJ
,
Widimsky
 
P
,
Afzal
 
R
,
Pogue
 
J
,
Yusuf
 
S
; CURRENT-OASIS 7 Investigators.
Dose comparisons of clopidogrel and aspirin in acute coronary syndromes
.
N Engl J Med
 
2010
;
363
:
930
942
.

62

Johnston
 
A
,
Jones
 
WS
,
Hernandez
 
AF.
 
The ADAPTABLE trial and aspirin dosing in secondary prevention for patients with coronary artery disease
.
Curr Cardiol Rep
 
2016
;
18
:
81
.

63

Angiolillo
 
DJ
,
Bhatt
 
DL
,
Lanza
 
F
,
Cryer
 
B
,
Dong
 
JF
,
Jeske
 
W
,
Zimmerman
 
RR
,
von Chong
 
E
,
Prats
 
J
,
Deliargyris
 
EN
,
Marathi
 
U.
 
Pharmacokinetic/pharmacodynamic assessment of a novel, pharmaceutical lipid-aspirin complex: results of a randomized, crossover, bioequivalence study
.
J Thromb Thrombolysis
 
2019
;
48
:
554
562
.

64

Bhatt
 
DL
,
Grosser
 
T
,
Dong
 
J-F
,
Logan
 
D
,
Jeske
 
W
,
Angiolillo
 
DJ
,
Frelinger
 
AL
,
Lei
 
L
,
Liang
 
J
,
Moore
 
JE
,
Cryer
 
B
,
Marathi
 
U.
 
Enteric coating and aspirin nonresponsiveness in patients with type 2 diabetes mellitus
.
J Am Coll Cardiol
 
2017
;
69
:
603
612
.

65

Wallentin
 
L
,
Becker
 
RC
,
Budaj
 
A
,
Cannon
 
CP
,
Emanuelsson
 
H
,
Held
 
C
,
Horrow
 
J
,
Husted
 
S
,
James
 
S
,
Katus
 
H
,
Mahaffey
 
KW
,
Scirica
 
BM
,
Skene
 
A
,
Steg
 
PG
,
Storey
 
RF
,
Harrington
 
RA
; PLATO Investigators.
Ticagrelor versus clopidogrel in patients with acute coronary syndromes
.
N Engl J Med
 
2009
;
361
:
1045
1057
.

66

Wiviott
 
SD
,
Braunwald
 
E
,
Angiolillo
 
DJ
,
Meisel
 
S
,
Dalby
 
AJ
,
Verheugt
 
FW
,
Goodman
 
SG
,
Corbalan
 
R
,
Purdy
 
DA
,
Murphy
 
SA
,
McCabe
 
CH
,
Antman
 
EM
; TRITON-TIMI 38 Investigators.
Greater clinical benefit of more intensive oral antiplatelet therapy with prasugrel in patients with diabetes mellitus in the trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel-Thrombolysis in Myocardial Infarction 38
.
Circulation
 
2008
;
118
:
1626
1636
.

67

Angiolillo
 
DJ
,
Jakubowski
 
JA
,
Ferreiro
 
JL
,
Tello-Montoliu
 
A
,
Rollini
 
F
,
Franchi
 
F
,
Ueno
 
M
,
Darlington
 
A
,
Desai
 
B
,
Moser
 
BA
,
Sugidachi
 
A
,
Guzman
 
LA
,
Bass
 
TA.
 
Impaired responsiveness to the platelet P2Y12 receptor antagonist clopidogrel in patients with type 2 diabetes and coronary artery disease
.
J Am Coll Cardiol
 
2014
;
64
:
1005
1014
.

68

Franchi
 
F
,
James
 
SK
,
Ghukasyan
 
LT
,
Budaj
 
AJ
,
Cornel
 
JH
,
Katus
 
HA
,
Keltai
 
M
,
Kontny
 
F
,
Lewis
 
BS
,
Storey
 
RF
,
Himmelmann
 
A
,
Wallentin
 
L
,
Angiolillo
 
DJ
; PLATO Investigators.
Impact of diabetes mellitus and chronic kidney disease on cardiovascular outcomes and platelet P2Y12 receptor antagonist effects in patients with acute coronary syndromes: insights from the PLATO trial
.
J Am Heart Assoc
 
2019
;
8
:
e011139
.

69

Schupke
 
S
,
Neumann
 
FJ
,
Menichelli
 
M
,
Mayer
 
K
,
Bernlochner
 
I
,
Wohrle
 
J
,
Richardt
 
G
,
Liebetrau
 
C
,
Witzenbichler
 
B
,
Antoniucci
 
D
,
Akin
 
I
,
Bott-Flugel
 
L
,
Fischer
 
M
,
Landmesser
 
U
,
Katus
 
HA
,
Sibbing
 
D
,
Seyfarth
 
M
,
Janisch
 
M
,
Boncompagni
 
D
,
Hilz
 
R
,
Rottbauer
 
W
,
Okrojek
 
R
,
Mollmann
 
H
,
Hochholzer
 
W
,
Migliorini
 
A
,
Cassese
 
S
,
Mollo
 
P
,
Xhepa
 
E
,
Kufner
 
S
,
Strehle
 
A
,
Leggewie
 
S
,
Allali
 
A
,
Ndrepepa
 
G
,
Schuhlen
 
H
,
Angiolillo
 
DJ
,
Hamm
 
CW
,
Hapfelmeier
 
A
,
Tolg
 
R
,
Trenk
 
D
,
Schunkert
 
H
,
Laugwitz
 
KL
,
Kastrati
 
A
; ISAR-REACT 5 Trial Investigators.
Ticagrelor or prasugrel in patients with acute coronary syndromes
.
N Engl J Med
 
2019
;
381
:
1524
1534
.

70

Ndrepepa
 
G
,
Kastrati
 
A
,
Menichelli
 
M
,
Neumann
 
FJ
,
Wohrle
 
J
,
Bernlochner
 
I
,
Richardt
 
G
,
Witzenbichler
 
B
,
Sibbing
 
D
,
Gewalt
 
S
,
Angiolillo
 
DJ
,
Hamm
 
CW
,
Hapfelmeier
 
A
,
Trenk
 
D
,
Laugwitz
 
KL
,
Schunkert
 
H
,
Schupke
 
S
,
Mayer
 
K.
 
Ticagrelor or prasugrel in patients with acute coronary syndromes and diabetes mellitus
.
JACC Cardiovasc Interv
 
2020
;
13
:
2238
2247
.

71

Cayla
 
G
,
Cuisset
 
T
,
Silvain
 
J
,
Leclercq
 
F
,
Manzo-Silberman
 
S
,
Saint-Etienne
 
C
,
Delarche
 
N
,
Bellemain-Appaix
 
A
,
Range
 
G
,
El Mahmoud
 
R
,
Carrie
 
D
,
Belle
 
L
,
Souteyrand
 
G
,
Aubry
 
P
,
Sabouret
 
P
,
Du Fretay
 
XH
,
Beygui
 
F
,
Bonnet
 
JL
,
Lattuca
 
B
,
Pouillot
 
C
,
Varenne
 
O
,
Boueri
 
Z
,
Van Belle
 
E
,
Henry
 
P
,
Motreff
 
P
,
Elhadad
 
S
,
Salem
 
JE
,
Abtan
 
J
,
Rousseau
 
H
,
Collet
 
JP
,
Vicaut
 
E
,
Montalescot
 
G
; ANTARCTIC Investigators.
Platelet function monitoring to adjust antiplatelet therapy in elderly patients stented for an acute coronary syndrome (ANTARCTIC): an open-label, blinded-endpoint, randomised controlled superiority trial
.
Lancet
 
2016
;
388
:
2015
2022
.

72

Hein
 
R
,
Gross
 
L
,
Aradi
 
D
,
Rieber
 
J
,
Hadamitzky
 
M
,
Merkely
 
B
,
Huczek
 
Z
,
Ince
 
H
,
Hummel
 
A
,
Baylacher
 
M
,
Massberg
 
S
,
Trenk
 
D
,
Sibbing
 
D.
 
Diabetes and outcomes following guided de-escalation of antiplatelet treatment in acute coronary syndrome patients undergoing percutaneous coronary intervention: a pre-specified analysis from the randomised TROPICAL-ACS trial
.
EuroIntervention
 
2019
;
15
:
e513
e521
.

73

Mehran
 
R
,
Baber
 
U
,
Sharma
 
SK
,
Cohen
 
DJ
,
Angiolillo
 
DJ
,
Briguori
 
C
,
Cha
 
JY
,
Collier
 
T
,
Dangas
 
G
,
Dudek
 
D
,
Dzavik
 
V
,
Escaned
 
J
,
Gil
 
R
,
Gurbel
 
P
,
Hamm
 
CW
,
Henry
 
T
,
Huber
 
K
,
Kastrati
 
A
,
Kaul
 
U
,
Kornowski
 
R
,
Krucoff
 
M
,
Kunadian
 
V
,
Marx
 
SO
,
Mehta
 
SR
,
Moliterno
 
D
,
Ohman
 
EM
,
Oldroyd
 
K
,
Sardella
 
G
,
Sartori
 
S
,
Shlofmitz
 
R
,
Steg
 
PG
,
Weisz
 
G
,
Witzenbichler
 
B
,
Han
 
YL
,
Pocock
 
S
,
Gibson
 
CM.
 
