Abstract

The detection of nanoplastics (NPs) in the natural ecosystems is challenging due to the size and the low concentrations of NPs. The aim of the present study is to investigate the presence of NPs in larvae of two chironomid species (Diamesa zernyi and Diamesa tonsa) colonizing two high-altitude glacier-fed streams (Mandrone and Amola streams, Trentino, Italy). The analytical method developed in this work combines enzymatic and oxidative digestion followed by a purification step in ethanol to enable on-chip identification through Raman spectroscopic analysis. To validate the extraction procedure, three pools of 100 mg (wet weight) each of Diamesa zernyi larvae from the Mandrone stream were spiked with polystyrene NPs of 500 nm in size at two different theoretical concentrations (107 and 109 particles/mL). Quantification of the particles in the residual matrix was performed using Single Particle Extinction and Scattering (SPES) analysis. The results demonstrate good recovery rates, respectively of 109 ± 28% and 82 ± 12% for the high and low concentration spiked samples. This methodology enabled the effective identification of plastic particles using confocal Raman spectroscopy. Successively, three pools of 100 mg (wet weight) of non-spiked specimens of Diamesa tonsa from the Amola stream were analysed revealing the presence of polystyrene particles. Despite the low number of replicates from only one analysed sampling site and the detection limits of the Raman spectroscopy, this approach represents the first reliable analytical extraction procedure to demonstrate the accumulation of NPs by aquatic insect larvae and, consequently, the potential environmental pollution of glacial streams from Italian Alps.

Information Accepted manuscripts
Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.
This content is only available as a PDF.

Author notes

These authors contributed in the same way to this work

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].

Supplementary data