Ticagrelor with or without aspirin in high-risk patients after PCI
.
N Engl J Med
 
2019
;
381
:
2032
2042
.

74

Angiolillo
 
DJ
,
Baber
 
U
,
Sartori
 
S
,
Briguori
 
C
,
Dangas
 
G
,
Cohen
 
DJ
,
Mehta
 
SR
,
Gibson
 
CM
,
Chandiramani
 
R
,
Huber
 
K
,
Kornowski
 
R
,
Weisz
 
G
,
Kunadian
 
V
,
Oldroyd
 
KG
,
Ya-Ling
 
H
,
Kaul
 
U
,
Witzenbichler
 
B
,
Dudek
 
D
,
Sardella
 
G
,
Escaned
 
J
,
Sharma
 
S
,
Shlofmitz
 
RA
,
Collier
 
T
,
Pocock
 
S
,
Mehran
 
R.
 
Ticagrelor with or without aspirin in high-risk patients with diabetes mellitus undergoing percutaneous coronary intervention
.
J Am Coll Cardiol
 
2020
;
75
:
2403
2413
.

75

Vranckx
 
P
,
Valgimigli
 
M
,
Juni
 
P
,
Hamm
 
C
,
Steg
 
PG
,
Heg
 
D
,
van Es
 
GA
,
McFadden
 
EP
,
Onuma
 
Y
,
van Meijeren
 
C
,
Chichareon
 
P
,
Benit
 
E
,
Mollmann
 
H
,
Janssens
 
L
,
Ferrario
 
M
,
Moschovitis
 
A
,
Zurakowski
 
A
,
Dominici
 
M
,
Van Geuns
 
RJ
,
Huber
 
K
,
Slagboom
 
T
,
Serruys
 
PW
,
Windecker
 
S
; GLOBAL LEADERS Investigators.
Ticagrelor plus aspirin for 1 month, followed by ticagrelor monotherapy for 23 months vs aspirin plus clopidogrel or ticagrelor for 12 months, followed by aspirin monotherapy for 12 months after implantation of a drug-eluting stent: a multicentre, open-label, randomised superiority trial
.
Lancet
 
2018
;
392
:
940
949
.

76

Chichareon
 
P
,
Modolo
 
R
,
Kogame
 
N
,
Takahashi
 
K
,
Chang
 
C-C
,
Tomaniak
 
M
,
Botelho
 
R
,
Eeckhout
 
E
,
Hofma
 
S
,
Trendafilova-Lazarova
 
D
,
Kőszegi
 
Z
,
Iñiguez
 
A
,
Wykrzykowska
 
JJ
,
Piek
 
JJ
,
Garg
 
S
,
Hamm
 
C
,
Steg
 
PG
,
Jüni
 
P
,
Vranckx
 
P
,
Valgimigli
 
M
,
Windecker
 
S
,
Onuma
 
Y
,
Serruys
 
PW.
 
Association of diabetes with outcomes in patients undergoing contemporary percutaneous coronary intervention: pre-specified subgroup analysis from the randomized GLOBAL LEADERS study
.
Atherosclerosis
 
2020
;
295
:
45
53
.

77

Gao
 
C
,
Tomaniak
 
M
,
Takahashi
 
K
,
Kawashima
 
H
,
Wang
 
R
,
Hara
 
H
,
Ono
 
M
,
Montalescot
 
G
,
Garg
 
S
,
Haude
 
M
,
Slagboom
 
T
,
Vranckx
 
P
,
Valgimigli
 
M
,
Windecker
 
S
,
van Geuns
 
RJ
,
Hamm
 
C
,
Steg
 
PG
,
Onuma
 
Y
,
Angiolillo
 
DJ
,
Serruys
 
PW.
 
Ticagrelor monotherapy in patients with concomitant diabetes mellitus and chronic kidney disease: a post hoc analysis of the GLOBAL LEADERS trial
.
Cardiovasc Diabetol
 
2020
;
19
:
179
.

78

Malik
 
AH
,
Yandrapalli
 
S
,
Shetty
 
SS
,
Aronow
 
WS
,
Cooper
 
HA
,
Panza
 
JA.
 
Meta-analysis of dual antiplatelet therapy versus monotherapy with P2Y12 inhibitors in patients after percutaneous coronary intervention
.
Am J Cardiol
 
2020
;
127
:
25
29
.

79

Capodanno
 
D
,
Morice
 
MC
,
Angiolillo
 
DJ
,
Bhatt
 
DL
,
Byrne
 
RA
,
Colleran
 
R
,
Cuisset
 
T
,
Cutlip
 
D
,
Eerdmans
 
P
,
Eikelboom
 
J
,
Farb
 
A
,
Gibson
 
CM
,
Gregson
 
J
,
Haude
 
M
,
James
 
SK
,
Kim
 
HS
,
Kimura
 
T
,
Konishi
 
A
,
Leon
 
MB
,
Magee
 
PFA
,
Mitsutake
 
Y
,
Mylotte
 
D
,
Pocock
 
SJ
,
Rao
 
SV
,
Spitzer
 
E
,
Stockbridge
 
N
,
Valgimigli
 
M
,
Varenne
 
O
,
Windhovel
 
U
,
Krucoff
 
MW
,
Urban
 
P
,
Mehran
 
R.
 
Trial design principles for patients at high bleeding risk undergoing PCI: JACC Scientific Expert Panel
.
J Am Coll Cardiol
 
2020
;
76
:
1468
1483
.

80

Roffi
 
M
,
Chew
 
DP
,
Mukherjee
 
D
,
Bhatt
 
DL
,
White
 
JA
,
Heeschen
 
C
,
Hamm
 
CW
,
Moliterno
 
DJ
,
Califf
 
RM
,
White
 
HD
,
Kleiman
 
NS
,
Theroux
 
P
,
Topol
 
EJ.
 
Platelet glycoprotein IIb/IIIa inhibitors reduce mortality in diabetic patients with non-ST-segment-elevation acute coronary syndromes
.
Circulation
 
2001
;
104
:
2767
2771
.

81

Kastrati
 
A
,
Mehilli
 
J
,
Neumann
 
FJ
,
Dotzer
 
F
,
ten Berg
 
J
,
Bollwein
 
H
,
Graf
 
I
,
Ibrahim
 
M
,
Pache
 
J
,
Seyfarth
 
M
,
Schuhlen
 
H
,
Dirschinger
 
J
,
Berger
 
PB
,
Schomig
 
A
; Intracoronary Stenting and Antithrombotic: Regimen Rapid Early Action for Coronary Treatment 2 (ISAR-REACT 2) Trial Investigators.
Abciximab in patients with acute coronary syndromes undergoing percutaneous coronary intervention after clopidogrel pretreatment: the ISAR-REACT 2 randomized trial
.
JAMA
 
2006
;
295
:
1531
1538
.

82

Neumann
 
FJ
,
Sousa-Uva
 
M
,
Ahlsson
 
A
,
Alfonso
 
F
,
Banning
 
AP
,
Benedetto
 
U
,
Byrne
 
RA
,
Collet
 
JP
,
Falk
 
V
,
Head
 
SJ
,
Juni
 
P
,
Kastrati
 
A
,
Koller
 
A
,
Kristensen
 
SD
,
Niebauer
 
J
,
Richter
 
DJ
,
Seferovic
 
PM
,
Sibbing
 
D
,
Stefanini
 
GG
,
Windecker
 
S
,
Yadav
 
R
,
Zembala
 
MO
; ESC Scientific Document Group.
2018 ESC/EACTS Guidelines on myocardial revascularization
.
Eur Heart J
 
2019
;
40
:
87
165
.

83

Zwart
 
B
,
Yazdani
 
M
,
Ow
 
KW
,
Richardson
 
JD
,
Iqbal
 
J
,
Gunn
 
JP
,
Storey
 
RF.
 
Use of glycoprotein IIb/IIIa antagonists to prevent stent thrombosis in morphine-treated patients with ST-elevation myocardial infarction
.
Platelets
 
2020
;
31
:
174
178
.

84

Mega
 
JL
,
Braunwald
 
E
,
Wiviott
 
SD
,
Bassand
 
JP
,
Bhatt
 
DL
,
Bode
 
C
,
Burton
 
P
,
Cohen
 
M
,
Cook-Bruns
 
N
,
Fox
 
KA
,
Goto
 
S
,
Murphy
 
SA
,
Plotnikov
 
AN
,
Schneider
 
D
,
Sun
 
X
,
Verheugt
 
FW
,
Gibson
 
CM
; ATLAS ACS 2-TIMI 51 Investigators.
Rivaroxaban in patients with a recent acute coronary syndrome
.
N Engl J Med
 
2012
;
366
:
9
19
.

85

Knuuti
 
J
,
Wijns
 
W
,
Saraste
 
A
,
Capodanno
 
D
,
Barbato
 
E
,
Funck-Brentano
 
C
,
Prescott
 
E
,
Storey
 
RF
,
Deaton
 
C
,
Cuisset
 
T
,
Agewall
 
S
,
Dickstein
 
K
,
Edvardsen
 
T
,
Escaned
 
J
,
Gersh
 
BJ
,
Svitil
 
P
,
Gilard
 
M
,
Hasdai
 
D
,
Hatala
 
R
,
Mahfoud
 
F
,
Masip
 
J
,
Muneretto
 
C
,
Valgimigli
 
M
,
Achenbach
 
S
,
Bax
 
JJ
; ESC Scientific Document Group.
2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes
.
Eur Heart J
 
2020
;
41
:
407
477
.

86

CAPRIE Steering Committee.

A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE)
.
Lancet
 
1996
;
348
:
1329
1339
.

87

Bhatt
 
DL
,
Marso
 
SP
,
Hirsch
 
AT
,
Ringleb
 
PA
,
Hacke
 
W
,
Topol
 
EJ.
 
Amplified benefit of clopidogrel versus aspirin in patients with diabetes mellitus
.
Am J Cardiol
 
2002
;
90
:
625
628
.

88

Mauri
 
L
,
Kereiakes
 
DJ
,
Yeh
 
RW
,
Driscoll-Shempp
 
P
,
Cutlip
 
DE
,
Steg
 
PG
,
Normand
 
SL
,
Braunwald
 
E
,
Wiviott
 
SD
,
Cohen
 
DJ
,
Holmes
 
DR
 Jr
,
Krucoff
 
MW
,
Hermiller
 
J
,
Dauerman
 
HL
,
Simon
 
DI
,
Kandzari
 
DE
,
Garratt
 
KN
,
Lee
 
DP
,
Pow
 
TK
,
Ver Lee
 
P
,
Rinaldi
 
MJ
,
Massaro
 
JM
; DAPT Study Investigators.
Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents
.
N Engl J Med
 
2014
;
371
:
2155
2166
.

89

Meredith
 
IT
,
Tanguay
 
JF
,
Kereiakes
 
DJ
,
Cutlip
 
DE
,
Yeh
 
RW
,
Garratt
 
KN
,
Lee
 
DP
,
Steg
 
PG
,
Weaver
 
WD
,
Holmes
 
DR
 Jr
,
Brindis
 
RG
,
Trebacz
 
J
,
Massaro
 
JM
,
Hsieh
 
WH
,
Mauri
 
L
; DAPT Study Investigators.
Diabetes mellitus and prevention of late myocardial infarction after coronary stenting in the randomized dual antiplatelet therapy study
.
Circulation
 
2016
;
133
:
1772
1782
.

90

Gargiulo
 
G
,
Windecker
 
S
,
da Costa
 
BR
,
Feres
 
F
,
Hong
 
MK
,
Gilard
 
M
,
Kim
 
HS
,
Colombo
 
A
,
Bhatt
 
DL
,
Kim
 
BK
,
Morice
 
MC
,
Park
 
KW
,
Chieffo
 
A
,
Palmerini
 
T
,
Stone
 
GW
,
Valgimigli
 
M.
 
Short term versus long term dual antiplatelet therapy after implantation of drug eluting stent in patients with or without diabetes: systematic review and meta-analysis of individual participant data from randomised trials
.
BMJ
 
2016
;
355
:
i5483
.

91

Bonaca
 
MP
,
Bhatt
 
DL
,
Cohen
 
M
,
Steg
 
PG
,
Storey
 
RF
,
Jensen
 
EC
,
Magnani
 
G
,
Bansilal
 
S
,
Fish
 
MP
,
Im
 
K
,
Bengtsson
 
O
,
Oude Ophuis
 
T
,
Budaj
 
A
,
Theroux
 
P
,
Ruda
 
M
,
Hamm
 
C
,
Goto
 
S
,
Spinar
 
J
,
Nicolau
 
JC
,
Kiss
 
RG
,
Murphy
 
SA
,
Wiviott
 
SD
,
Held
 
P
,
Braunwald
 
E
,
Sabatine
 
MS
; PEGASUS-TIMI 54 Steering Committee and Investigators.
Long-term use of ticagrelor in patients with prior myocardial infarction
.
N Engl J Med
 
2015
;
372
:
1791
1800
.

92

Eikelboom
 
JW
,
Connolly
 
SJ
,
Bosch
 
J
,
Dagenais
 
GR
,
Hart
 
RG
,
Shestakovska
 
O
,
Diaz
 
R
,
Alings
 
M
,
Lonn
 
EM
,
Anand
 
SS
,
Widimsky
 
P
,
Hori
 
M
,
Avezum
 
A
,
Piegas
 
LS
,
Branch
 
KRH
,
Probstfield
 
J
,
Bhatt
 
DL
,
Zhu
 
J
,
Liang
 
Y
,
Maggioni
 
AP
,
Lopez-Jaramillo
 
P
,
O’Donnell
 
M
,
Kakkar
 
AK
,
Fox
 
KAA
,
Parkhomenko
 
AN
,
Ertl
 
G
,
Störk
 
S
,
Keltai
 
M
,
Ryden
 
L
,
Pogosova
 
N
,
Dans
 
AL
,
Lanas
 
F
,
Commerford
 
PJ
,
Torp-Pedersen
 
C
,
Guzik
 
TJ
,
Verhamme
 
PB
,
Vinereanu
 
D
,
Kim
 
J-H
,
Tonkin
 
AM
,
Lewis
 
BS
,
Felix
 
C
,
Yusoff
 
K
,
Steg
 
PG
,
Metsarinne
 
KP
,
Cook Bruns
 
N
,
Misselwitz
 
F
,
Chen
 
E
,
Leong
 
D
,
Yusuf
 
S
; COMPASS Investigators.
Rivaroxaban with or without aspirin in stable cardiovascular disease
.
N Engl J Med
 
2017
;
377
:
1319
1330
.

93

Sumaya
 
W
,
Geisler
 
T
,
Kristensen
 
SD
,
Storey
 
RF.
 
Dual antiplatelet or dual antithrombotic therapy for secondary prevention in high-risk patients with stable coronary artery disease?
 
Thromb Haemost
 
2019
;
119
:
1583
1589
.

94

Anand
 
SS
,
Eikelboom
 
JW
,
Dyal
 
L
,
Bosch
 
J
,
Neumann
 
C
,
Widimsky
 
P
,
Avezum
 
AA
,
Probstfield
 
J
,
Cook Bruns
 
N
,
Fox
 
KAA
,
Bhatt
 
DL
,
Connolly
 
SJ
,
Yusuf
 
S
; COMPASS Trial Investigators.
Rivaroxaban plus aspirin versus aspirin in relation to vascular risk in the COMPASS trial
.
J Am Coll Cardiol
 
2019
;
73
:
3271
3280
.

95

Morrow
 
DA
,
Braunwald
 
E
,
Bonaca
 
MP
,
Ameriso
 
SF
,
Dalby
 
AJ
,
Fish
 
MP
,
Fox
 
KA
,
Lipka
 
LJ
,
Liu
 
X
,
Nicolau
 
JC
,
Ophuis
 
AJ
,
Paolasso
 
E
,
Scirica
 
BM
,
Spinar
 
J
,
Theroux
 
P
,
Wiviott
 
SD
,
Strony
 
J
,
Murphy
 
SA
; TRA 2P-TIMI 50 Steering Committee and Investigators.
Vorapaxar in the secondary prevention of atherothrombotic events
.
N Engl J Med
 
2012
;
366
:
1404
1413
.

96

Scirica
 
BM
,
Bonaca
 
MP
,
Braunwald
 
E
,
De Ferrari
 
GM
,
Isaza
 
D
,
Lewis
 
BS
,
Mehrhof
 
F
,
Merlini
 
PA
,
Murphy
 
SA
,
Sabatine
 
MS
,
Tendera
 
M
,
Van de Werf
 
F
,
Wilcox
 
R
,
Morrow
 
DA
; TRA 2°P-TIMI 50 Steering Committee and Investigators.
Vorapaxar for secondary prevention of thrombotic events for patients with previous myocardial infarction: a prespecified subgroup analysis of the TRA 2 degrees P-TIMI 50 trial
.
Lancet
 
2012
;
380
:
1317
1324
.

97

Cavender
 
MA
,
Scirica
 
BM
,
Bonaca
 
MP
,
Angiolillo
 
DJ
,
Dalby
 
AJ
,
Dellborg
 
M
,
Morais
 
J
,
Murphy
 
SA
,
Ophuis
 
TO
,
Tendera
 
M
,
Braunwald
 
E
,
Morrow
 
DA.
 
Vorapaxar in patients with diabetes mellitus and previous myocardial infarction: findings from the Thrombin Receptor Antagonist in Secondary Prevention of Atherothrombotic Ischemic Events-TIMI 50 trial
.
Circulation
 
2015
;
131
:
1047
1053
.

98

Storey
 
RF.
 
The long journey of individualizing antiplatelet therapy after acute coronary syndromes
.
Eur Heart J
 
2020
;
41
:
3546
3548
.

99

Pallisgaard
 
JL
,
Schjerning
 
AM
,
Lindhardt
 
TB
,
Procida
 
K
,
Hansen
 
ML
,
Torp-Pedersen
 
C
,
Gislason
 
GH.
 
Risk of atrial fibrillation in diabetes mellitus: a nationwide cohort study
.
Eur J Prev Cardiol
 
2016
;
23
:
621
627
.

100

Overvad
 
TF
,
Skjoth
 
F
,
Lip
 
GY
,
Lane
 
DA
,
Albertsen
 
IE
,
Rasmussen
 
LH
,
Larsen
 
TB.
 
Duration of diabetes mellitus and risk of thromboembolism and bleeding in atrial fibrillation: nationwide cohort study
.
Stroke
 
2015
;
46
:
2168
2174
.

101

Dublin
 
S
,
Glazer
 
NL
,
Smith
 
NL
,
Psaty
 
BM
,
Lumley
 
T
,
Wiggins
 
KL
,
Page
 
RL
,
Heckbert
 
SR.
 
Diabetes mellitus, glycemic control, and risk of atrial fibrillation
.
J Gen Intern Med
 
2010
;
25
:
853
858
.

102

Wang
 
A
,
Green
 
JB
,
Halperin
 
JL
,
Piccini
 
JP
 Sr.
 
Atrial fibrillation and diabetes mellitus: JACC review topic of the week
.
J Am Coll Cardiol
 
2019
;
74
:
1107
1115
.

103

Plitt
 
A
,
McGuire
 
DK
,
Giugliano
 
RP.
 
Atrial fibrillation, type 2 diabetes, and non-vitamin K antagonist oral anticoagulants: a review
.
JAMA Cardiol
 
2017
;
2
:
442
448
.

104

Huxley
 
RR
,
Alonso
 
A
,
Lopez
 
FL
,
Filion
 
KB
,
Agarwal
 
SK
,
Loehr
 
LR
,
Soliman
 
EZ
,
Pankow
 
JS
,
Selvin
 
E.
 
Type 2 diabetes, glucose homeostasis and incident atrial fibrillation: the Atherosclerosis Risk in Communities study
.
Heart
 
2012
;
98
:
133
138
.

105

Anselmino
 
M
,
Matta
 
M
,
D'Ascenzo
 
F
,
Pappone
 
C
,
Santinelli
 
V
,
Bunch
 
TJ
,
Neumann
 
T
,
Schilling
 
RJ
,
Hunter
 
RJ
,
Noelker
 
G
,
Fiala
 
M
,
Frontera
 
A
,
Thomas
 
G
,
Katritsis
 
D
,
Jais
 
P
,
Weerasooriya
 
R
,
Kalman
 
JM
,
Gaita
 
F.
 
Catheter ablation of atrial fibrillation in patients with diabetes mellitus: a systematic review and meta-analysis
.
Europace
 
2015
;
17
:
1518
1525
.

106

Fatemi
 
O
,
Yuriditsky
 
E
,
Tsioufis
 
C
,
Tsachris
 
D
,
Morgan
 
T
,
Basile
 
J
,
Bigger
 
T
,
Cushman
 
W
,
Goff
 
D
,
Soliman
 
EZ
,
Thomas
 
A
,
Papademetriou
 
V.
 
Impact of intensive glycemic control on the incidence of atrial fibrillation and associated cardiovascular outcomes in patients with type 2 diabetes mellitus (from the Action to Control Cardiovascular Risk in Diabetes Study)
.
Am J Cardiol
 
2014
;
114
:
1217
1222
.

107

Chang
 
SH
,
Wu
 
LS
,
Chiou
 
MJ
,
Liu
 
JR
,
Yu
 
KH
,
Kuo
 
CF
,
Wen
 
MS
,
Chen
 
WJ
,
Yeh
 
YH
,
See
 
LC.
 
Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus: a population-based dynamic cohort and in vitro studies
.
Cardiovasc Diabetol
 
2014
;
13
:
123
.

108

Zhang
 
Z
,
Zhang
 
X
,
Korantzopoulos
 
P
,
Letsas
 
KP
,
Tse
 
G
,
Gong
 
M
,
Meng
 
L
,
Li
 
G
,
Liu
 
T.
 
Thiazolidinedione use and atrial fibrillation in diabetic patients: a meta-analysis
.
BMC Cardiovasc Disord
 
2017
;
17
:
96
.

109

Zelniker
 
TA
,
Bonaca
 
MP
,
Furtado
 
RHM
,
Mosenzon
 
O
,
Kuder
 
JF
,
Murphy
 
SA
,
Bhatt
 
DL
,
Leiter
 
LA
,
McGuire
 
DK
,
Wilding
 
JPH
,
Budaj
 
A
,
Kiss
 
RG
,
Padilla
 
F
,
Gause-Nilsson
 
I
,
Langkilde
 
AM
,
Raz
 
I
,
Sabatine
 
MS
,
Wiviott
 
SD.
 
Effect of dapagliflozin on atrial fibrillation in patients with type 2 diabetes mellitus: insights from the DECLARE-TIMI 58 trial
.
Circulation
 
2020
;
141
:
1227
1234
.

110

Chan
 
YH
,
Lee
 
HF
,
Li
 
PR
,
Liu
 
JR
,
Chao
 
TF
,
Wu
 
LS
,
Chang
 
SH
,
Yeh
 
YH
,
Kuo
 
CT
,
See
 
LC
,
Lip
 
GYH.
 
Effectiveness, safety, and major adverse limb events in atrial fibrillation patients with concomitant diabetes mellitus treated with non-vitamin K antagonist oral anticoagulants
.
Cardiovasc Diabetol
 
2020
;
19
:
63
.

111

Ruff
 
CT
,
Giugliano
 
RP
,
Braunwald
 
E
,
Hoffman
 
EB
,
Deenadayalu
 
N
,
Ezekowitz
 
MD
,
Camm
 
AJ
,
Weitz
 
JI
,
Lewis
 
BS
,
Parkhomenko
 
A
,
Yamashita
 
T
,
Antman
 
EM.
 
Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials
.
Lancet
 
2014
;
383
:
955
962
.

112

Reddy
 
VY
,
Doshi
 
SK
,
Kar
 
S
,
Gibson
 
DN
,
Price
 
MJ
,
Huber
 
K
,
Horton
 
RP
,
Buchbinder
 
M
,
Neuzil
 
P
,
Gordon
 
NT
,
Holmes
 
DR
 Jr
; PREVAIL and PROTECT AF Investigators.
5-Year outcomes after left atrial appendage closure: from the PREVAIL and PROTECT AF trials
.
J Am Coll Cardiol
 
2017
;
70
:
2964
2975
.

113

Kirchhof
 
P
,
Benussi
 
S
,
Kotecha
 
D
,
Ahlsson
 
A
,
Atar
 
D
,
Casadei
 
B
,
Castella
 
M
,
Diener
 
HC
,
Heidbuchel
 
H
,
Hendriks
 
J
,
Hindricks
 
G
,
Manolis
 
AS
,
Oldgren
 
J
,
Popescu
 
BA
,
Schotten
 
U
,
Van Putte
 
B
,
Vardas
 
P
; ESC Scientific Document Group.
2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS
.
Eur Heart J
 
2016
;
37
:
2893
2962
.

114

Angiolillo
 
DJ
,
Goodman
 
SG
,
Bhatt
 
DL
,
Eikelboom
 
JW
,
Price
 
MJ
,
Moliterno
 
DJ
,
Cannon
 
CP
,
Tanguay
 
JF
,
Granger
 
CB
,
Mauri
 
L
,
Holmes
 
DR
,
Gibson
 
CM
,
Faxon
 
DP.
 
Antithrombotic therapy in patients with atrial fibrillation treated with oral anticoagulation undergoing percutaneous coronary intervention: a North American Perspective—2018 update
.
Circulation
 
2018
;
138
:
527
536
.

115

Capodanno
 
D
,
Huber
 
K
,
Mehran
 
R
,
Lip
 
GYH
,
Faxon
 
DP
,
Granger
 
CB
,
Vranckx
 
P
,
Lopes
 
RD
,
Montalescot
 
G
,
Cannon
 
CP
,
Ten Berg
 
J
,
Gersh
 
BJ
,
Bhatt
 
DL
,
Angiolillo
 
DJ.
 
Management of antithrombotic therapy in atrial fibrillation patients undergoing PCI: JACC state-of-the-art review
.
J Am Coll Cardiol
 
2019
;
74
:
83
99
.

116

Boriani
 
G
,
Fauchier
 
L
,
Aguinaga
 
L
,
Beattie
 
JM
,
Blomstrom Lundqvist
 
C
,
Cohen
 
A
,
Dan
 
G-A
,
Genovesi
 
S
,
Israel
 
C
,
Joung
 
B
,
Kalarus
 
Z
,
Lampert
 
R
,
Malavasi
 
VL
,
Mansourati
 
J
,
Mont
 
L
,
Potpara
 
T
,
Thornton
 
A
,
Lip
 
GYH
,
Gorenek
 
B
,
Marin
 
F
,
Dagres
 
N
,
Ozcan
 
EE
,
Lenarczyk
 
R
,
Crijns
 
HJ
,
Guo
 
Y
,
Proietti
 
M
,
Sticherling
 
C
,
Huang
 
D
,
Daubert
 
JP
,
Pokorney
 
SD
,
Cabrera Ortega
 
M
,
Chin
 
A
; ESC Scientific Document Group.
European Heart Rhythm Association (EHRA) consensus document on management of arrhythmias and cardiac electronic devices in the critically ill and post-surgery patient, endorsed by Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS), Cardiac Arrhythmia Society of Southern Africa (CASSA), and Latin American Heart Rhythm Society (LAHRS)
.
Europace
 
2019
;
21
:
7
8
.

117

Lip
 
GYH
,
Collet
 
J-P
,
Haude
 
M
,
Byrne
 
R
,
Chung
 
EH
,
Fauchier
 
L
,
Halvorsen
 
S
,
Lau
 
D
,
Lopez-Cabanillas
 
N
,
Lettino
 
M
,
Marin
 
F
,
Obel
 
I
,
Rubboli
 
A
,
Storey
 
RF
,
Valgimigli
 
M
,
Huber
 
K
,
Potpara
 
T
,
Blomström Lundqvist
 
C
,
Crijns
 
H
,
Steffel
 
J
,
Heidbüchel
 
H
,
Stankovic
 
G
,
Airaksinen
 
J
,
Ten Berg
 
JM
,
Capodanno
 
D
,
James
 
S
,
Bueno
 
H
,
Morais
 
J
,
Sibbing
 
D
,
Rocca
 
B
,
Hsieh
 
M-H
,
Akoum
 
N
,
Lockwood
 
DJ
,
Gomez Flores
 
JR
,
Jardine
 
R
; ESC Scientific Document Group.
2018 Joint European consensus document on the management of antithrombotic therapy in atrial fibrillation patients presenting with acute coronary syndrome and/or undergoing percutaneous cardiovascular interventions: a joint consensus document of the European Heart Rhythm Association (EHRA), European Society of Cardiology Working Group on Thrombosis, European Association of Percutaneous Cardiovascular Interventions (EAPCI), and European Association of Acute Cardiac Care (ACCA) endorsed by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS), Latin America Heart Rhythm Society (LAHRS), and Cardiac Arrhythmia Society of Southern Africa (CASSA)
.
Europace
 
2019
;
21
:
192
193
.

118

Fowkes
 
FG
,
Rudan
 
D
,
Rudan
 
I
,
Aboyans
 
V
,
Denenberg
 
JO
,
McDermott
 
MM
,
Norman
 
PE
,
Sampson
 
UK
,
Williams
 
LJ
,
Mensah
 
GA
,
Criqui
 
MH.
 
Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis
.
Lancet
 
2013
;
382
:
1329
1340
.

119

Alberts
 
MJ
,
Bhatt
 
DL
,
Mas
 
J-L
,
Ohman
 
EM
,
Hirsch
 
AT
,
Rother
 
J
,
Salette
 
G
,
Goto
 
S
,
Smith
 
SC
,
Liau
 
C-S
,
Wilson
 
PWF
,
Steg
 
PG
; for the REduction of Atherothrombosis for Continued Health (REACH) Registry Investigators.
Three-year follow-up and event rates in the international REduction of Atherothrombosis for Continued Health Registry
.
Eur Heart J
 
2009
;
30
:
2318
2326
.

120

Verma
 
S
,
Bhatt
 
DL
,
Bain
 
SC
,
Buse
 
JB
,
Mann
 
JFE
,
Marso
 
SP
,
Nauck
 
MA
,
Poulter
 
NR
,
Pratley
 
RE
,
Zinman
 
B
,
Michelsen
 
MM
,
Monk Fries
 
T
,
Rasmussen
 
S
,
Leiter
 
LA
,
Leader
 
PC
,
On
 
B
,
Of The
 
LTI
; LEADER Publication Committee on behalf of the LEADER Trial Investigators.
Effect of liraglutide on cardiovascular events in patients with type 2 diabetes mellitus and polyvascular disease: results of the LEADER trial
.
Circulation
 
2018
;
137
:
2179
2183
.

121

Fowkes
 
FG
,
Price
 
JF
,
Stewart
 
MC
,
Butcher
 
I
,
Leng
 
GC
,
Pell
 
AC
,
Sandercock
 
PA
,
Fox
 
KA
,
Lowe
 
GD
,
Murray
 
GD
; Aspirin for Asymptomatic Atherosclerosis Trialists.
Aspirin for prevention of cardiovascular events in a general population screened for a low ankle brachial index: a randomized controlled trial
.
JAMA
 
2010
;
303
:
841
848
.

122

Hiatt
 
WR
,
Fowkes
 
FG
,
Heizer
 
G
,
Berger
 
JS
,
Baumgartner
 
I
,
Held
 
P
,
Katona
 
BG
,
Mahaffey
 
KW
,
Norgren
 
L
,
Jones
 
WS
,
Blomster
 
J
,
Millegard
 
M
,
Reist
 
C
,
Patel
 
MR
; EUCLID Trial Steering Committee and Investigators.
Ticagrelor versus clopidogrel in symptomatic peripheral artery disease
.
N Engl J Med
 
2017
;
376
:
32
40
.

123

Cacoub
 
PP
,
Bhatt
 
DL
,
Steg
 
PG
,
Topol
 
EJ
,
Creager
 
MA
; CHARISMA Investigators.
Patients with peripheral arterial disease in the CHARISMA trial
.
Eur Heart J
 
2008
;
30
:
192
201
.

124

Bonaca
 
MP
,
Scirica
 
BM
,
Creager
 
MA
,
Olin
 
J
,
Bounameaux
 
H
,
Dellborg
 
M
,
Lamp
 
JM
,
Murphy
 
SA
,
Braunwald
 
E
,
Morrow
 
DA.
 
Vorapaxar in patients with peripheral artery disease: results from TRA2°P-TIMI 50
.
Circulation
 
2013
;
127
:
1522
1529
.

125

Katsanos
 
K
,
Spiliopoulos
 
S
,
Saha
 
P
,
Diamantopoulos
 
A
,
Karunanithy
 
N
,
Krokidis
 
M
,
Modarai
 
B
,
Karnabatidis
 
D.
 
Comparative efficacy and safety of different antiplatelet agents for prevention of major cardiovascular events and leg amputations in patients with peripheral arterial disease: a systematic review and network meta-analysis
.
PLoS One
 
2015
;
10
:
e0135692
.

126

Anand
 
SS
,
Bosch
 
J
,
Eikelboom
 
JW
,
Connolly
 
SJ
,
Diaz
 
R
,
Widimsky
 
P
,
Aboyans
 
V
,
Alings
 
M
,
Kakkar
 
AK
,
Keltai
 
K
,
Maggioni
 
AP
,
Lewis
 
BS
,
Störk
 
S
,
Zhu
 
J
,
Lopez-Jaramillo
 
P
,
O'Donnell
 
M
,
Commerford
 
PJ
,
Vinereanu
 
D
,
Pogosova
 
N
,
Ryden
 
L
,
Fox
 
KAA
,
Bhatt
 
DL
,
Misselwitz
 
F
,
Varigos
 
JD
,
Vanassche
 
T
,
Avezum
 
AA
,
Chen
 
E
,
Branch
 
K
,
Leong
 
DP
,
Bangdiwala
 
SI
,
Hart
 
RG
,
Yusuf
 
S
; COMPASS Investigators.
Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: an international, randomised, double-blind, placebo-controlled trial
.
Lancet
 
2018
;
391
:
219
229
.

127

Belch
 
JJ
,
Dormandy
 
J
CASPAR Writing Committee
Biasi
 
GM
,
Biasi
 
BM
,
Cairols
 
M
,
Diehm
 
C
,
Eikelboom
 
B
,
Golledge
 
J
,
Jawien
 
A
,
Lepäntalo
 
M
,
Norgren
 
L
,
Hiatt
 
WR
,
Becquemin
 
JP
,
Bergqvist
 
D
,
Clement
 
D
,
Baumgartner
 
I
,
Minar
 
E
,
Stonebridge
 
P
,
Vermassen
 
F
,
Matyas
 
L
,
Leizorovicz
 
A.
 
Results of the randomized, placebo-controlled clopidogrel and acetylsalicylic acid in bypass surgery for peripheral arterial disease (CASPAR) trial
.
J Vasc Surg
 
2010
;
52
:
825
833
.

128

Efficacy of oral anticoagulants compared with aspirin after infrainguinal bypass surgery (The Dutch Bypass Oral Anticoagulants or Aspirin Study): a randomised trial
.
Lancet
 
2000
;
355
:
346
351
.

129

Sarac
 
TP
,
Huber
 
TS
,
Back
 
MR
,
Ozaki
 
CK
,
Carlton
 
LM
,
Flynn
 
TC
,
Seeger
 
JM.
 
Warfarin improves the outcome of infrainguinal vein bypass grafting at high risk for failure
.
J Vasc Surg
 
1998
;
28
:
446
457
.

130

Bonaca
 
MP
,
Bauersachs
 
RM
,
Anand
 
SS
,
Debus
 
ES
,
Nehler
 
MR
,
Patel
 
MR
,
Fanelli
 
F
,
Capell
 
WH
,
Diao
 
L
,
Jaeger
 
N
,
Hess
 
CN
,
Pap
 
AF
,
Kittelson
 
JM
,
Gudz
 
I
,
Matyas
 
L
,
Krievins
 
DK
,
Diaz
 
R
,
Brodmann
 
M
,
Muehlhofer
 
E
,
Haskell
 
LP
,
Berkowitz
 
SD
,
Hiatt
 
WR.
 
Rivaroxaban in peripheral artery disease after revascularization
.
N Engl J Med
 
2020
;
382
:
1994
2004
.

131

Capodanno
 
D
,
Alberts
 
M
,
Angiolillo
 
DJ.
 
Antithrombotic therapy for secondary prevention of atherothrombotic events in cerebrovascular disease
.
Nat Rev Cardiol
 
2016
;
13
:
609
622
.

132

Powers
 
WJ
,
Rabinstein
 
AA
,
Ackerson
 
T
,
Adeoye
 
OM
,
Bambakidis
 
NC
,
Becker
 
K
,
Biller
 
J
,
Brown
 
M
,
Demaerschalk
 
BM
,
Hoh
 
B
,
Jauch
 
EC
,
Kidwell
 
CS
,
Leslie-Mazwi
 
TM
,
Ovbiagele
 
B
,
Scott
 
PA
,
Sheth
 
KN
,
Southerland
 
AM
,
Summers
 
DV
,
Tirschwell
 
DL.
 
Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 Guidelines for the early management of acute ischemic stroke: A Guideline for healthcare professionals from the American Heart Association/American Stroke Association
 
. Stroke
 
2019
;
50
:
e344
e418
.

133

Johnston
 
SC
,
Amarenco
 
P
,
Albers
 
GW
,
Denison
 
H
,
Easton
 
JD
,
Evans
 
SR
,
Held
 
P
,
Jonasson
 
J
,
Minematsu
 
K
,
Molina
 
CA
,
Wang
 
Y
,
Wong
 
KS
; SOCRATES Steering Committee and Investigators.
Ticagrelor versus aspirin in acute stroke or transient ischemic attack
.
N Engl J Med
 
2016
;
375
:
35
43
.

134

Wang
 
Y
,
Wang
 
Y
,
Zhao
 
X
,
Liu
 
L
,
Wang
 
D
,
Wang
 
C
,
Wang
 
C
,
Li
 
H
,
Meng
 
X
,
Cui
 
L
,
Jia
 
J
,
Dong
 
Q
,
Xu
 
A
,
Zeng
 
J
,
Li
 
Y
,
Wang
 
Z
,
Xia
 
H
,
Johnston
 
SC
; CHANCE Investigators.
Clopidogrel with aspirin in acute minor stroke or transient ischemic attack
.
N Engl J Med
 
2013
;
369
:
11
19
.

135

Johnston
 
SC
,
Easton
 
JD
,
Farrant
 
M
,
Barsan
 
W
,
Conwit
 
RA
,
Elm
 
JJ
,
Kim
 
AS
,
Lindblad
 
AS
,
Palesch
 
YY
; Clinical Research Collaboration, Neurological Emergencies Treatment Trials Network, and the POINT Investigators.
Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA
.
N Engl J Med
 
2018
;
379
:
215
225
.

136

Johnston
 
SC
,
Amarenco
 
P
,
Denison
 
H
,
Evans
 
SR
,
Himmelmann
 
A
,
James
 
S
,
Knutsson
 
M
,
Ladenvall
 
P
,
Molina
 
CA
,
Wang
 
Y
; THALES Investigators.
Ticagrelor and aspirin or aspirin alone in acute ischemic stroke or TIA
.
N Engl J Med
 
2020
;
383
:
207
217
.

137

Hankey
 
GJ.
 
Antithrombotic therapy for stroke prevention
.
Circulation
 
2019
;
139
:
1131
1133
.

138

Antithrombotic Trialists Collaboration.

Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients
.
BMJ
 
2002
;
324
:
71
86
.

139

Rothwell
 
PM
,
Algra
 
A
,
Chen
 
Z
,
Diener
 
HC
,
Norrving
 
B
,
Mehta
 
Z.
 
Effects of aspirin on risk and severity of early recurrent stroke after transient ischaemic attack and ischaemic stroke: time-course analysis of randomised trials
.
Lancet
 
2016
;
388
:
365
375
.

140

Halkes
 
PH
,
van Gijn
 
J
,
Kappelle
 
LJ
,
Koudstaal
 
PJ
,
Algra
 
A
; ESPRIT Study Group.
Aspirin plus dipyridamole versus aspirin alone after cerebral ischaemia of arterial origin (ESPRIT): randomised controlled trial
.
Lancet
 
2006
;
367
:
1665
1673
.

141

Sacco
 
RL
,
Diener
 
HC
,
Yusuf
 
S
,
Cotton
 
D
,
Ounpuu
 
S
,
Lawton
 
WA
,
Palesch
 
Y
,
Martin
 
RH
,
Albers
 
GW
,
Bath
 
P
,
Bornstein
 
N
,
Chan
 
BP
,
Chen
 
ST
,
Cunha
 
L
,
Dahlof
 
B
,
De Keyser
 
J
,
Donnan
 
GA
,
Estol
 
C
,
Gorelick
 
P
,
Gu
 
V
,
Hermansson
 
K
,
Hilbrich
 
L
,
Kaste
 
M
,
Lu
 
C
,
Machnig
 
T
,
Pais
 
P
,
Roberts
 
R
,
Skvortsova
 
V
,
Teal
 
P
,
Toni
 
D
,
Vandermaelen
 
C
,
Voigt
 
T
,
Weber
 
M
,
Yoon
 
BW
; PRoFESS Study Group.
Aspirin and extended-release dipyridamole versus clopidogrel for recurrent stroke
.
N Engl J Med
 
2008
;
359
:
1238
1251
.

142

Bhatt
 
DL
,
Fox
 
KA
,
Hacke
 
W
,
Berger
 
PB
,
Black
 
HR
,
Boden
 
WE
,
Cacoub
 
P
,
Cohen
 
EA
,
Creager
 
MA
,
Easton
 
JD
,
Flather
 
MD
,
Haffner
 
SM
,
Hamm
 
CW
,
Hankey
 
GJ
,
Johnston
 
SC
,
Mak
 
KH
,
Mas
 
JL
,
Montalescot
 
G
,
Pearson
 
TA
,
Steg
 
PG
,
Steinhubl
 
SR
,
Weber
 
MA
,
Brennan
 
DM
,
Fabry-Ribaudo
 
L
,
Booth
 
J
,
Topol
 
EJ
; CHARISMA Investigators.
Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events
.
N Engl J Med
 
2006
;
354
:
1706
1717
.

143

Benavente
 
OR
,
Hart
 
RG
,
McClure
 
LA
,
Szychowski
 
JM
,
Coffey
 
CS
,
Pearce
 
LA.
 
Effects of clopidogrel added to aspirin in patients with recent lacunar stroke
.
N Engl J Med
 
2012
;
367
:
817
825
.

144

Greving
 
JP
,
Diener
 
HC
,
Reitsma
 
JB
,
Bath
 
PM
,
Csiba
 
L
,
Hacke
 
W
,
Kappelle
 
LJ
,
Koudstaal
 
PJ
,
Leys
 
D
,
Mas
 
JL
,
Sacco
 
RL
,
Algra
 
A
; for the Cerebrovascular Antiplatelet Trialists’ Collaborative Group.
Antiplatelet therapy after noncardioembolic stroke
.
Stroke
 
2019
;
50
:
1812
1818
.

145

Diener
 
HC
,
Bogousslavsky
 
J
,
Brass
 
LM
,
Cimminiello
 
C
,
Csiba
 
L
,
Kaste
 
M
,
Leys
 
D
,
Matias-Guiu
 
J
,
Rupprecht
 
HJ
; MATCH Investigators.
Aspirin and clopidogrel compared with clopidogrel alone after recent ischaemic stroke or transient ischaemic attack in high-risk patients (MATCH): randomised, double-blind, placebo-controlled trial
.
Lancet
 
2004
;
364
:
331
337
.

146

January
 
CT
,
Wann
 
LS
,
Calkins
 
H
,
Chen
 
LY
,
Cigarroa
 
JE
,
Cleveland
 
JC
 Jr
,
Ellinor
 
PT
,
Ezekowitz
 
MD
,
Field
 
ME
,
Furie
 
KL
,
Heidenreich
 
PA
,
Murray
 
KT
,
Shea
 
JB
,
Tracy
 
CM
,
Yancy
 
CW.
 
2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS Guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration With the Society of Thoracic Surgeons
.
Circulation
 
2019
;
140
:
e125
e151
.

147

Oldgren
 
J
,
Healey
 
JS
,
Ezekowitz
 
M
,
Commerford
 
P
,
Avezum
 
A
,
Pais
 
P
,
Zhu
 
J
,
Jansky
 
P
,
Sigamani
 
A
,
Morillo
 
CA
,
Liu
 
L
,
Damasceno
 
A
,
Grinvalds
 
A
,
Nakamya
 
J
,
Reilly
 
PA
,
Keltai
 
K
,
Van Gelder
 
IC
,
Yusufali
 
AH
,
Watanabe
 
E
,
Wallentin
 
L
,
Connolly
 
SJ
,
Yusuf
 
S
; RE-LY Atrial Fibrillation Registry Investigators.
Variations in cause and management of atrial fibrillation in a prospective registry of 15,400 emergency department patients in 46 countries: the RE-LY Atrial Fibrillation Registry
.
Circulation
 
2014
;
129
:
1568
1576
.

148

Connolly
 
SJ
,
Ezekowitz
 
MD
,
Yusuf
 
S
,
Eikelboom
 
J
,
Oldgren
 
J
,
Parekh
 
A
,
Pogue
 
J
,
Reilly
 
PA
,
Themeles
 
E
,
Varrone
 
J
,
Wang
 
S
,
Alings
 
M
,
Xavier
 
D
,
Zhu
 
J
,
Diaz
 
R
,
Lewis
 
BS
,
Darius
 
H
,
Diener
 
HC
,
Joyner
 
CD
,
Wallentin
 
L
; RE-LY Steering Committee and Investigators.
Dabigatran versus warfarin in patients with atrial fibrillation
.
N Engl J Med
 
2009
;
361
:
1139
1151
.

149

Granger
 
CB
,
Alexander
 
JH
,
McMurray
 
JJ
,
Lopes
 
RD
,
Hylek
 
EM
,
Hanna
 
M
,
Al-Khalidi
 
HR
,
Ansell
 
J
,
Atar
 
D
,
Avezum
 
A
,
Bahit
 
MC
,
Diaz
 
R
,
Easton
 
JD
,
Ezekowitz
 
JA
,
Flaker
 
G
,
Garcia
 
D
,
Geraldes
 
M
,
Gersh
 
BJ
,
Golitsyn
 
S
,
Goto
 
S
,
Hermosillo
 
AG
,
Hohnloser
 
SH
,
Horowitz
 
J
,
Mohan
 
P
,
Jansky
 
P
,
Lewis
 
BS
,
Lopez-Sendon
 
JL
,
Pais
 
P
,
Parkhomenko
 
A
,
Verheugt
 
FW
,
Zhu
 
J
,
Wallentin
 
L
; ARISTOTLE Committees and Investigators.
Apixaban versus warfarin in patients with atrial fibrillation
.
N Engl J Med
 
2011
;
365
:
981
992
.

150

Patel
 
MR
,
Mahaffey
 
KW
,
Garg
 
J
,
Pan
 
G
,
Singer
 
DE
,
Hacke
 
W
,
Breithardt
 
G
,
Halperin
 
JL
,
Hankey
 
GJ
,
Piccini
 
JP
,
Becker
 
RC
,
Nessel
 
CC
,
Paolini
 
JF
,
Berkowitz
 
SD
,
Fox
 
KAA
,
Califf
 
RM
; the ROCKET AF Steering Committee.
Rivaroxaban versus warfarin in nonvalvular atrial fibrillation
.
N Engl J Med
 
2011
;
365
:
883
891
.

151

Giugliano
 
RP
,
Ruff
 
CT
,
Braunwald
 
E
,
Murphy
 
SA
,
Wiviott
 
SD
,
Halperin
 
JL
,
Waldo
 
AL
,
Ezekowitz
 
MD
,
Weitz
 
JI
,
Spinar
 
J
,
Ruzyllo
 
W
,
Ruda
 
M
,
Koretsune
 
Y
,
Betcher
 
J
,
Shi
 
M
,
Grip
 
LT
,
Patel
 
SP
,
Patel
 
I
,
Hanyok
 
JJ
,
Mercuri
 
M
,
Antman
 
EM
; ENGAGE AF-TIMI 48 Investigators.
Edoxaban versus warfarin in patients with atrial fibrillation
.
N Engl J Med
 
2013
;
369
:
2093
2104
.

152

Brambatti
 
M
,
Darius
 
H
,
Oldgren
 
J
,
Clemens
 
A
,
Noack
 
HH
,
Brueckmann
 
M
,
Yusuf
 
S
,
Wallentin
 
L
,
Ezekowitz
 
MD
,
Connolly
 
SJ
,
Healey
 
JS.
 
Comparison of dabigatran versus warfarin in diabetic patients with atrial fibrillation: results from the RE-LY trial
.
Int J Cardiol
 
2015
;
196
:
127
131
.

153

Ezekowitz
 
JA
,
Lewis
 
BS
,
Lopes
 
RD
,
Wojdyla
 
DM
,
McMurray
 
JJ
,
Hanna
 
M
,
Atar
 
D
,
Cecilia Bahit
 
M
,
Keltai
 
M
,
Lopez-Sendon
 
JL
,
Pais
 
P
,
Ruzyllo
 
W
,
Wallentin
 
L
,
Granger
 
CB
,
Alexander
 
JH.
 
Clinical outcomes of patients with diabetes and atrial fibrillation treated with apixaban: results from the ARISTOTLE trial
.
Eur Heart J Cardiovasc Pharmacother
 
2015
;
1
:
86
94
.

154

Bansilal
 
S
,
Bloomgarden
 
Z
,
Halperin
 
JL
,
Hellkamp
 
AS
,
Lokhnygina
 
Y
,
Patel
 
MR
,
Becker
 
RC
,
Breithardt
 
G
,
Hacke
 
W
,
Hankey
 
GJ
,
Nessel
 
CC
,
Singer
 
DE
,
Berkowitz
 
SD
,
Piccini
 
JP
,
Mahaffey
 
KW
,
Fox
 
KA
; ROCKET AF Steering Committee and Investigators.
Efficacy and safety of rivaroxaban in patients with diabetes and nonvalvular atrial fibrillation: the Rivaroxaban Once-daily, Oral, Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF Trial
).
Am Heart J
 
2015
;
170
:
675
682
.

155

Connolly
 
SJ
,
Eikelboom
 
J
,
Joyner
 
C
,
Diener
 
HC
,
Hart
 
R
,
Golitsyn
 
S
,
Flaker
 
G
,
Avezum
 
A
,
Hohnloser
 
SH
,
Diaz
 
R
,
Talajic
 
M
,
Zhu
 
J
,
Pais
 
P
,
Budaj
 
A
,
Parkhomenko
 
A
,
Jansky
 
P
,
Commerford
 
P
,
Tan
 
RS
,
Sim
 
KH
,
Lewis
 
BS
,
Van Mieghem
 
W
,
Lip
 
GY
,
Kim
 
JH
,
Lanas-Zanetti
 
F
,
Gonzalez-Hermosillo
 
A
,
Dans
 
AL
,
Munawar
 
M
,
O'Donnell
 
M
,
Lawrence
 
J
,
Lewis
 
G
,
Afzal
 
R
,
Yusuf
 
S
; AVERROES Steering Committee and Investigators.
Apixaban in patients with atrial fibrillation
.
N Engl J Med
 
2011
;
364
:
806
817
.

156

Paciaroni
 
M
,
Agnelli
 
G
,
Falocci
 
N
,
Caso
 
V
,
Becattini
 
C
,
Marcheselli
 
S
,
Rueckert
 
C
,
Pezzini
 
A
,
Poli
 
L
,
Padovani
 
A
,
Csiba
 
L
,
Szabo
 
L
,
Sohn
 
SI
,
Tassinari
 
T
,
Abdul-Rahim
 
AH
,
Michel
 
P
,
Cordier
 
M
,
Vanacker
 
P
,
Remillard
 
S
,
Alberti
 
A
,
Venti
 
M
,
Scoditti
 
U
,
Denti
 
L
,
Orlandi
 
G
,
Chiti
 
A
,
Gialdini
 
G
,
Bovi
 
P
,
Carletti
 
M
,
Rigatelli
 
A
,
Putaala
 
J
,
Tatlisumak
 
T
,
Masotti
 
L
,
Lorenzini
 
G
,
Tassi
 
R
,
Guideri
 
F
,
Martini
 
G
,
Tsivgoulis
 
G
,
Vadikolias
 
K
,
Liantinioti
 
C
,
Corea
 
F
,
Del Sette
 
M
,
Ageno
 
W
,
De Lodovici
 
ML
,
Bono
 
G
,
Baldi
 
A
,
D'Anna
 
S
,
Sacco
 
S
,
Carolei
 
A
,
Tiseo
 
C
,
Acciarresi
 
M
,
D'Amore
 
C
,
Imberti
 
D
,
Zabzuni
 
D
,
Doronin
 
B
,
Volodina
 
V
,
Consoli
 
D
,
Galati
 
F
,
Pieroni
 
A
,
Toni
 
D
,
Monaco
 
S
,
Baronello
 
MM
,
Barlinn
 
K
,
Pallesen
 
LP
,
Kepplinger
 
J
,
Bodechtel
 
U
,
Gerber
 
J
,
Deleu
 
D
,
Melikyan
 
G
,
Ibrahim
 
F
,
Akhtar
 
N
,
Mosconi
 
MG
,
Bubba
 
V
,
Silvestri
 
I
,
Lees
 
KR.
 
Early recurrence and cerebral bleeding in patients with acute ischemic stroke and atrial fibrillation: effect of anticoagulation and its timing: the RAF study
.
Stroke
 
2015
;
46
:
2175
2182
.

157

Paciaroni
 
M
,
Agnelli
 
G
,
Falocci
 
N
,
Tsivgoulis
 
G
,
Vadikolias
 
K
,
Liantinioti
 
C
,
Chondrogianni
 
M
,
Bovi
 
P
,
Carletti
 
M
,
Cappellari
 
M
,
Zedde
 
M
,
Ntaios
 
G
,
Karagkiozi
 
E
,
Athanasakis
 
G
,
Makaritsis
 
K
,
Silvestrelli
 
G
,
Lanari
 
A
,
Ciccone
 
A
,
Putaala
 
J
,
Tomppo
 
L
,
Tatlisumak
 
T
,
Abdul-Rahim
 
AH
,
Lees
 
KR
,
Alberti
 
A
,
Venti
 
M
,
Acciarresi
 
M
,
D'Amore
 
C
,
Becattini
 
C
,
Mosconi
 
MG
,
Cimini
 
LA
,
Soloperto
 
R
,
Masotti
 
L
,
Vannucchi
 
V
,
Lorenzini
 
G
,
Tassi
 
R
,
Guideri
 
F
,
Acampa
 
M
,
Martini
 
G
,
Sohn
 
SI
,
Marcheselli
 
S
,
Mumoli
 
N
,
De Lodovici
 
ML
,
Bono
 
G
,
Furie
 
KL
,
Tadi
 
P
,
Yaghi
 
S
,
Toni
 
D
,
Letteri
 
F
,
Tassinari
 
T
,
Kargiotis
 
O
,
Lotti
 
EM
,
Flomin
 
Y
,
Mancuso
 
M
,
Maccarrone
 
M
,
Giannini
 
N
,
Bandini
 
F
,
Pezzini
 
A
,
Poli
 
L
,
Padovani
 
A
,
Scoditti
 
U
,
Denti
 
L
,
Consoli
 
D
,
Galati
 
F
,
Sacco
 
S
,
Carolei
 
A
,
Tiseo
 
C
,
Gourbali
 
V
,
Orlandi
 
G
,
Giuntini
 
M
,
Chiti
 
A
,
Giorli
 
E
,
Gialdini
 
G
,
Corea
 
F
,
Ageno
 
W
,
Bellesini
 
M
,
Colombo
 
G
,
Monaco
 
S
,
Maimone
 
BM
,
Karapanayiotides
 
T
,
Caso
 
V.
 
Early recurrence and major bleeding in patients with acute ischemic stroke and atrial fibrillation treated with non-vitamin-K oral anticoagulants (RAF-NOACs) study
.
J Am Heart Assoc
 
2017
;
6
:
e007034
.

158

Steffel
 
J
,
Verhamme
 
P
,
Potpara
 
TS
,
Albaladejo
 
P
,
Antz
 
M
,
Desteghe
 
L
,
Haeusler
 
KG
,
Oldgren
 
J
,
Reinecke
 
H
,
Roldan-Schilling
 
V
,
Rowell
 
N
,
Sinnaeve
 
P
,
Collins
 
R
,
Camm
 
AJ
,
Heidbüchel
 
H
; ESC Scientific Document Group.
The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation
.
Eur Heart J
 
2018
;
39
:
1330
1393
.

159

Altavilla
 
R
,
Caso
 
V
,
Bandini
 
F
,
Agnelli
 
G
,
Tsivgoulis
 
G
,
Yaghi
 
S
,
Furie
 
KL
,
Tadi
 
P
,
Becattini
 
C
,
Zedde
 
M
,
Abdul-Rahim
 
AH
,
Lees
 
KR
,
Alberti
 
A
,
Venti
 
M
,
Acciarresi
 
M
,
D’Amore
 
C
,
Giulia Mosconi
 
M
,
Anna Cimini
 
L
,
Fusaro
 
J
,
Bovi
 
P
,
Carletti
 
M
,
Rigatelli
 
A
,
Cappellari
 
M
,
Putaala
 
J
,
Tomppo
 
L
,
Tatlisumak
 
T
,
Marcheselli
 
S
,
Pezzini
 
A
,
Poli
 
L
,
Padovani
 
A
,
Masotti
 
L
,
Vannucchi
 
V
,
Sohn
 
S-I
,
Lorenzini
 
G
,
Tassi
 
R
,
Guideri
 
F
,
Acampa
 
M
,
Martini
 
G
,
Ntaios
 
G
,
Athanasakis
 
G
,
Makaritsis
 
K
,
Karagkiozi
 
E
,
Vadikolias
 
K
,
Liantinioti
 
C
,
Chondrogianni
 
M
,
Mumoli
 
N
,
Consoli
 
D
,
Galati
 
F
,
Sacco
 
S
,
Carolei
 
A
,
Tiseo
 
C
,
Corea
 
F
,
Ageno
 
W
,
Bellesini
 
M
,
Silvestrelli
 
G
,
Ciccone
 
A
,
Lanari
 
A
,
Scoditti
 
U
,
Denti
 
L
,
Mancuso
 
M
,
Maccarrone
 
M
,
Ulivi
 
L
,
Orlandi
 
G
,
Giannini
 
N
,
Gialdini
 
G
,
Tassinari
 
T
,
De Lodovici
 
ML
,
Bono
 
G
,
Rueckert
 
C
,
Baldi
 
A
,
D’Anna
 
S
,
Toni
 
D
,
Letteri
 
F
,
Giuntini
 
M
,
Maria Lotti
 
E
,
Flomin
 
Y
,
Pieroni
 
A
,
Kargiotis
 
O
,
Karapanayiotides
 
T
,
Monaco
 
S
,
Maimone Baronello
 
M
,
Csiba
 
L
,
Szabó
 
L
,
Chiti
 
A
,
Giorli
 
E
,
Del Sette
 
M
,
Imberti
 
D
,
Zabzuni
 
D
,
Doronin
 
B
,
Volodina
 
V
,
Michel
 
P
,
Vanacker
 
P
,
Barlinn
 
K
,
Pallesen
 
L-P
,
Barlinn
 
J
,
Deleu
 
D
,
Melikyan
 
G
,
Ibrahim
 
F
,
Akhtar
 
N
,
Gourbali
 
V
,
Paciaroni
 
M.
 
Anticoagulation after stroke in patients with atrial fibrillation
.
Stroke
 
2019
;
50
:
2093
2100
.

160

Rocca
 
B
,
Fox
 
KAA
,
Ajjan
 
RA
,
Andreotti
 
F
,
Baigent
 
C
,
Collet
 
JP
,
Grove
 
EL
,
Halvorsen
 
S
,
Huber
 
K
,
Morais
 
J
,
Patrono
 
C
,
Rubboli
 
A
,
Seljeflot
 
I
,
Sibbing
 
D
,
Siegbahn
 
A
,
Ten Berg
 
J
,
Vilahur
 
G
,
Verheugt
 
FWA
,
Wallentin
 
L
,
Weiss
 
TW
,
Wojta
 
J
,
Storey
 
RF.
 
Antithrombotic therapy and body mass: an expert position paper of the ESC Working Group on Thrombosis
.
Eur Heart J
 
2018
;
39
:
1672
1686f
.

161

Bhatt
 
DL
,
Eikelboom
 
JW
,
Connolly
 
SJ
,
Steg
 
PG
,
Anand
 
SS
,
Verma
 
S
,
Branch
 
KRH
,
Probstfield
 
J
,
Bosch
 
J
,
Shestakovska
 
O
,
Szarek
 
M
,
Maggioni
 
AP
,
Widimský
 
P
,
Avezum
 
A
,
Diaz
 
R
,
Lewis
 
BS
,
Berkowitz
 
SD
,
Fox
 
KAA
,
Ryden
 
L
,
Yusuf
 
S
; COMPASS Steering Committee and Investigators.
Role of combination antiplatelet and anticoagulation therapy in diabetes mellitus and cardiovascular disease: insights from the COMPASS trial
.
Circulation
 
2020
;
141
:
1841
1854
.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For permissions, please email: journals.permissions@oup.com.

Supplementary data